
Foundations and TrendsR© in
Theoretical Computer Science
Vol. 3, Nos. 2–3 (2007) 93–263
c© 2009 N. Buchbinder and J. (Seffi) Naor
DOI: 10.1561/0400000024

The Design of Competitive Online Algorithms
via a Primal–Dual Approach

By Niv Buchbinder and Joseph (Seffi) Naor

Contents

1 Introduction 95

2 Necessary Background 97

2.1 Linear Programming and Duality 97
2.2 Approximation Algorithms 101
2.3 Online Computation 107
2.4 Notes 109

3 A First Glimpse: The Ski Rental Problem 110

3.1 Notes 114

4 The Basic Approach 115

4.1 The Online Packing–Covering Framework 115
4.2 Three Simple Algorithms 117
4.3 Lower Bounds 127
4.4 Two Warm-Up Problems 129
4.5 Notes 133

5 The Online Set-Cover Problem 135

5.1 Obtaining a Deterministic Algorithm 136
5.2 Notes 140



6 The Metrical Task System Problem on a Weighted
Star 142

6.1 A Modified Model 143
6.2 The Algorithm 146
6.3 Notes 147

7 Generalized Caching 149

7.1 The Fractional Weighted Caching Problem 150
7.2 Randomized Online Algorithm for Weighted Caching 161
7.3 The Generalized Caching Problem 166
7.4 Rounding the Fractional Solution Online 174
7.5 Notes 189

8 Load Balancing on Unrelated Machines 193

8.1 LP Formulation and Algorithm 193
8.2 Notes 196

9 Routing 198

9.1 A Generic Routing Algorithm 201
9.2 Achieving Coordinate-Wise Competitive Allocation 206
9.3 Notes 209

10 Maximizing Ad-Auctions Revenue 210

10.1 The Basic Algorithm 211
10.2 Multiple Slots: The Role of Strong Duality 214
10.3 Incorporating Stochastic information 218
10.4 Notes 223

11 Graph Optimization Problems 224

11.1 Formulating the Problem 225
11.2 The Group Steiner Problem on Trees 228
11.3 Notes 231



12 Dynamic TCP-Acknowledgement Problem 233

12.1 The Algorithm 234
12.2 Notes 236

13 The Bounded Allocation Problem: Beating
(1 − 1/e) 237

13.1 The Algorithm 238
13.2 Notes 245

14 Extension to General Packing–Covering
Constraints 246

14.1 The General Online Fractional Packing Problem 247
14.2 The General Online Fractional Covering Problem 252
14.3 Notes 255

15 Conclusions and Further Research 256

References 258



Foundations and TrendsR© in
Theoretical Computer Science
Vol. 3, Nos. 2–3 (2007) 93–263
c© 2009 N. Buchbinder and J. (Seffi) Naor
DOI: 10.1561/0400000024

The Design of Competitive Online Algorithms
via a Primal–Dual Approach

Niv Buchbinder1 and Joseph (Seffi) Naor2

1 Computer Science Department, Technion — Israel Institute of Technology,
Israel, nivb@cs.technion.ac.il

2 Computer Science Department, Technion — Israel Institute of Technology,
Israel, naor@cs.technion.ac.il

Abstract

The primal–dual method is a powerful algorithmic technique that has
proved to be extremely useful for a wide variety of problems in the area
of approximation algorithms for NP-hard problems. The method has its
origins in the realm of exact algorithms, e.g., for matching and network
flow. In the area of approximation algorithms, the primal–dual method
has emerged as an important unifying design methodology, starting
from the seminal work of Goemans and Williamson [60].

We show in this survey how to extend the primal–dual method to
the setting of online algorithms, and show its applicability to a wide
variety of fundamental problems. Among the online problems that we
consider here are the weighted caching problem, generalized caching,
the set-cover problem, several graph optimization problems, routing,
load balancing, and the problem of allocating ad-auctions. We also
show that classic online problems such as the ski rental problem and
the dynamic TCP-acknowledgement problem can be solved optimally
using a simple primal–dual approach.



The primal–dual method has several advantages over existing meth-
ods. First, it provides a general recipe for the design and analysis of
online algorithms. The linear programming formulation helps detecting
the difficulties of the online problem, and the analysis of the compet-
itive ratio is direct, without a potential function appearing “out of
nowhere.” Finally, since the analysis is done via duality, the competi-
tiveness of the online algorithm is with respect to an optimal fractional
solution, which can be advantageous in certain scenarios.



1
Introduction

The primal–dual method is a powerful algorithmic technique that has
proved to be extremely useful for a wide variety of problems in the area
of approximation algorithms. The method has its origins in the realm
of exact algorithms, e.g., for matching and network flow. In the area
of approximation algorithms, the primal–dual method has emerged as
an important unifying design methodology starting from the seminal
work of Goemans and Williamson [60].

Our goal in this survey is to extend the primal–dual method to the
setting of online algorithms, and show that it is applicable to a wide
variety of problems. The approach we propose has several advantages
over existing methods:

• A general recipe for the design and analysis of online algo-
rithms is developed.

• The framework is shown to be applicable to a wide range of
fundamental online problems.

• A linear programming formulation helps detecting the diffi-
culties of the online problem in hand.

• The competitive ratio analysis is direct, without a potential
function appearing “out of nowhere.”
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96 Introduction

• The competitiveness of the online algorithm is with respect
to an optimal fractional solution.

In Section 2, we briefly provide the necessary background needed
for the rest of the discussion. This includes a short exposition on lin-
ear programming, duality, offline approximation methods, and basic
definitions of online computation. Many readers may already be famil-
iar with these basic definitions and techniques; however, we advise the
readers not to skip this chapter, and in particular the part on approxi-
mation algorithms. Techniques pertinent to approximation algorithms
are presented in a way that allows the reader to later see the similarity
to the online techniques we develop. This section also provides some
of the basic notation that we use in the sequel. Section 3 gives a first
taste of the primal–dual approach in the context of online algorithms
via the well-understood ski rental problem. We show an alternative
way of deriving optimal algorithms for the ski rental problem using a
simple primal–dual approach. In Section 4, we lay the foundations for
the online primal–dual approach and design the basic algorithms for
the packing–covering framework. We also study two toy examples that
demonstrate the online framework. The rest of the sections show how
to apply the primal–dual approach to many interesting and fundamen-
tal problems. We tried to make the chapters independent of each other;
however, there are still certain connections between chapters, and thus
closely related problems appear in consecutive chapters and typically
in increasing order of complexity.

Among the problems that we consider are the weighted caching
problem, generalized caching, the online set-cover problem, several
graph optimization problems, routing, load balancing, and even the
problem of allocating ad-auctions. We also show that classic online
problems like the dynamic TCP-acknowledgement problem can be opti-
mally solved using a primal–dual approach. There are also several more
problems that can be solved via the primal–dual approach and are not
discussed here. Such problems are, for example, the admission con-
trol problem [5], the parking permit problem [83] and the inventory
problem [31].



2
Necessary Background

In this section, we briefly overview the background needed for reading
the rest of the survey. In Section 2.1, we discuss linear programming
and duality. In Section 2.2, we discuss several classical methods for
deriving (offline) approximation algorithms for intractable optimization
problems. We demonstrate these ideas on the set-cover problem which
we later consider in the online setting. In Section 2.3, we provide basic
concepts and definitions related to online computation. This section
is not meant to give a comprehensive introduction, but rather only
provide the basic notation and definitions used later on in the text.
For a more comprehensive discussion of these subjects, we refer the
reader to the many excellent textbooks on these subjects. For more
information on linear programming and duality, we refer the reader
to [42]. For further information on approximation techniques we refer
the reader to [90]. Finally, for more details on online computation and
competitive analysis we refer the reader to [28].

2.1 Linear Programming and Duality

Linear programming is the problem of minimizing or maximizing a
linear objective function over a feasible set defined by a set of linear
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98 Necessary Background

inequalities. There are several equivalent ways of formulating a linear
program. For our purposes, the most convenient one is the following:

(P ) : min
n∑

i=1

cixi s.t.

For any 1 ≤ j ≤m:
n∑

i=1

aijxi ≥ bj , ∀1 ≤ i ≤ n, xi ≥ 0.

It is well known that any linear program can be formulated in this
way. We refer to such a minimization problem as the primal problem
(P ). Any vector x = (x1,x2, . . . ,xn) that satisfies all the constraints
of (P ) is referred to as a feasible solution to the linear program (P ).
Every primal linear program has a corresponding dual program. The
dual linear program of (P ) is a maximization linear program: it has m

dual variables that correspond to the primal constraints and it has n

constraints that correspond to the primal variables. The dual program
(D) that corresponds to the linear program formulation (P ) is the
following:

(D) : max
m∑

j=1

bjyj s.t.

For any 1 ≤ i ≤ n:
m∑

j=1

aijyj ≤ ci, ∀1 ≤ j ≤m, yj ≥ 0.

The useful properties of the dual program are summarized in the
following theorems.

Theorem 2.1 (Weak duality). Let x = (x1,x2, . . . ,xn) and y =
(y1,y2, . . . ,ym) be feasible solutions to the primal and the dual linear
programs, respectively, then:

n∑
i=1

cixi ≥
m∑

j=1

bjyj .
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Weak duality states that the value of any feasible dual solution is at
most the value of any feasible primal solution. Thus, the dual program
can actually be used as a lower bound for any feasible primal solution.
The proof of this theorem is quite simple.

Proof.

n∑
i=1

cixi ≥
n∑

i=1


 m∑

j=1

aijyj


xi (2.1)

=
m∑

j=1

(
n∑

i=1

aijxi

)
yj (2.2)

≥
m∑

j=1

bjyj , (2.3)

where inequality (2.1) follows since y = (y1,y2, . . . ,ym) is feasible and
each xi is non-negative. Equality (2.2) follows by changing the order of
summation. Inequality (2.3) follows since x = (x1,x2, . . . ,xn) is feasible
and each yj is non-negative.

The next theorem is sometimes referred to as the strong duality the-
orem. It states that if the primal and dual programs are bounded, then
the optima of the two programs is equal. The proof of the strong duality
theorem is harder and we only state the theorem here without a proof.

Theorem 2.2 (Strong duality). The primal linear program is
feasible if and only if the dual linear program has a finite optimal
solution. In this case, the value of the optimal solutions of the primal
and dual programs is equal.

Finally, we prove an important theorem on approximate comple-
mentary slackness which is used extensively in the context of approxi-
mation algorithms.

Theorem 2.3 (Approximate complementary slackness). Let
x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,ym) be feasible solutions to the
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primal and dual linear programs, respectively, satisfying the following
conditions:

• Primal complementary slackness: For α ≥ 1, for each i, 1 ≤
i ≤ n, if xi > 0 then ci/α ≤∑m

j=1 aijyi ≤ ci.
• Dual complementary slackness: For β ≥ 1, for each j, 1 ≤ j ≤

m, if yj > 0 then bj ≤
∑n

i=1 aijxi ≤ bj · β.

Then
n∑

i=1

cixi ≤ α · β
m∑

j=1

bjyj .

In particular, if the complementary slackness conditions hold with
α = β = 1, then we get that x and y are both optimal solutions to the
primal and dual linear programs, respectively. The proof of the theorem
is again very short.

Proof.

n∑
i=1

cixi ≤ α

n∑
i=1


 m∑

j=1

aijyi


xi (2.4)

= α

m∑
j=1

(
n∑

i=1

aijxi

)
yj (2.5)

≤ α · β
m∑

j=1

bjyj , (2.6)

where (2.4) follows from the primal complementary slackness condition.
Equality (2.5) follows by changing the order of summation, and Inequal-
ity (2.6) follows from the dual complementary slackness condition.

Theorem 2.3 gives an efficient tool for proving that a solution is
approximately optimal. Consider, for example, a minimization problem.
Suppose you can find primal and dual solutions that satisfy the (approx-
imate) complementary slackness conditions. Then, the solution for the
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minimization problem is at most α · β times a feasible dual solution.
Since, by weak duality (Theorem 2.1), the value of any dual solution is
a lower bound on the value of any primal solution, the solution obtained
is also at most α · β times the optimal primal solution.

Covering/packing linear formulations: A special class of linear pro-
grams are those in which the coefficients aij , bj and ci are all
non-negative. In this case, the primal program forms a covering prob-
lem and the dual program forms a packing problem. The meaning of
these names will become clear in Section 2.2 where we discuss the set
cover problem. In the sequel, we sometimes use the notion of covering–
packing primal–dual pair.

2.2 Approximation Algorithms

In this section, we give a very short background on some basic meth-
ods for developing approximation algorithms for intractable problems.
Later on we show that similar ideas can be extended and used in the
context of online algorithms. We start by formally defining the notions
of optimization problems and approximation factors. In an (offline)
minimization optimization problem we are given set of instances I. For
each instance I ∈ I there is a set of feasible solutions. Each feasible solu-
tion is associated with a cost. Let OPT(I) be the cost of the minimal
feasible solution for instance I. A polynomial time algorithm A is called
a c-approximation for a minimization optimization problem if for every
instance I it outputs a solution with cost at most c · OPT(I). The def-
initions for maximization optimization problems are analogous. In this
case, each instance is associated with a profit. A c-approximation algo-
rithm is guaranteed to return a solution with cost at least OPT(I)/c,
where OPT(I) is the maximum profit solution.

The set-cover problem: We demonstrate several classic ideas used for
developing approximation algorithms via the set cover problem. In the
set-cover problem, we are given a set of n elements X = e1,e2, . . . ,en,
and a family S = s1,s2, . . . ,sm of subsets of X, |S| = m. Each set sj

is associated with a non-negative cost cs. A cover is a collection of
sets such that their union is X. The objective is to find a cover of
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X of minimum cost. This problem is known to be NP-hard. Linear
programming relaxations constitute a very useful way for obtaining
lower bounds on the optimum value of a given combinatorial problem.
To this end, we introduce a non-negative variable xs for each set s ∈ S.
Initially, we formulate the problem as an integer program, allowing
xs to be either 0 or 1. The following is an integer formulation of the
set-cover problem:

min
∑
s∈S

csxs s.t.

For each element ei (1 ≤ i ≤ n):∑
s|ei∈S

xs ≥ 1, ∀s ∈ S, xs ∈ {0,1}.

It is not hard to verify that the set of feasible solution to this program
corresponds to the set of feasible covers. Thus, a minimum cover cor-
responds to an optimal solution to the integer program. Next, we relax
the constraint xs ∈ {0,1} and get the following linear formulation of
the problem:

(P ) : min
∑
s∈S

csxs s.t.

For each element ei (1 ≤ i ≤ n):∑
s|ei∈S

xs ≥ 1, ∀s ∈ S, xs ≥ 0.

Since the feasible space of the linear formulation contains all the inte-
gral solutions of the integer formulation, we get that the optimal
solution to the linear formulation is a lower bound on the value of
any integral set cover solution. We also remark that there is no need to
demand that xs ≤ 1, since a minimum cost solution will never increase
the value of any xs above 1. A solution to the linear formulation is
called a fractional set cover solution. In such a relaxed set cover solu-
tion, one is allowed to take a fraction xs of each set and pay only csxs

for this fraction. The restriction is that the sum of fractions of sets that
contain each element ei should be at least 1. In the corresponding dual
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linear program of (P ) there is a variable for each element ei. The dual
program (D) is the following:

(D) : max
∑
e∈X

yei s.t.

For each set s ∈ S:∑
ei∈S

yei ≤ cs, ∀1 ≤ i ≤ n, yei ≥ 0.

We next demonstrate several classic approximation techniques using
the set cover problem as our running example.

2.2.1 Dual Fitting

We present the dual fitting method by analyzing the greedy algorithm
for the set cover problem. The greedy algorithm is depicted below.

Greedy algorithm: Initially, C = ∅. Let U be the set of yet uncov-
ered elements.
As long as U �= ∅, let s ∈ S be the set that minimizes the ratio
cs/|U ∩ s|:

(1) Add s to C and set xs← 1.
(2) For each ei ∈ (U ∩ s), yei ← cs/|U ∩ s|.

Theorem 2.4. The greedy algorithm is an O(log n)-approximation
algorithm for the set-cover problem.

Proof. We are going to show that the algorithm produces throughout
its execution both primal and dual solutions. Let P and D be the values
of the objective functions of the primal and dual solutions produced,
respectively. Initially, P = D = 0. We focus on a single iteration of the
algorithm and denote by ∆P and ∆D the change in the primal and
dual cost, respectively. We prove three simple claims:

(1) The algorithm produces a primal (covering) feasible solution.
(2) In each iteration: ∆P ≤∆D.
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(3) Each packing constraint in the dual program is violated by
a multiplicative factor of at most O(log n).

The proof follows immediately from the three claims together with
weak duality. First, by claim (1) our solution is feasible. By the fact
that initially P = D = 0 and by claim (2) we get that we produce primal
and dual solutions such that P ≤ D. Finally, by claim (3) we get that
dividing the dual solution by c log n, for a constant c, yields a dual
feasible solution with value D′ = D/(c log n). Therefore, we get that
the primal cost is at most c log n times a feasible dual solution. Since
by weak duality a feasible dual solution is at most the cost of any primal
solution, we get that the primal solution is at most c log n times the
optimal (minimal) primal solution.

Proof of (1): Clearly, if there exists a feasible primal solution, then the
algorithm will also produce a feasible solution.

Proof of (2): Consider an iteration of the algorithm in which U is the
set of uncovered elements and set s is chosen. The change in the primal
cost (due to the addition of set s) is cs. In the dual program, we set the
variables corresponding to the |U ∩ s| elements covered in the iteration
to cs/|U ∩ s|. Thus, the total change in the dual profit is also cs. Note
that we only set the dual variable corresponding to each element only
once. This happens in the iteration in which the element is covered.

Proof of (3): Consider the dual constraint corresponding to set s. Let
e1,e2, . . . ,ek be the elements belonging to set s, sorted with respect to
the order they were covered by the greedy algorithm. Consider element
ei; we claim that yei ≤ cs/(k − i + 1). This is true since the algorithm
chooses the set that minimizes the ratio of cost to number of uncovered
elements, which is in fact the value assigned to yei . At the time ei is
covered by the greedy algorithm, set s contained at least k − i + 1 ele-
ments that were still uncovered, thus we get that yei ≤ cs/(k − i + 1).
Therefore, we get for set s:

∑
ei∈s

yei ≤
k∑

i=1

cs

k − i + 1
= Hk · cs = cs · O(log n),

where Hk is the kth harmonic number.
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2.2.2 Randomized Rounding

In this section, we design a different O(log n)-approximation algorithm
for the set cover problem using a useful technique called randomized
rounding. The first step is to compute an optimal fractional solution to
linear program (P ). Then, the fractional solution is rounded by treat-
ing the fractions as probabilities. We describe the rounding algorithm
slightly different from standard textbooks; however, this description
will be useful in the sequel. The rounding algorithm is the following:

Randomized rounding algorithm:

(1) For each set s ∈ S, choose 2 ln n independently random
variables X(s, i) uniformly at random in the interval [0,1].

(2) For each set s, let Θ(s) = min2 ln n
i=1 X(s, i).

(3) Solve linear program (P ).
(4) Take set s to the cover if Θ(s) ≤ xs.

Theorem 2.5. The algorithm produces a solution with the following
properties:

(1) The expected cost of the solution is O(log n) times the cost
of the fractional solution.

(2) The solution is feasible with probability 1 − 1/n > 1/2.

Since the fractional solution provides a lower bound on any integral
solution, we get that the algorithm is an O(logn)-approximation.

Proof. The proof strongly uses the fact that in a feasible solution, for
each element, the sum of fractions of the sets containing it is at least 1.

To prove (1) note that for each i, 1 ≤ i ≤ 2 ln n, the probability
that X(s, i) ≤ xs is exactly xs. The probability that s is chosen to
the solution is the probability that there exists an i, 1 ≤ i ≤ 2 ln n,
such that X(s, i) ≤ xs. Let Ai be the event that X(s, i) ≤ xs. Thus,
the probability that s is chosen to the solution is the probability of⋃2 ln n

i=1 Ai. By the union bound this probability is at most the sum of
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the probabilities of the different events, which is 2xs ln n. Therefore,
using linearity of expectation the expected cost of the solution is at
most 2 ln n times the cost of the fractional solution.

To prove (2) pick an element e. Fix any i, 1 ≤ i ≤ 2 ln n. The prob-
ability that e is not covered due to i is the probability that none of
the variables X(s, i) (for all sets s, e ∈ s) result in choosing a set s

covering e. This probability is

∏
s∈S|e∈s

(1 − xs) ≤ exp

(
−

∑
s∈S|e∈s

xs

)
≤ exp(−1),

where the first inequality follows since 1 − x ≤ exp(−x). The second
inequality follows since each element is fractionally covered. Since we
choose 2 ln n random variables independently, the probability that e is
not covered is at most exp(−2 ln n) = 1/n2. Using the union bounds
we get that the probability that there exists an element e which is not
covered is at most n · 1/n2 = 1/n.

2.2.3 The Primal–Dual Schema

In this section, we give a third approximation algorithm for the set cover
problem which is based on the primal–dual schema. The algorithm is
the following:

Primal–dual algorithm:
While there exists an uncovered element ei:

(1) Increase the dual variable yei continuously.
(2) If there exists a set s such that

∑
e∈s ye = cs: take s to the

cover and set xs← 1.

Let f be the maximum frequency of an element (i.e., the maximum
number of sets an element belongs to).

Theorem 2.6. The algorithm is an f -approximation for the set-cover
problem.
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Proof. Clearly, the primal solution produced by the algorithm is feasi-
ble, since we pick sets to the cover as long as the solution is infeasible.
The dual solution produced by the algorithm is also feasible, since set
s is taken to the solution only when the dual constraint corresponding
to it becomes tight. From then on, we never increase a dual variable
corresponding to an element belonging to s. Finally, the primal com-
plementary slackness condition holds with α = 1, since, if xs > 0, then∑

e∈s yei = cs. The dual complementary slackness condition holds with
β = f , since, if yei > 0, then 1 ≤∑

s|e∈s xs ≤ f . Thus, by Theorem 2.3,
we get that the algorithm is an f -approximation.

Remark 2.7. For the special case of the vertex cover problem this
algorithm is a 2-approximation.

2.3 Online Computation

The traditional design and analysis of algorithms assumes that
complete knowledge of the entire input is available to an algorithm.
However, this is not the case in an online problem, where the input
is revealed in parts, and an online algorithm is required to respond to
each new input upon arrival. Previous decisions of the online algorithm
cannot be revoked. Thus, the main issue in online computation is
obtaining good performance in the face of uncertainty, since the
“future” is unknown to the algorithm. A standard measure by now for
evaluating the performance of an online algorithm is the competitive
ratio, which compares the performance of an online algorithm to
that of an offline algorithm which is given the whole input sequence
beforehand.

The precise definition of the competitive factor is the following.
Suppose we are given a minimization optimization problem I. For
each instance of I there is a set of feasible solutions. Each feasible
solution is associated with a cost. Let OPT(I) be the optimal cost of
a feasible solution for instance I. In the online case, the instance is
given to the algorithm in parts. An online algorithm A is said to be
c-competitive for I if for every instance of I it outputs a solution of
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cost at most c · OPT(I) + α, where the additive term α is independent
of the request sequence. if α = 0 then the algorithm is called strictly
c-competitive. We are not going to distinguish between the two
notions. The definition of competitiveness of maximization optimiza-
tion problems is analogous. When considering a maximization problem
each instance is associated with a profit. A c-competitive algorithm
is guaranteed to return a solution with cost at least OPT(I)/c − α,
where OPT(I) is the maximum profit solution, and α is an additive
term independent of the request sequence.

A common concept in competitive analysis is that of an adversary.
The online solution can be viewed as a game between an online algo-
rithm and a malicious adversary. While the online algorithm’s strategy
is to minimize its cost, the adversary’s strategy is to construct the
worst possible input for the algorithm. Using this view, the adver-
sary produces a sequence σ = σ1,σ2, . . . of requests that define the
instance I. A c-competitive online algorithm should then be able to pro-
duce a solution of cost no more than c times OPT(σ) for every request
sequence σ.

There are several known natural models of adversaries in the con-
text of randomized online algorithms. In this work, we only consider
a model in which the adversary knows the online algorithm, as well
as the probability distribution used by the online algorithm to make
its random decisions. However, the adversary is unaware of the actual
random choices made by the algorithm throughout its execution. This
kind of adversary is called an oblivious adversary. A randomized online
algorithm is c-competitive against an oblivious adversary, if for every
request sequence σ, the expected cost of the algorithm on σ is at most
c · OPT(σ) + α. The expectation is taken over all random choices made
by the algorithm. Since the oblivious adversary has no information
about the actual random choices made by the algorithm, the sequence
σ can be constructed ahead of time and OPT(σ) is not a random vari-
able. In the sequel, whenever we have a randomized online algorithm,
we simply say that it is c-competitive, and mean that it is c-competitive
against an oblivious adversary. Again, the definitions for maximization
problems are analogous.
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2.4 Notes

The dual-fitting analysis in Section 2.2.1 of the greedy heuristic is due
to [78, 41]. The algorithm in Section 2.2.3 is due to Bar-Yehuda and
Even [17]. The set-cover problem is a classic NP-hard problem that was
studied extensively in the literature. The best approximation factor
achievable for it in polynomial time (assuming P �= NP) is Θ(log n)
[41, 47, 68, 78].

The introduction here is only meant to establish basic notation and
terminology for the rest of our discussion. The area of linear program-
ming, duality, approximation algorithms, and online computation have
been studied extensively. For more information on linear programming
and duality we refer the reader to [42]. For further information on
approximation techniques we refer the reader to [90]. Finally, for more
details on online computation and competitive analysis we refer the
reader to [28].



3
A First Glimpse: The Ski Rental Problem

Let us start with a classic online problem, ski rental, through which
we will demonstrate the basic ideas underlying the online primal–dual
approach. At a ski resort renting skis costs $1 per day, while buying
skis costs $B. A skier arrives at the ski resort for a ski vacation and
has to decide whether to rent or buy skis. However, an unknown factor
is the number of remaining skiing days that are left before the snow
melts. (We should note that this is the skier’s last vacation.) In spite
of its apparent simplicity, the ski rental problem captures the essence
of online rent or buy dilemmas. The ski rental problem is well under-
stood. There exists a simple deterministic 2-competitive algorithm for
the problem and a randomized e/(e − 1)-competitive algorithm. Both
results are tight. We show here how to obtain these results using a
primal–dual approach.

The first step towards obtaining an online primal–dual algorithm is
formulating the problem in hand as a linear program. Since the offline
ski rental problem is so simple, casting it as a linear program may seem
a bit unnatural. However, this formulation turns out to be very useful.
We define an indicator variable x which is set to 1 if the skier buys the
skis. For each day j, 1 ≤ j ≤ k, we define an indicator variable zj which

110



111

is set to 1 if the skier decides to rent skis on day j. The constraints
guarantee that on each day we either rent skis or buy them. This gives
us the following integer formulation for the ski rental problem:

minB · x +
k∑

j=1

zj

For each day j:

x + zj ≥ 1, x ∈ {0,1}, ∀j,zj ∈ {0,1}.
We next relax the problem and allow x and each zj to be in [0,1].

The linear program is given in Figure 3.1 (the primal program). Note
that there is always an optimal integral solution, and thus the relax-
ation has no integrality gap. The dual program is also extremely simple
and has a variable yj corresponding to each day j. We then have a con-
straint yj ≤ 1 that corresponds to each primal variable zj , and a con-
straint

∑k
j=1 yj ≤ B that corresponds to the primal variable x. Note

that the linear programming formulation forms a covering–packing
primal–dual pair.

Next, consider the online scenario in which k (the number of ski
days) is unknown in advance. This scenario can be captured in the
linear formulation in a very natural way. Whenever we have a new ski
day, the primal linear program is updated by adding a new covering
constraint. The dual program is updated by adding a new dual variable
which is added to the packing constraints. The online requirement is
that previous decisions cannot be undone. That is, if we already rented
skis yesterday, we cannot change this decision today. This requirement
is captured in the primal linear program by the restriction that the
primal variables are monotonically non-decreasing over time.

Dual (Packing) Primal (Covering)
Maximize:

∑k
j=1 yj Minimize : B · x +

∑k
j=1 zj

Subject to: Subject to:∑k
j=1 yj ≤ B For each day j: x + zj ≥ 1

For each day j: 0 ≤ yj ≤ 1 x ≥ 0,∀j,zj ≥ 0

Fig. 3.1 The fractional ski problem (the primal) and the corresponding dual problem.
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Obtaining an optimal deterministic online algorithm for the ski
rental problem is very simple. First, rent the skis for the first B − 1
days, and then buy them on the Bth day. If k < B, the algorithm is
optimal. If k ≥ B, then the algorithm spends $2B dollars, while the
optimal solution buys skis on the first day and spends only $B dollars.
Thus, the algorithm is 2-competitive. This simple algorithm and analy-
sis can be obtained in a somewhat less natural way using a primal–dual
analysis. On the jth day, a new primal constraint x + zj ≥ 1 and a new
dual variable yj arrive. If the primal constraint is already satisfied, then
do nothing. Otherwise, increase yj continuously until some dual con-
straint becomes tight. Set the corresponding primal variable to be 1.
The above algorithm is a simple application of the primal–dual schema,
and its analysis is very simple using the approximate complementary
slackness conditions: If yj > 0 then 1 ≤ x + zj ≤ 2. Moreover, if x > 0
then

∑k
j=1 yj = B, and if zj > 0 then yj = 1. Thus, by Theorem 2.3,

the algorithm is 2-competitive. It is not hard to see that both of the
above algorithms are actually equivalent.

Developing an optimal randomized algorithm is not as straightfor-
ward as the deterministic one, yet the primal–dual approach turns out
to be very useful towards this end. The first step is designing a deter-
ministic fractional competitive algorithm. Recall that in the fractional
case the primal variables can be in the interval [0,1], and the variables
are required to be monotonically non-decreasing over time, during the
execution of the algorithm. The online algorithm is the following:

(1) Initially, x← 0.
(2) Each new day (jth new constraint), if x < 1:

(a) zj ← 1 − x.

(b) x← x(1 + 1/B) + 1/(c · B). (The value of c will
be determined later.)

(c) yj ← 1.

The analysis is simple. We show that:

(1) The primal and dual solutions are feasible.
(2) In each iteration (day), the ratio between the change in the

primal and dual objective functions is bounded by (1 + 1/c).
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Using the weak duality theorem (Theorem 2.1) we immediately
conclude that the algorithm is (1 + 1/c)-competitive.

The proof is very simple. Denote the number of ski days by k. First,
since we set zj = 1 − x (whenever x < 1), the primal solution produced
is feasible. To show feasibility of the dual solution, we need to show that

k∑
j=1

yj ≤ B.

We prove this by showing that x ≥ 1 after at most B days of ski. Denote
the increments of x (in each day) by x1,x2, . . . ,xk, where x =

∑k
j=1 xj .

It can be easily seen that x1,x2, . . . ,xk is a geometric sequence, defined
by x1 = 1/(cB) and q = 1 + 1/B. Thus, after B days,

x =

(
1 + 1

B

)B − 1
c

.

Setting c = (1 + 1/B)B − 1 guarantees that x = 1 after B days.
Second, if x < 1, in each iteration the dual objective function

increases by 1, and the increase in the primal objective function
is B∆x + zj = x + 1/c + 1 − x = 1 + 1/c, and thus the ratio is (1 +
1/c). Concluding, the competitive ratio is 1 + 1/c ≈ e/(e − 1) for
B
 1.

Converting the fractional solution into a randomized competitive
algorithm with the same competitive ratio is easy. We arrange the
increments of x on the [0,1] interval and choose ahead of time (before
executing the algorithm) α ∈ [0,1] uniformly in random. We are going
to buy skis on the day corresponding to the increment of x to which α

belongs.
We now analyze the expected cost of the randomized algorithm.

Since the probability of buying skis on the jth day is equal to xj , the
expected cost of buying skis is precisely B ·∑k

j=1 xj = Bx, which is
exactly the first term in the primal objective function. The probability
of renting skis on the jth day is equal to the probability of not buying
skis on or before the jth day, which is 1 −∑j

i=1 xi. Since

zj = 1 −
j−1∑
i=1

xi ≥ 1 −
j∑

i=1

xi,
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we get that the probability of renting on the jth day is at most zj , cor-
responding to the second term in the primal objective function. Thus,
by linearity of expectation, for any number of ski days, the expected
cost of the randomized algorithm is at most the cost of the fractional
solution.

3.1 Notes

The results in this chapter are based on the work of Buchbinder
et al. [30] who showed how to obtain a randomized e/(e − 1)-
competitive algorithm via the primal–dual approach. The randomized
e/(e − 1)-competitive factor for the ski rental problem was originally
obtained by Karlin et al. [71]. The role of randomization in the ski
problem was later restudied, along with other problems, in [70]. The
deterministic 2-competitive algorithm is due to [72].



4
The Basic Approach

We are now ready to extend the ideas used in the previous chapter for
the ski rental problem and develop a general recipe for online prob-
lems which can be formulated as packing–covering linear programs. In
Section 4.1, we formally define a general online framework for packing–
covering problems. In Section 4.2, we develop several competitive online
algorithms for this framework. In Section 4.3, we prove lower bounds
and show that these algorithms are optimal. Finally, in Section 4.4, we
give two simple examples that utilize the new ideas developed here.

4.1 The Online Packing–Covering Framework

We are going to define here a general online framework for packing–
covering problems. Let us first consider an “offline” covering linear
problem. The objective is to minimize the total cost given by a lin-
ear cost function

∑n
i=1 cixi. The feasible solution space is defined by a

set of m linear constraints of the form
∑n

i=1 a(i, j)xi ≥ b(j), where the
entries a(i, j), b(j) and ci are non-negative. For simplicity, we consider
in this chapter a simpler setting in which b(j) = 1 and a(i, j) ∈ {0,1}. In
Section 14, we show how to extend the ideas we present here to handle
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general (non-negative) values of a(i, j) and b(j). In the simpler set-
ting, each covering constraint j can be associated with a set S(j) such
that i ∈ S(j) if a(i, j) = 1. The jth covering constraint then reduces to
simply

∑
i∈S(j) xi ≥ 1. Any primal covering instance has a correspond-

ing dual packing problem that provides a lower bound on any feasible
solution to the instance. A general form of a (simpler) primal covering
problem along with its dual packing problem is given in Figure 4.1.

The online covering problem is an online version of the covering
problem. In the online setting, the cost function is known in advance,
but the linear constraints that define the feasible solution space are
given to the algorithm one-by-one. In order to maintain a feasible solu-
tion to the current set of given constraints, the algorithm is allowed
to increase the variables. It may not, however, decrease any previously
increased variable. The objective of the algorithm is to minimize the
objective function. The reader may already have noticed that this online
setting captures the ski rental problem (Chapter 3) as a special case.

The online packing problem is an online version of the packing
problem. In the online setting, the values ci (1 ≤ i ≤ n) are known
in advance. However, the profit function and the exact packing
constraints are not known in advance. In the jth round, a new variable
yj is introduced, along with the set of packing constraints it appears
in. The algorithm may increase the value of a variable yj only in the
round in which it is given, and may not decrease or increase the values
of any previously given variables. Note that variables that have not yet
been introduced may also later appear in the same packing constraints.
This actually means that each packing constraint is revealed to the
algorithm gradually. The objective of the algorithm is to maximize
the objective function while maintaining the feasibility of all packing
constraints. Although this online setting seems at first glance a bit

(P): Primal (Covering) (D): Dual (Packing)
Minimize:

∑n
i=1 cixi Maximize:

∑m
j=1 yj

subject to: subject to:
∀1 ≤ j ≤ m:

∑
i∈S(j) xi ≥ 1 ∀1 ≤ i ≤ n:

∑
j|i∈S(j) yj ≤ ci

∀1 ≤ i ≤ n: xi ≥ 0 ∀1 ≤ j ≤ m: yj ≥ 0

Fig. 4.1 Primal (covering) and dual (packing) problems.



4.2 Three Simple Algorithms 117

unnatural, we later show that many natural online problems reduce to
this online setting.

Clearly, at any point of time the linear constraints that have
appeared so far define a sub-instance of the final covering instance. The
dual packing problem of this sub-instance is a sub-instance of the final
dual packing problem. In the dual packing sub-instance, only part of the
dual variables are known, along with their corresponding coefficients.
Thus, the two sub-instances derived from the above online settings form
a primal–dual pair.

The algorithms we propose in the next section maintain at each
step solutions for both the primal and dual sub-instances. When a
new constraint appears in the online covering problem, our algorithms
also consider the new corresponding dual variable and its coefficients.
Conversely, when a new variable along with its coefficients appear in
the online fractional packing problem, our algorithms also consider the
corresponding new constraint in the primal sub-instance.

4.2 Three Simple Algorithms

In this section, we present three algorithms with the same (opti-
mal) performance guarantees for the online covering/packing problem.
Although the performance of all three algorithms in the worst case is
the same, their properties do vary, and thus certain algorithms are bet-
ter suited for particular applications. Also, the ideas underlying each
of the algorithms can be extended later to more complex settings. The
first algorithm is referred to as the basic discrete algorithm and is a
direct extension of the algorithm for the ski rental in Section 3. The
algorithm is the following:

Algorithm 1:
Upon arrival of a new primal constraint

∑
i∈S(j) xi ≥ 1 and the

corresponding dual variable yj :

(1) While
∑

i∈S(j) xi < 1:

(a) For each i ∈ S(j): xi← xi (1 + 1/ci) + 1/(|S(j)|ci).

(b) yj ← yj + 1.
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We assume that each ci ≥ 1. This assumption is not restrictive and
we discuss the reason for that later on. Let d = maxj |S(j)| ≤m be
the maximum “size” of a covering constraint. We prove the following
theorem:

Theorem 4.1. The algorithm produces:

• A (fractional) covering solution which is O(log d)-competitive.
• An “integral” packing solution which is 2-competitive and

violates each packing constraint by at most a factor of
O(log d).

We remark that it is possible to obtain a feasible packing solution by
scaling the update of each yj by a factor of O(log d). This, however, will
yield a non-integral packing solution. It is also beneficial for the reader
to note the similarity (“in spirit”) between the proof of Theorem 4.1
and the dual fitting based proof of the greedy heuristic for the set cover
problem in Section 2.2.1.

Proof. Let P and D be the values of the objective function of the
primal and the dual solutions the algorithm produces, respectively. Ini-
tially, P = D = 0. The dual variables start from zero and increase in
increments of one unit, the therefore the dual solution is integral.

Let ∆P and ∆D be the changes in the primal and dual cost, respec-
tively, in a particular iteration of the algorithm in which we execute
the inner loop. We prove three simple claims:

(1) The algorithm produces a primal (covering) feasible solution.
(2) In each iteration: ∆P ≤ 2∆D.
(3) Each packing constraint in the dual program is violated by

at most O(log d).

The proof then follows immediately from the three claims together with
weak duality.

Proof of (1): Consider a primal constraint
∑

i∈S(j) xi ≥ 1. During the
jth iteration the algorithm increases the values of the variables xi until
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the constraint is satisfied. Subsequent increases of the variables cannot
result in infeasiblity.

Proof of (2): Whenever the algorithm updates the primal and dual
solutions, the change in the dual profit is 1. The change in the primal
cost is∑

i∈S(j)

ci∆xi =
∑

i∈S(j)

ci

(
xi

ci
+

1
|S(j)|ci

)
=

∑
i∈S(j)

(
xi +

1
|S(j)|

)
≤ 2,

where the final inequality follows since the covering constraint is infea-
sible at the time of the update.

Proof of (3): Consider any dual constraint
∑

j|i∈S(j) yj ≤ ci. Whenever
we increase a variable yj , i ∈ S(j), by one unit we also increase the
variable xi in line (1a). We prove by simple induction that the variable
xi is bounded from below by the sum of a geometric sequence with
a1 = 1/(dci) and q = (1 + 1/ci). That is,

xi ≥ 1
d

((
1 +

1
ci

)∑
j|i∈S(j) yj

− 1

)
. (4.1)

Initially, xi = 0, so the induction hypothesis holds. Next, consider an
iteration in which variable yk increases by 1. Let xi(start) and xi(end)
be the values of variable xi before and after the increment, respectively.
Then,

xi(end) = xi(start)
(

1 +
1
ci

)
+

1
|S(j)|ci

≥ xi(start)
(

1 +
1
ci

)
+

1
d · ci

≥ 1
d

((
1 +

1
ci

)∑
j|i∈S(j)\{k} yj

− 1

)(
1 +

1
ci

)yk

+
1

d · ci

=
1
d

((
1 +

1
ci

)∑
j|i∈S(j) yj

− 1

)
.

Note that the inductive hypothesis is applied to xi(start).
Next, observe that the algorithm never updates any variable xi ≥ 1

(since it cannot belong to any unsatisfied constraint). Since each ci ≥ 1



120 The Basic Approach

and d ≥ 1, we have that xi < 1(1 + 1) + 1 = 3. Together with inequality
(4.1) we get that:

3 ≥ xi ≥ 1
d

((
1 +

1
ci

)∑
j|i∈S(j) yj

− 1

)
.

Using again the fact that ci ≥ 1 and simplifying we get the desired
result: ∑

j|i∈S(j)

yj ≤ ci log2(3d + 1) = ci · O(log d).

The basic discrete algorithm is extremely simple and we show in
the sequel its many applications. We are now going to derive a slightly
different algorithm, which has a continuous flavor and is more in the
spirit of the primal–dual schema. This algorithm will also be of guidance
for gaining intuition about the right relationship between primal and
dual variables. The algorithm is the following:

Algorithm 2:
Upon arrival of a new primal constraint

∑
i∈S(j) xi ≥ 1 and the

corresponding dual variable yj :

(1) While
∑

i∈S(j) xi < 1:

(a) Increase the variable yj continuously.

(b) For each variable xi that appears in the (yet unsat-
isfied) primal constraint increase xi according to
the following function:

xi← 1
d


exp


 ln(1 + d)

ci

∑
j|i∈S(j)

yj


 − 1


 .

Note that the exponential function for variable xi contains dual vari-
ables that correspond to future constraints. However, these variables
are all initialized to 0, so they do not contribute to the value of the
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function. Although the algorithm is described in a continuous fashion,
it is not hard to implement it in a discrete fashion in any desired accu-
racy. We discuss the intuition of the exponential function we use after
proving the following theorem:

Theorem 4.2. The algorithm produces:

• A (fractional) covering solution which is feasible and
O(log d)-competitive.

• A (fractional) packing solution which is feasible and O(log d)-
competitive.

Proof. Let P and D be the values of the objective function of the
primal and the dual solutions produced by the algorithm, respectively.
Initially, P = D = 0. We prove three simple claims:

(1) The algorithm produces a primal (covering) feasible solution.
(2) In each iteration j: ∂P/∂yj ≤ 2ln(1 + d) · ∂D/∂yj .
(3) Each packing constraint in the dual program is feasible.

The theorem then follows immediately from the three claims together
with weak duality.

Proof of (1): Consider a primal constraint
∑

i∈S(j) xi ≥ 1. During the
iteration in which the the jth primal constraint and dual variable yj

appear, the algorithm increases the values of the variables xi until the
constraint is satisfied. Subsequent increases of variables cannot result
in infeasibility.

Proof of (2): Whenever the algorithm updates the primal and dual
solutions, ∂D/∂yj = 1. The derivative of the primal cost is

∂P

∂yj
=

∑
i∈S(j)

ci
∂xi

∂yj

=
∑

i∈S(j)

ci


 ln(1 + d)

ci

1
d


exp


 ln(1 + d)

ci

∑
j|i∈S(j)

yj
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= ln(1 + d)
∑

i∈S(j)


1

d


exp


 ln(1 + d)

ci

∑
j|i∈S(j)

yj


 − 1


 +

1
d




= ln(1 + d)
∑

i∈S(j)

(
xi +

1
d

)
≤ 2 ln(1 + d). (4.2)

The last inequality follows since the covering constraint is infeasible.

Proof of (3): Consider any dual constraint
∑

j|i∈S(j) yj ≤ ci. The cor-
responding variable xi is always at most 1, since otherwise it cannot
belong to any unsatisfied constraint. Thus, we get that:

xi =
1
d


exp


 ln(1 + d)

ci

∑
j|i∈S(j)

yj


 − 1


 ≤ 1.

Simplifying we get that: ∑
j|i∈S(j)

yj ≤ ci.

Discussion: As can be seen from the proof, the basic discrete algorithm
and the continuous algorithm are essentially the same, since (1 + 1/ci)
is approximately exp(1/ci). The function in the continuous algorithm
is then approximated by Inequality (4.1) in Theorem 4.1. The approx-
imate equality is true as long as ci is not too small, which is why the
assumption that ci ≥ 1 is needed in the discrete algorithm. In addition,
the discrete algorithm allows the primal variables to exceed the value
of 1, which is unnecessary (and can easily be avoided). For these rea-
sons, the proof of the continuous algorithm is a bit simpler. However, in
contrast, the description of the discrete algorithm is simpler and more
intuitive. Also, in the discrete algorithm, it is not necessary to know
the value of d in advance (as long as it is not needed to scale down the
dual variables to make the dual solution feasible).

The reader may wonder at this point how did we choose the function
used in the algorithm for updating the primal and dual variables. We
will try to give here a systematic way of deriving this function. Consider
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the point in time in which the jth primal constraint is given and assume
that it is not satisfied. Our goal is to bound the derivative of the primal
cost (denoted by P ) as a function of the dual profit (denoted by D).
That is, show that

∂P

∂yj
=

∑
i∈S(j)

ci
∂xi

∂yj
≤ α

∂D

∂yj
,

where α is going to be the competitive factor. Suppose that the deriva-
tive of the primal cost satisfies:∑

i∈S(j)

ci
∂xi

∂yj
= A

∑
i∈S(j)

(
xi +

1
d

)
. (4.3)

Then, since
∑

i∈S(j) xi ≤ 1,
∑

i∈S(j) 1/d ≤ 1, and ∂D/∂yj = 1, we get
that

A
∑

i∈S(j)

(
xi +

1
d

)
≤ 2A

∂D

∂yj
.

Thus, α = 2A. Now, satisfying equality (4.3) requires solving the
following differential equation for each i ∈ S(j):

∂xi

∂yj
=

A

ci

(
xi +

1
d

)
.

It is easy to verify that the solution is a family of functions of the
following form:

xi = B · exp


A

ci

∑
� |i∈S(j)

y�


 − 1

d
,

where B can take on any value. Next, we have the following two bound-
ary conditions on the solution:

• Initially, xi = 0, and this happens when 1/ci
∑

j|i∈S(j) yj = 0.
• If 1/ci

∑
j|i∈S(j) yj = 1, (i.e., the dual constraint is tight), then

xi = 1. (Then, the primal constraint is also satisfied.)

The first boundary condition gives B = 1/d. The second boundary
condition gives us A = ln(d + 1). Putting everything together we get
the exact function used in the algorithm.
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We next describe a third algorithm. This algorithm is also contin-
uous, yet different from the previous one. The idea is to utilize the
complementary slackness conditions in the online algorithm. This idea
turns out to be useful in some applications we discuss in later chapters.
Again, let d = maxj |S(j)| ≤m be the maximum size of a constraint.
The description of the algorithm is the following:

Algorithm 3:
Upon arrival of a new primal constraint

∑
i∈S(j) xi ≥ 1 and the

corresponding dual variable yj :

(1) While
∑

i∈S(j) xi < 1:

(a) Increase variable yj continuously.

(b) If xi = 0 and
∑

j|i∈S(j) yj = ci then set xi← 1/d.

(c) For each variable xi, 1/d ≤ xi < 1, that appears in
the (yet unsatisfied) primal constraint, increase xi

according to the following function:

xi← 1
d

exp

(∑
j|i∈S(j) yj

ci
− 1

)
.

First, note that the exponential function equals 1/d when∑
j|i∈S(j) yj = ci and so the algorithm is well defined. We next prove

the following theorem:

Theorem 4.3. The algorithm produces:

• A (fractional) O(log d)-competitive covering solution.
• A (fractional) 2-competitive packing solution and violates

each packing constraint by a factor of at most O(log d).

We remark that similarly to the basic discrete algorithm, it is pos-
sible to make the packing solution feasible (and O(log d)-competitive)
by scaling down each yj by a factor of O(log d).
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Proof. Let P and D be the values of the objective function of the primal
and dual solutions, respectively. Initially, P = D = 0. We prove three
simple claims:

(1) The algorithm produces a primal (covering) feasible solution.
(2) Each packing constraint in the dual program is violated by

a factor of at most O(log d).
(3) P ≤ 2D.

The theorem then follows immediately from the three claims together
with weak duality.

Proof of (1): Consider a primal constraint
∑

i∈S(j) xi ≥ 1. During the
jth iteration the algorithm increases the values of the variables xi until
the constraint is satisfied. Subsequent increases of the variables cannot
result in infeasibility.

Proof of (2): Consider any dual constraint
∑

j|i∈S(j) yj ≤ ci. The cor-
responding variable xi cannot exceed 1, since otherwise it would not
belong to any unsatisfied constraint. Thus, we get that:

xi =
1
d

exp

(∑
j|i∈S(j) yj

ci
− 1

)
≤ 1.

Simplifying, we get that∑
j|i∈S(j)

yj ≤ ci(1 + ln d).

Proof of (3): We partition the contribution to the primal objective func-
tion into two parts. Let C1 be the contribution to the primal cost from
Step (1b), due to the increase of primal variables from 0 to 1/d. Let C2

be the contribution to the primal cost from Step (1c) of the algorithm.
It is also beneficial for the reader to observe the similarity between the
arguments used for bounding C1 and those used for the proof of the
approximation factor of the primal–dual algorithm in Section 2.2.3.

Bounding C1: Let x̃i = min(xi,1/d). Our goal is to bound
∑n

i=1 cix̃i.
To do this we observe the following. First, the algorithm guarantees



126 The Basic Approach

that if xi > 0, and therefore x̃i > 0, then:∑
j|i∈S(j)

yj ≥ ci (primal complementary slackness) (4.4)

Next, if yj > 0, then:∑
i∈S(j)

x̃i ≤ 1 (dual complementary slackness) (4.5)

Inequality (4.5) follows since x̃i ≤ 1/d. Thus, even if for all i, x̃i = 1/d ≤
1/|S(j)|, then

∑
i∈S(j) x̃i ≤ 1. Note that the inequality holds for any yj ,

regardless if yj > 0. By the primal and dual complementary slackness
conditions we get that:

n∑
i=1

cix̃i ≤
n∑

i=1


 ∑

j|i∈S(j)

yj


 x̃i (4.6)

=
m∑

j=1


 ∑

i∈S(j)

x̃i


yj (4.7)

≤
m∑

j=1

yj , (4.8)

where Inequality (4.6) follows from Inequality (4.4). Equality (4.7)
follows by changing the order of summation. Inequality (4.8) follows
from Inequality (4.5). Thus, we get that C1 is at most the dual cost.

Bounding C2: Whenever the algorithm updates the primal and dual
solutions, ∂D/∂yj = 1. It is easy to verify that the derivative of the
primal cost is:

∂P

∂yj
=

∑
i∈S(j)

ci
∂xi

yj
=

∑
i∈S(j)

ci
xi

ci
≤ 1. (4.9)

The last inequality follows since the covering constraint is infeasible at
the update time. Thus, C2 is also bounded from above by the dual cost.

We conclude: P = C1 + C2 ≤ 2D.
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Remark 4.4. It is possible to even further optimize the performance
of Algorithm 3. Initialize each xi to µ = 1/d ln d (instead of 1/d), and
change the continuous update rule to be xi← µexp

(∑
j|i∈S(j) yj/ci −

1
)
. This will guarantee that C1 + C2 = (1 + 1/ln d) · D, while the dual

solution is violated by a factor of 1 + ln d + ln ln d, yielding that the
competitive ratio is ln d + ln ln d + O(1). It is also possible to prove a
corresponding lower bound of Hd on the competitive ratio of any online
algorithm, meaning that the competitive ratio of the algorithm is tight
up to additive terms.

4.3 Lower Bounds

In this section, we show that the competitive ratios obtained in
Section 4.2 are optimal up to constants. We prove a lower bound for
the online packing problem and another lower bound for the online
covering problem.

Lemma 4.5. There is an instance of the online (fractional) packing
problem with n constraints, such that for any B-competitive online
algorithm, there exists a constraint for which

∑
j|i∈S(j)

yj ≥ ci
1
B

(
1 +

log2 n

2

)
= ciΩ

(
log n

B

)
.

Proof. Consider the following instance with n = 2k packing constraints.
The right-hand side of each packing constraint is 1. In the first iter-
ation, a new variable y(1,1) belonging to all constraints arrives. In
the second iteration, two variables y(2,1) and y(2,2) arrive. Vari-
able y(2,1) belongs to the first 2k−1 constraints and y(2,2) belongs
to the last 2k−1 constraints. In the third iteration, four dual vari-
ables y(3,1),y(3,2),y(3,3), and y(3,4) arrive belonging each to 2k−2

packing constraints. The process ends in the (k + 1)th iteration in
which 2k variables arrive, each belonging to a single packing constraint.
The optimal solution sets the new 2i−1 variables in the ith iteration
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to 1. Since the algorithm is B-competitive we get the following set of
constraints:

For each 1 ≤ i ≤ k + 1:

i∑
j=1

2j−1∑
�=1

y(j,�) ≥ 2i−1

B
.

Multiplying the (k + 1)th inequality by 1 and each inequality i,
1 ≤ i ≤ k, by 2k−i and summing up, we get that:

k+1∑
j=1

2k−j+1


2j−1∑

�=1

y(j,�)


 ≥ 1

B
(k2k−1 + 2k).

This follows since for each j,
(∑2j−1

�=1 y(j,�)
)

is multiplied by

1 + 1 + 2 + 4 + · · · + 2k−j = 2k−j+1. However, the left hand side is
also the sum over all packing constraints. Thus, by an averaging
argument, since there are 2k constraints, we get that there exists a
constraint whose right hand side is at least

1
2k · B

(
k2k−1 + 2k

)
=

1
B

(
1 +

k

2

)
.

Since n = 2k we get the desired bound.

Lemma 4.6. There is an instance of the online fractional covering
problem with n variables such that any online algorithm is Ω(log n)-
competitive on this instance.

Proof. Consider the following instance with n = 2k variables
x1,x2, . . . ,xn. The first constraint that arrives is

∑n
i=1 xi ≥ 1. If∑n/2

i=1 xi ≥
∑n

i=n/2+1 xi, then the next constraint that is given is∑n
i=n/2+1 xi ≥ 1, otherwise the constraint

∑n/2
i=1 xi ≥ 1 is given. The

process of halving and then continuing with the smaller sum goes on
until we remain with a single variable. The optimal offline solution sat-
isfying all the constraints sets the last variable to one. However, for any
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online algorithm, the variables in each iteration that do not appear in
subsequent iterations add up to at least 1/2. There are k + 1 iterations,
and thus the cost of any online algorithm is at least 1 + k/2, concluding
the proof.

4.4 Two Warm-Up Problems

In this section, we demonstrate the use of the online primal–dual
framework on two simple examples, a covering problem and a packing
problem.

4.4.1 The Online Set-Cover Problem

Consider an online version of the offline set-cover problem discussed
in Section 2.2. In the online version of the problem, a subset of the
elements X arrive one-by-one in an online fashion. The algorithm has
to cover each element upon arrival. The restriction is that sets already
chosen to the cover by the online algorithm cannot be “unchosen.”

This online setting exactly fits the online covering setting, since
whenever a new element arrives a new constraint is added to the
set-cover linear formulation. Hence, we can use any of the algorithms
presented earlier in Section 4.2 to derive a monotonically increasing
fractional solution to the set-cover problem.

Getting a randomized integral solution is extremely simple. We
can simply adapt the randomized rounding procedure appearing
in Section 2.2.2 to the online setting. Note that the algorithm picks
a priori uniformly in random a threshold Θ(s) ∈ [0,1] for each set s.
The algorithm then chooses the set s to the cover if xs ≥ Θ(s). Since xs

is monotonically increasing, the online algorithm simply chooses the set
s to the cover once xs reaches Θ(s). Note that the number of elements is
not known in advance; however, we do choose Θ(s) by taking the min-
imum between O(log n) random variables. Thus, we can increase the
number of random variables as the number of elements increases. The
threshold Θ(s) can only decrease by doing that. The analysis is then
straightforward proving that the algorithm produces a solution cover-
ing all requested elements with high probability, and its expected cost
is O(log n) times the fractional solution. Since the fractional solution is
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O(log m)-competitive with respect to the optimal solution, we get that
the integral algorithm is O(log n log m)-competitive.

In Section 5, we show how to obtain a deterministic online algorithm
for the set cover problem with the same competitive ratio.

4.4.2 Online Routing

In this section, we give a simple example of an online packing prob-
lem. We study the problem of maximizing the throughput of scheduled
virtual circuits. In the simplest version of the problem, we are given a
graph G = (V,E) with capacities u(e) on the edges. A set of requests
ri = (si, ti) (1 ≤ i ≤ n) arrives in an online fashion. To serve a request,
the algorithm chooses a path between si and ti and allocates a band-
width of one unit on this path. The decisions of the algorithm are irre-
vocable, and all requests are permanent, meaning that once accepted
they stay forever. If the total capacity routed on edge e is � · u(e),
we say that the load on edge e is �. Ideally, the total bandwidth allo-
cated on any edge should not exceed its capacity (load � ≤ 1). The total
profit of the algorithm is the number of requests served and as usual
the competitive factor is defined with respect to the maximum number
of requests that could have been served offline.

In the fractional version of the problem, the allocation is not
restricted to an integral bandwidth equal to either 0 or 1; instead,
we can allocate to each request a fractional bandwidth in the range
[0,1]. In addition, the bandwidth allocated to a request can be divided
between several paths. This problem is an online version of the max-
imum multi-commodity flow problem. We describe the problem as a
packing problem in Figure 4.2. For ri = (si, ti), let P(ri) be the set of

Primal Dual
Minimize:

∑
e∈E u(e)x(e) +

∑
ri

z(ri) Maximize:
∑

ri

∑
P∈P(ri)

f(ri,P )
subject to: subject to:
∀ri ∈ R,P ∈ P(ri):

∑
e∈P x(e) + z(ri) ≥ 1 ∀ri ∈ R:

∑
P∈P(ri)

f(ri,P ) ≤ 1
∀e ∈ E:

∑
ri∈R,P∈P(ri)|e∈P f(ri,P ) ≤ u(e)

∀ri,z(ri) ≥ 0, ∀e,x(e) ≥ 0 ∀ri,P : f(ri,P ) ≥ 0

Fig. 4.2 The splittable routing problem (maximization) and its corresponding primal
problem.
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simple paths between si and ti. For each P ∈ P(ri), the variable f(ri,P )
corresponds to the amount of flow (service) given to request ri on the
path P . The first set of constraints guarantees that each request gets at
most a fractional flow (bandwidth) of 1. The second set of constraints
follows from the capacity constraints on the edges. In the primal prob-
lem, we assign a variable z(ri) to each request ri and a variable x(e) to
each edge in the graph.

This online setting exactly fits our online packing setting, as new
dual variables arrive whenever a new request arrives. However, in each
iteration it may happen that an exponential number of variables arrives.
We show in the following that we can still overcome this problem and
get an efficient algorithm. We present two algorithms for the problem,
each having different properties. Let d ≤ n be the length of the longest
simple path between any two vertices in the graph. The first algorithm
is the following:

Routing algorithm 1:
When a new request ri = (si, ti) arrives:

(1) if there exists a path P ∈ P(ri) such that
∑

e∈P x(e) < 1:

(a) Route the request on P and set f(ri,P )← 1.

(b) Set z(ri)← 1.

(c) For each e ∈ P : x(e)← x(e)(1 + 1/u(e)) +
1/(|P | · u(e)), where |P | is the length of the
path P .

Theorem 4.7. The algorithm is 3-competitive and it violates the
capacity of each edge by at most a factor of O(log d) (i.e., the load
on each edge is at most O(log d)).

The proof of Theorem 4.7 is almost identical to the proof of Theo-
rem 4.1, and we leave it as a simple exercise to the reader. The main
observation is that the exponential number of dual variables is not
obstacle, since the algorithm only needs to check the validity of the
condition in line (1). If, for example, P(ri) is the set of all simple paths
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between si and ti, then this condition can be easily checked by com-
puting a shortest path between si and ti.

The above algorithm may exceed the capacity of the edges. We
next show a different algorithm that fully respects the capacities of the
edges.

Routing algorithm 2:
Initially: x(e)← 0.
When a new request ri = (si, ti,P(ri)) arrives:

(1) If there exists a path P (ri) ∈ P(ri) of length < 1 with
respect to x(e):

(a) Route the request on “any” path P ∈ P(ri) with
length < 1.

(b) z(ri)← 1.

(c) For each edge e in P (ri):

x(e)← x(e)exp
(

ln(1 + n)
u(e)

)
+

1
n

[
exp

(
ln(1 + n)

u(e)

)
− 1

]
.

Theorem 4.8. The algorithm is O(u(min)[exp(ln(1 + n)/u(min)) −
1])-competitive and does not violate the capacity constraints. If
u(min) ≥ log n then the algorithm is O(log n)-competitive.

Proof. Note first that the function (u(e)[exp(ln(1 + n)/u(e)) − 1]) is
monotonically decreasing with respect to u(e). Thus, when a request
ri is routed, the increase of the primal cost is at most:

1 +
∑
e∈P

u(e)
(

x(e)
[
exp

(
ln(1 + n)

u(e)

)
− 1

]
+

1
n

[
exp

(
ln(1 + n)

u(e)

)
− 1

])
.

This expression is at most

2
(

u(min)
[
exp

(
ln(1 + n)
u(min)

)
− 1

])
+ 1. (4.10)

This follows since z(ri) is set to 1, and edges on the path P satisfy∑
e∈P x(e) ≤ 1. Each time a request is routed, the dual profit is 1.
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Thus, the ratio between the primal and dual solutions is at most
Expression (4.10).

Second, observe that the algorithm maintains a feasible primal solu-
tion at all times. This follows since z(ri) is set to 1 for any request for
which the distance between si and ti (with respect to the x(e)-variables)
is strictly less than 1.

Finally, it remains to prove that the algorithm routes at most u(e)
requests on each edge e, and so the dual solution it maintains is feasible.
To this end, observe that for each edge e, the value x(e) is the sum of
a geometric sequence with initial value 1/n[exp(ln(1 + n)/u(e)) − 1]
and a multiplier q = exp(ln(1 + n)/u(e)). Thus, after u(e) requests are
routed through edge e, the value of x(e) is

x(e) =
1
n

(
exp

(
ln(1 + n)

u(e)

)
− 1

) exp
(

u(e) ln(1+n)
u(e)

)
− 1

exp
(

ln(1+n)
u(e)

)
− 1

=
1
n

(1 + n − 1) = 1.

Since the algorithm never routes requests on edges for which x(e) ≥ 1,
we are done.

Finally, it is not hard to verify that when u(min) ≥ log n, then

2
(

u(min)
[
exp

(
ln(1 + n)
u(min)

)
− 1

])
+ 1 = O(log n).

4.5 Notes

The definitions of the online covering/packing framework along with
the basic algorithms in Section 4.2 and the lower bounds in Section 4.3
are based on the work of Buchbinder and Naor [32]. These algorithms
draw on ideas from previous algorithms by Alon et al. [3, 4]. The third
basic algorithm that incorporates the complementary slackness condi-
tions into the online algorithm is based on the later work of Bansal
et al. [14]. The online set-cover problem was considered in [3]. There,
they gave a deterministic algorithm for the problem that is discussed
later on in Section 5. The second routing algorithm in Section 4.4.2
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appeared in [34]. It is basically an alternative description and analysis
of a previous algorithm by Awerbuch et al. [11].

There is a long line of work on generating a near-optimal fractional
solution for offline covering and packing problems, e.g. [52, 53, 54, 55,
75, 79, 84, 93]. All these methods take advantage of the offline nature of
the problems. As several of these methods use primal–dual analysis, our
approach can be viewed in a sense as an adaptation of these methods
to the context of online computation.



5
The Online Set-Cover Problem

In Section 4, we saw how to derive a simple randomized O(log m log n)-
competitive algorithm for the online set-cover problem. An intrigu-
ing question is whether we can obtain a deterministic algorithm for
the problem with no degradation in the competitive ratio. A common
approach for obtaining deterministic algorithms is derandomization,
which means converting randomized algorithms into deterministic algo-
rithms. For more details on derandomization methods we refer the
reader to [6]. We note that one of the fundamental approaches to
(offline) derandomization is the so-called method of conditional expec-
tations or pessimistic estimators [6], which performs a deterministic
rounding process. Coming up with a function that guides this pro-
cess (the pessimistic estimator) is the key ingredient to a successful
application of the method of conditional expectations.

Fractional solutions can often be converted into randomized algo-
rithms, but it is usually much harder to perform this conversion online.
Indeed, this conversion is possible for the online set-cover problem
because of the way the fractional solution evolves in time. Furthermore,
the randomized algorithm can be converted into a deterministic one by

135
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an implicit use of the method of conditional expectations, which leads
to the development of a potential function guiding the online algorithm.
The competitive factor of the deterministic algorithm obtained remains
O(log m log n).

5.1 Obtaining a Deterministic Algorithm

If the set system is not known in advance to the algorithm, then
it is quite easy to verify that any deterministic algorithm is Ω(n)-
competitive. Thus, we assume that the universe of elements X is known
to the algorithm along with the family of sets S. It is unknown, however,
which subset X ′ ⊆ X of the elements the algorithm would eventually
have to cover (as well as their order of appearance). Let c(COPT) denote
the cost of the optimal solution. We design an online algorithm that is
given a value α ≥ c(COPT) as input, and produces a feasible solution
with cost O(α log m log n). However, in case the algorithm is given an
infeasible value of α (i.e., α < c(COPT)), it may fail.

Our algorithm guesses the value of α by doubling. We start by
guessing α = mins∈S cs, and then run the algorithm with this value.
If the algorithm fails we “forget” about all sets chosen so far to C,
update the value of α by doubling it, and continue on. We note that
the cost of the sets that we have “forgotten” about can increase the
cost of our solution by at most a factor of 2, since the value of α

doubles in each step. In the final iteration, the value of α can be
at most 2c(COPT), losing altogether a factor of 4 as a result of the
doubling procedure. Also, for each choice of α, our algorithm ignores
all sets of cost exceeding α, and chooses all sets of cost at most
α/m to C.

The algorithm we design uses as a subroutine an online algorithm
that generates an O(log m)-competitive fractional solution, e.g., the
online fractional algorithm presented in Section 4. This algorithm
maintains a monotonically increasing fraction ws for each set s. Let
we =

∑
s|e∈s ws. Note that the fractional algorithm guarantees that

we ≥ 1 for each element e which is requested. Initially, our algorithm
starts with the empty cover C = ∅. Define C to be the union of all the
elements covered by members of C. The following potential function is
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used throughout the algorithm:

Φ =
∑
e�∈C

n2we + n · exp

(
1
2α

∑
s∈S

(csχC(s) − 3wscs log n)

)
.

The function χC above is the characteristic function of C, that is,
χC(s) = 1 if s ∈ C, and χC(s) = 0 otherwise.

The deterministic online algorithm is as follows:

Run the algorithm presented in Section 4.2 to produce a mono-
tonically increasing online fractional solution. When the weight of
set s is increased:

(1) If s ∈ C do nothing; Otherwise:
(2) Φstart — value of Φ before increasing the weight of s.
(3) Φend — value of Φ after increasing the weight of s.
(4) Φ′

end — value of Φ after increasing the weight of s and
choosing s to the cover.

(5) Choose set s to C if Φ′
end ≤ Φstart.

(6) If Φstart > max{Φ′
end,Φend}, return “FAIL.”

In the following, we analyze the performance of the algorithm in
a single iteration in which the condition α ≥ c(COPT) is satisfied. We
prove that the algorithm never fails in this iteration.

Lemma 5.1. Consider a step in which the weight of a set s is aug-
mented by the algorithm. Let Φstart and Φend be the values of the
potential function Φ before and after the step, respectively. Then
Φend ≤ Φstart. In particular, when α ≥ c(COPT) the algorithm never
fails.

Proof. Consider first the case in which s ∈ C. In this case, the first term
of the potential function remains unchanged. The second term of the
potential function decreases and therefore the lemma holds.

The second case is when s �∈ C. The proof for this case is probabilis-
tic. We prove that either including s in C, or not including it, does not
increase the potential function. Let ws and ws + δs denote the weight
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of s before and after the increase, respectively. Add set s to C with
probability 1 − n−2δs . (This is roughly equivalent to choosing s with
probability δs/2 and repeating it 4 log n times.)

We first bound the expected value of the first term of the potential
function. This is similar to the unweighted case. Consider an element
e ∈ X such that e /∈ C. If e /∈ s then the term that corresponds to this
element remains unchanged. Otherwise, let the weight of e before and
after the step be we and we + δs, respectively. Before the step, ele-
ment e contributes to the first term of the potential function the value
n2we . The probability that we do not choose set s containing element
e is n−2δs . Therefore, the expected contribution of element e to the
potential function after the step is at most n−2δsn2(we+δs) = n2we . By
linearity of expectation it follows that the expected value of

∑
e�∈C

n2we

after the step is precisely its value before the step.
It remains to bound the expected value of the second term of the

potential function. Let

T = n · exp

(
1
2α

∑
s∈S

(csχC(s) − 3wscs log n)

)

denote the value of the second term of the potential function before the
step, and let T ′ denote the same term after the weight increase and the
probabilistic choice of set s to the cover. Recall that s /∈ C. Then,

Exp[T ′] = T · exp
(
− 1

2α
3δscs log n

)
· Exp

[
exp

(
1
2α

csχC′(s)
)]

(5.1)

where χC′(s) = 1 is the indicator of the event that set s is chosen to
the cover, which happens with probability 1 − n−2δs . We bound the
right-hand side of (5.1) as follows:

Exp
[
exp

(
1
2α

csχC′(s)
)]

= n−2δs + (1 − n−2δs) · exp
( cs

2α

)
(5.2)

≤ 1 − 2δs log n + 2δs log nexp
( cs

2α

)
(5.3)
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= 1 + 2δs log n
(
exp

( cs

2α

)
− 1

)
(5.4)

≤ 1 + 2δs log n
3cs

4α
(5.5)

≤ exp
(

3δscs log n

2α

)
. (5.6)

Here, (5.3) follows since for all x ≥ 0 and z ≥ 1, e−x + (1 − e−x) · z ≤
1 − x + x · z, (5.5) follows1 since ey − 1 ≤ 3y/2 for all 0 ≤ y ≤ 1/2, and
(5.6) follows since 1 + x ≤ ex for all x ≥ 0. Plugging in (5.1), we con-
clude that the expected value of the second term after the increase step
and the probabilistic choices is at most

Exp[T ′] = T · exp
(
− 1

2α
3δscs log n

)
· exp

(
1
2α

3δscs log n

)
≤ T.

By linearity of expectation it now follows that Exp[Φend] ≤ Φstart.
Therefore, either the event of choosing s to the cover, or the event
of not choosing s to the cover, does not increase the potential function.
We conclude that after each step Φend ≤ Φstart.

Theorem 5.2. Throughout the algorithm, the following holds:

(i) Every e ∈ X of weight we ≥ 1 is covered, that is, e ∈ C.
(ii)

∑
s∈C

cs = α · O(log m log n).

Proof. Initially, the value of the potential function Φ is at most n · n0 +
n < n2, and hence it remains smaller than n2 throughout the whole
algorithm. Therefore, if for element e, we ≥ 1, at some point of time,
then e ∈ C, since otherwise the contribution of the term n2we itself
would be at least n2. This proves part (i). To prove part (ii), note that
by the same argument, throughout the algorithm

n · exp

(
1
2α

∑
s∈S

csχC(s) − 3wscs log n

)
< n2.

1 Note that here we use the fact that α ≥ c(COPT), since we ignored all sets with cost
greater than α.
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Therefore,

∑
s∈S

csχC(s) ≤
∑
s∈S

3wscs log n + 2α log n,

and the desired result follows from the fact that the fractional solution
is O(log m)-competitive.

5.2 Notes

The results in this section are based on the work of Alon et al. [3].
We note that the algorithms of [3] were not originally stated as
primal–dual algorithms, yet interpreting them as primal–dual algo-
rithms was the starting point of extending the primal–dual method
to the realm of online computation. Alon et al. [3] also proved
that any deterministic algorithm for the online set-cover problem is
Ω(log n log m/(log log m + log log n))-competititive for many values of
m and n. In the unweighted version of the set-cover problem all sets are
of unit cost and so the goal is to minimize the number of sets needed
for covering the elements. Buchbinder and Naor [32] used the improved
offline rounding technique of [89] to obtain an O(log d log(n/OPT))-
competitive algorithm, where d is the maximum frequency of an ele-
ment (i.e., the maximum number of sets an element belongs to), n is
the number of elements and OPT is the optimal size of the set cover.

Derandomization has proved to be useful for other online problems
as well. Buchbinder and Naor [32], using derandomization methods,
obtained an alternative routing algorithm that achieves the same com-
petitiveness as the second routing algorithm in Section 4.4.2. The algo-
rithm is based on the basic algorithms of Section 4.2 along with an
online derandomization of the rounding method in [85, 86]. Another
example of a derandomization of an online algorithm is by Buchbinder
et al. [30] for the ad-auctions problem (see also Section 10). However, we
note that we do not yet fully understand when derandomization meth-
ods can be applied in online settings. For example, for the online group
Steiner problem on trees discussed in Section 11, there is currently only
a randomized online algorithm, even though the offline randomized
algorithm can be derandomized.
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Another online variation of the set cover problem was considered
in [10]. There, we are also given m sets and n elements that arrive one
at a time. However, the goal of the online algorithm is to pick k sets so
as to maximize the number of elements that are covered. The algorithm
only gets credit for elements that are contained in a set that it selected
before or during the step in which the element arrived. The authors
of [10] showed a randomized Θ(log m log(n/k)) competitive algorithm
for the problem, where the bound is optimal for many values of n, m,
and k. A different extension of the online set cover problem is studied in
[5]. They considered an admission control problem where the goal is to
minimize the number of rejections. The problem is solved by reducing
it to an instance of online set cover with repetitions, i.e., each element
may need to be covered several times.



6
The Metrical Task System Problem on a

Weighted Star

In this section, we study the metrical task system (MTS) problem on
a metric M defined by a weighted star. The MTS is one of the earliest
problems studied in the context of online computation. The problem
captures many online scenarios. In the MTS problem, we are given a
finite metric space M = (V,d), where |V | = N . We view the points of
M as states to which the algorithm belongs. The distance between the
points of the metric measures the cost of transition between the possible
states. We use a “server” notation and say that there is a server moving
between the states and serving the requests. Each task (request) r in a
metrical task system is associated with a vector (r(1), r(2), . . . , r(N)),
where r(i) denotes the cost of serving r in state i ∈ V . In order to serve
request r in state i the server has to be in this state. Upon arrival of a
new request, the state of the system can first be changed to a new state
(paying the transition cost), and only then the request is served (paying
for serving the request in the new state). The transition cost between
the states is assumed to be a metric. The objective is to minimize the
total cost which is the sum of the transition costs and the service costs.

There is also an equivalent continuous time MTS model. In this
model, the algorithm is allowed to change states at any time t, which

142
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is a real number, and not only at integral times. The service cost is
generalized in a straight forward way to be an integral instead of a sum.
It is well known [28, Section 9.1.1] that any continuous time algorithm
can be transformed to a discrete time algorithm without increasing the
total cost. On the other hand, since the continuous time model is a
relaxation of the discrete model it is clear that the optimal cost cannot
increase.

We show in this section how to design an optimal online algorithm
for the case where the metric space is a weighed star. The idea is to
define an alternative MTS model and show that it is “equivalent” up
to constant factors to the original model on a weighted star metric. We
then show that the basic algorithms presented in Section 4.2 are appli-
cable to the new model. Finally, we show that a randomized algorithm
can be obtained by a simple rounding technique.

The leaves of the star are denoted by {1,2, . . . ,N} and the distance
from each leave i to the central state is denoted by d′(i). We present
an O(log N)-competitive online algorithm. We are going to charge the
algorithm by 2d′(i) whenever the server moves from state i to another
state, say j. Thus, we are not going to charge the algorithm for the cost
of moving into state j. This assumption can only add an additive term
to the total cost which is independent of the request sequence (we do not
charge for the last state change). From now on we only use d(i) = 2d′(i)
to denote the cost of moving from state i to any other state.

6.1 A Modified Model

We start with the (equivalent) continuous time MTS model. In this
model, the algorithm is allowed to change states at any time t which is
a real number and not only at integral times. We first define a new MTS
model and show that on a star metric the cost of an optimal solution
can only change by a constant factor. The high-level idea of the new
model is to cancel the transition cost incurred due to state change
and pay only for serving the requests. To this end, to balance between
transition cost and service cost, we restrict the algorithm and allow it
to change its state only if certain conditions are fulfilled. For each state,
we partition the time interval into phases. We permit the solutions to
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leave a state i only at the end of a phase (of state i). The first phase of
each state starts at time t = 0. Phase p of state i starts at time tp−1(i)
and ends at the earliest time tp(i) for which the accumulated cost of
service at state i in the interval [tp−1(i), tp(i)] is exactly d(i).

We are now ready to describe the new MTS model in its full gen-
erality. An online algorithm is allowed to leave state i only at the end
of a phase (of state i). The algorithm does not pay any transition cost
when moving from one state to another. If the algorithm is in state i

during phase p then it pays a cost d(i). The algorithm pays the full cost
of the phase even if it was in state i only during part of the phase p.
This can happen if the algorithm moves to state i from i′ in the middle
of the pth phase of i (and at the end of a phase of state i′). Given a set
of requests σ̄, let OPTn(σ̄) be the minimum offline cost of serving the
set of requests in the new MTS model. Let OPTo(σ̄) be the minimum
offline cost of serving the set of requests in the standard MTS model.
We prove the following two lemmas:

Lemma 6.1. Let σ̄ be a set of requests. Any solution S to σ̄ in the
standard MTS model with cost C can be transformed into a legal solu-
tion S′ in the new MTS model with cost at most 2C. In particular,
OPTn(σ̄) ≤ 2OPTo(σ̄).

Proof. Let t1, t2, . . . , tk be the times at which solution S changes its
state. Let si be the state of the algorithm from time ti−1 until time
ti. During this time, the algorithm pays for the cost for serving the
requests in state si and then pays for moving out of si at ti. We define
a solution S′ in the new model that imitates S but changes state only
at the end of a phase. Initially, S′ starts out from the same state s1 as
solution S. At any time t, if the algorithm is in state j in solution S′,
it waits until the some t′ ≥ t, when the phase in state j ends and then
moves to the state in which solution S is at time t′. Note that if S′ is
already in the same state as S at time t′, then S′ does not change its
state. Clearly, S′ is a feasible solution in the new MTS model by design
as it changes its state only at the end of a phase. Also, it is easily seen
that if solution S′ is in state i at some time during [ti−1, ti], then it
stays in i at least until time ti.
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We bound the cost of S′. Let Wi be the total cost of serving the
requests in state si during the time interval [ti−1, ti]. The cost of the
solution S during [ti−1, ti] is, therefore, Wi + d(si). By construction, if
S′ moves to state si during [ti−1, ti], then it leaves si no earlier than
time ti. The extra cost of solution S′ with respect to S comes from
two sources. First, solution S′ may leave state si after time ti. Second,
solution S′ may move to si in the middle of a phase (of state si), but
it still pays the full cost of the phase. However, each of these can only
increase the cost of solution S′ by at most d(si). Recall, that in the
new MTS model the solution does not pay for changing the state, and
thus its cost is at most Wi + 2d(si), which is at most twice the cost
incurred by solution S.

Lemma 6.2. Let σ̄ be a set of requests. Any solution S to σ̄ in the
new MTS model with cost C is a legal solution S′ in the standard MTS
model with cost at most 2C.

Proof. We run the solution S in the standard MTS model and upper
bound its cost in this model. First, the cost of serving the requests in the
standard MTS model is no more than the cost of serving the requests
in the new model. Suppose that solution S visits state i during phase
p. In this case, it pays at least d(i) in the new model, while the cost in
the standard model is at most d(i) (the cost could lower if S did not
stay in state i during the entire phase).

Second, we claim that the transition cost of solution S in the stan-
dard model is no more than the service cost of S in the new model.
This follows as S leaves any state i at most once during its phase (at
the end of the phase) and hence the cost d(i) of leaving the state can
be charged to the service cost of the corresponding phase that just
ended (which is also exactly d(i)). Thus, the cost of the solution S in
the standard MTS model is at most twice its cost in the new MTS
model.

From Lemmas 6.1 and 6.2, a c-competitive algorithm in the new
MTS model implies a 4c-competitive algorithm in the standard MTS
model, and hence it suffices to consider the new MTS model.
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6.2 The Algorithm

We next describe a simple linear programming formulation for the
offline problem in the new MTS model. Our online algorithm will gen-
erate a fractional solution to this linear program. We later show how
to transform this fractional solution to a randomized integral solution.
Let x(i,p) be an indicator to the event that the solution is in state i

during the pth phase. We relax the solution and allow the algorithm to
be at time t in several states as long as the sum of the fractions of the
states is at least 1. (The latter constraint is valid since our objective
function is minimization.) Let ni be the number of phases of state i.
The linear program is as follows:

(P ) min
N∑

1=1

ni∑
p=1

d(i)x(i,p).

For any time t:

N∑
i=1

∑
p | t∈[tp−1(i),tp(i)]

x(i,p) ≥ 1. (6.1)

It may seem that the linear program contains an unbounded number
of constraints. However, it is easy to see that we need only to consider
times t which are the end of a phase for some state. It can also be
easily verified that given an instance of the MTS problem, any feasi-
ble solution in the new MTS model defines a feasible solution to (P )
with the same cost. We also observe that a feasible solution to (P )
defines a (fractional) solution which is feasible in the new MTS model
with the same cost. We should be a bit more careful in the online case,
where the constraints of (P ) are revealed one-by-one. Upon arrival of
a constraint, the algorithm finds a feasible assignment to the (primal)
variables that satisfies the constraint. Consider variable x(i,p). In the
offline case, we can assume without loss of generality that the value of
x(i,p) is determined at the beginning of phase p of state i. However,
this is not necessarily true in the online case; thus, we restrict our atten-
tion to solutions that assign values to x(i,p) forming a monotonically
non-decreasing sequence.
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The above formulation of the problem is now a covering linear
program and thus it fits the online primal–dual framework. We now
can apply the algorithms from Section 4.2 to derive a monotonically
increasing fractional solution. The algorithm produces an O(log N)-
competitive solution since the number of variables in each covering
constraint is exactly N .

Rounding the fractional solution: Rounding the fractional solution for
this problem is simple. The algorithm maintains the invariant that it
is in state i at time t (in phase p) with probability equal to x(i,p).
Suppose that at the end of phase p of state i, x(i,p) = a. The dis-
tribution mass a is then distributed among the states of the system
(including i) with respect to the fractional solution. Let aj be the
increase of the fraction associated with state j at that point of time.
As

∑
j aj = a, if the algorithm was in state i at the end on phase p,

it moves to state j with probability aj/a. It is easy to verify that the
expected cost of the algorithm is exactly the cost of the fractional
solution.

6.3 Notes

The results in this chapter are based on the work of Bansal et al. [14].
The MTS problem has been studied extensively. The MTS model was
originally formulated by Borodin et al. [29] who gave tight upper and
lower bound of 2N − 1 for any deterministic online algorithm for the
problem. They also designed a 2HN -competitive randomized algorithm
for the uniform metric, and showed a lower bound of HN for this
metric. In fact, our proposed algorithm for the weighed star can be
seen in retrospect as a direct generalization of their approach. For the
MTS problem on a weighted star, Blum et al. [25] gave a randomized
O(log2 N)-competitive algorithm. For general metrics, Bartal et al. [19]
designed a randomized O(log5 N)-competitive algorithm which is based
on an algorithm for hierarchically well-separated trees (HSTs). Fiat and
Mendel [49] improved this bound and designed an O(log2 N log log N)-
competitive algorithm for general metrics. Fiat and Mendel [49] have
also designed an O(log N)-competitive algorithm for the MTS problem
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on a weighted star metric. However, their algorithm is based on the
fact that a weighted star metric can be approximated by an HST
having certain nice properties. Thus, it is not a “direct” algorithm for
the problem, in contrast to the algorithm we have presented in this
section.



7
Generalized Caching

Caching is one of the earliest and most effective techniques of accelerat-
ing the performance of computing systems. Thus, vast amounts of work
have been invested in the improvement and refinement of caching tech-
niques and algorithms. In the classic two-level caching problem, we are
given a collection of n pages and a fast memory (cache) which can hold
up to k of these pages. At each time step one of the pages is requested.
If the requested page is already in the cache then no cost is incurred,
otherwise the page must be brought into the cache, possibly evicting
some other page, and a cost of one unit is incurred. This basic model
can be extended in two orthogonal directions. First, the cost of bring-
ing a page into the cache may not necessarily be uniform for all pages.
This version of the problem is called weighted caching and it models
scenarios in which the cost of fetching a page is not the same for all
pages due to different locations of the pages (e.g., main memory, disk,
web). Second, the sizes of the pages need not be uniform. This is moti-
vated by web caching where pages have varying sizes. Web caching is
an extremely useful technique for enhancing the performance of World
Wide Web applications. Since fetching a web page or any other infor-
mation from the internet is usually costly, it is common practice to
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keep some of the pages closer to the client. This is done, for example,
by the web browser itself by keeping some of the pages locally, and also
by internet providers that maintain proxy servers for exactly the same
purpose.

We study here several models in which pages have non-uniform sizes.
The most general setting is called the general model in which pages have
both non-uniform sizes and non-uniform fetching costs. Two commonly
studied special cases are the so-called bit model and fault model. In the
bit model, the cost of fetching a page is proportional to its size, thus
minimizing the fetching cost corresponds to minimizing the total traffic
in the network. In the fault model, the fetching cost is uniform for all
pages, thus corresponding to the number of times a user has to wait
for a page to be retrieved.

Our solutions are based on a two-step approach. In the first step,
we obtain an O(log k)-competitive fractional algorithm which is based
on an online primal–dual approach. In the second step, we obtain a
randomized algorithm by rounding online the fractional solution to an
actual distribution on integral cache solutions.

In Sections 7.1 and 7.2 we study the weighted caching problem.
Later on in Sections 7.3 and 7.4 we extend the ideas used for the
weighted caching problem to the more general setting in which pages
have both non-uniform sizes and non-uniform fetching costs.

7.1 The Fractional Weighted Caching Problem

In this section, we study the weighted caching problem. In the weighted
caching problem, each page p is associated with a positive fetching cost
cp ≥ 1, denoting the cost of fetching the page into the cache. A request
sequence is a sequence of pages, denoted by p1,p2, . . ., where page pt is
requested at time t. The tth request is served if page pt belongs to the
cache at time t, for each t ≥ 1. The objective is to minimize the total
cost of fetching pages into the cache.

7.1.1 Linear Programming Relaxation

Consider the following integer program for the (offline) weighted
caching problem. Instead of charging for fetching pages into the cache
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we charge for evicting them, changing the cost by at most an addi-
tive term, which is independent of the request sequence, in any cache
replacement policy. (Fetching the last k pages is for “free”, since these
pages are not evicted from the cache.) Let x(p,j) be an indicator vari-
able for the event that page p is evicted from the cache between the jth
time it is requested and the (j + 1)th time it is requested. If x(p,j) = 1,
we can assume without loss of generality that page p is evicted in the
first time slot following the jth time it is requested. (As we later dis-
cuss, this assumption is not necessarily true in the online case.) For
each page p, denote by t(p,j) the time it is requested for the jth time,
and denote by r(p,t) the number of times page p is requested until
time t (including t). For any time t, let B(t) = {p | r(p,t) ≥ 1} denote
the set of pages that have been requested until time t (including t).
Let pt be the page that is requested at time t. We need to satisfy the
constraint that at any time t, the total space used by pages in B(t)
is at most k. Now, one unit of space in the cache is already taken up
by pt, implying that a space of at most k − 1 units can be used by
pages in B(t) \ {pt}. Equivalently, pages in B(t) \ {pt} with cumula-
tive size of at least |B(t)| − 1 − (k − 1) = |B(t)| − k must be absent
from the cache at time t. This gives the following exact formulation of
the problem:

min
n∑

p=1

r(p,T )∑
j=1

cp · x(p,j).

For any time t: ∑
p∈B(t)\{pt}

x(p,r(p,t)) ≥ |B(t)| − k.

For any p,t:

x(p,t) ∈ {0,1}.

In a fractional solution, we relax the constraint for x(p,t) allowing it
to assume any value between 0 and 1, i.e., 0 ≤ x(p,t) ≤ 1.

In the dual program, there is a variable y(t) for each time t and a
variable z(p,j) for each page p and the jth time it is requested. The dual
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program is the following:

max
∑

t

(|B(t)| − k)y(t)
n∑

p=1

r(p,t)∑
j=1

z(p,j).

For each page p and the jth time it is requested:
t(p,j+1)−1∑

t=t(p,j)+1

y(t)


 − z(p,j) ≤ cp. (7.1)

For any p,j:

z(p,j) ≥ 0.

For all t:

y(t) ≥ 0.

7.1.2 A Fractional Primal–Dual Algorithm

Our online caching algorithm produces fractional primal and dual solu-
tions to the linear formulation. In the online case, the constraints of
LP (corresponding to the requests to pages) are revealed one-by-one.
Upon arrival of a constraint, the algorithm finds a feasible assignment
to the (primal) variables that satisfies the constraint. Consider variable
x(p,j). In the offline case, we can assume without loss of generality that
the value of x(p,j) is determined at time t(p,j) + 1. However, this is
not necessarily true in the online case; thus, we stipulate that the val-
ues assigned to x(p,j) in the time interval [t(p,j) + 1, t(p,j + 1) − 1]
by the online algorithm form a monotonically non-decreasing sequence.

We start with a high-level description of the algorithm. Upon arrival
of a new constraint at time t, if it is already satisfied, then the algorithm
does nothing. Otherwise, the algorithm needs to satisfy the current
constraint by increasing some of the primal variables in the constraint.
Satisfying the constraint guarantees that there is a enough space in the
cache for the new page. To this end, the algorithm starts increasing
(continuously) the new dual variable y(t). This, in turn, tightens some
of the dual constraints corresponding to primal variables x(p,j) whose
current value is 0. Whenever such an event happens, the value of x(p,j)
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is increased from its initial setting of 0 to 1/k. Thus, during the time
preceding the increase of x(p,j) from 0 to 1/k, page i cannot be evicted
from the cache. This part is somewhat similar to what happens in
the randomized marking algorithm of [48]. Meanwhile, variables x(p,j)
which are already set to 1/k are increased (continuously) according
to an exponential function of the new dual variable y(t). Note that
this exponential function is equal to 1/k when the constraint is tight.
Thus, the algorithm is well defined. When variable x(p,j) reaches 1,
the algorithm starts increasing the dual variable z(p,j) at the same
rate as y(t). As a result, from this time on, the value of x(p,j) remains
1. The algorithm is presented in a continuous fashion, but it can easily
be implemented in a discrete fashion. The algorithm is the following:

Fractional Caching algorithm: At time t, when page pt is
requested:

• Set the new variable: x(pt, r(pt, t))← 0. (It can only be
increased in times r(pt, t) < t′ < r(pt, t) + 1.)

• If the primal constraint corresponding to time t is satisfied,
then do nothing.

• Otherwise: increase primal and dual variables, until the
primal constraint corresponding to time t is satisfied, as
follows:

(1) Increase variable y(t) continuously;
for each variable x(p,j) that appears in the (yet
unsatisfied) primal constraint that corresponds
to time t:

(2) If x(p,j) = 1, then increase z(p,j) at the same
rate as y(t).

(3) If x(p,j) = 0 and
t(p,j+1)−1∑

t=t(p,j)+1

y(t)


 − z(p,j) = cp,

then set x(p,j)← 1/k.

(Continued)
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(Continued)

(4) If 1/k ≤ x(p,j) < 1, increase x(p,j) according to
the following function:

1
k

exp


 1

cp




t(p,j+1)−1∑

t=t(p,j)+1

y(t)


 − z(p,j) − cp




 .

Note that the exponential function for x(p,j) contains variables
y(t) that correspond to future times. However, these variables are all
initialized to 0, so they do not contribute to the value of the function.

We also remark that setting variable x(p,j) to 1 instead of 1/k in line
(3), and removing line (4) from the algorithm, results in a deterministic
k-competitive algorithm for the weighted caching problem. This turns
out to be exactly Young’s dual-greedy algorithm [43, 92].

The analysis of the primal cost is partitioned into two parts. The
first one corresponds to the contribution of the increase of the vari-
ables x(p,j) from 0 to 1/k, and the second part corresponds to the
increase of the variables x(p,j) from 1/k to (at most) 1, according to
the exponential function. Each part is upper bounded separately by the
dual solution, yielding the desired result. We now prove the following
theorem.

Theorem 7.1. The fractional caching algorithm is O(log k)-
competitive. Specifically, the algorithm is 2(1 + ln k)-competitive.

Remark 7.2. It is possible to slightly improve the competitive ratio
of the algorithm from 2(1 + ln k) to approximately ln k. To do so, sim-
ply replace 1/k in lines (3) and (4) in the algorithm by 1/k ln k. It is
not hard to verify in the proof of Theorem 7.1 that this will result in
an algorithm with competitive ratio ln k plus lower-order terms (e.g.
ln ln k). In the rounding phase, however, several more constants are lost
so overall this optimization is not worthwhile.

Proof. [Proof of Theorem 7.1]: First, we note that the primal solu-
tion generated by the algorithm is feasible. This follows since, in each
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iteration, the variables x(p,j) are increased until the new primal con-
straint is satisfied. Also, each variable x(p,j) is never increased to be
greater than 1. Since, whenever x(p,j) increases in some round and
reaches 1, the algorithm starts increasing z(p,j) at the same rate as
y(t). Therefore, the value of x(p,j) is not going to change anymore,
as the exponent of the exponential function will not change any more.
This also implies that the dual solution that we generate is almost fea-
sible, since the dual constraint corresponding to page p and the jth
time it is requested satisfies:

x(p,j) =
1
k

exp


 1

cp




t(p,j+1)−1∑

t=t(p,j)+1

y(t)


 − z(p,j) − cp




 ≤ 1.

Simplifying, we get that:
t(p,j+1)−1∑

t=t(p,j)+1

y(t)


 − z(p,j) ≤ cp(1 + ln k). (7.2)

Thus, the dual solution can be made feasible by scaling it down by a
factor of (1 + ln k). We now prove that the primal cost is at most twice
the dual profit, which means that the primal solution produced by the
algorithm is 2(1 + ln k)-competitive.

We partition the primal cost into two parts. Let C1 be the contri-
bution to the primal cost from line (3) of the algorithm, due to the
increase of variables x(p,j) from 0 to 1/k. Let C2 be the contribution
to the primal cost from step (4) of the algorithm, due to the incremen-
tal increase of the variables x(p,j) from 1/k up to at most 1 according
to the exponential function.

Bounding C1: Let x̃(i, j) = min(x(p,j),1/k). We bound the term∑n
i=1

∑r(p,t)
j=1 cpx̃(i, j). To this end, we need several observations. First,

if x(p,j) > 0, and equivalently if x̃(i, j) > 0, then:
t(p,j+1)−1∑

t=t(p,j)+1

y(t)


 − z(p,j) ≥ cp. (7.3)

We shall refer to (7.3) as the primal complementary slackness condition.
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Next, at time t let B′(t) be the set of pages p ∈ B(t) such that
x(p,r(p,t)) = 1. In the dual solution, if y(t) is being increased at time t

then: ∑
p∈B(t)\(B′(t)∪{pt})

x̃(p,r(p,t)) ≤ |B(t)| − k − |B′(t)|. (7.4)

We shall refer to (7.4) as the dual complementary slackness. Inequality
(7.4) follows since there are |B(t)| − 1 − |B′(t)| variables in the con-
straint corresponding to t. By definition, for each p, x̃(p,r(p,t)) ≤ 1/k.
Thus, even if for all p, x̃(p,r(p,t)) = 1/k, then the left-hand side
of (7.4) adds up to |B(t)| − 1 − |B′(t)|/k ≤ |B(t)| − k − |B′(t)|. The
latter inequality holds since |B(t)| − |B′(t)| ≥ k + 1, since otherwise
the constraint at time t is already satisfied and the algorithm stops
increasing the variable y(t). Also, it follows from the algorithm that if
z(p,j) > 0, then:

x(p,j) ≥ 1. (7.5)

We shall refer to (7.5) as the second dual complementary slackness
condition. The primal and dual complementary slackness conditions
imply the following:

n∑
p=1

r(p,t)∑
j=1

cpx̃(p,j)

≤
n∑

p=1

r(p,t)∑
j=1





t(p,j+1)−1∑

t=t(p,j)+1

y(t)


 − z(p,j)


 x̃(p,j) (7.6)

=
∑

t


 ∑

i∈B(t)\{pt}
x̃(p,r(p,t))


y(t) −

n∑
p=1

r(p,t)∑
j=1

x̃(p,j)z(p,j) (7.7)

≤
∑

t

(|B(t)| − k)y(t) −
n∑

p=1

r(p,t)∑
j=1

z(p,j). (7.8)

Inequality (7.6) follows from inequality (7.3), equality (7.7) follows
by changing the order of summation. To see why inequality (7.8) holds
consider some time t. Consider the derivative of the left-hand side at
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time t. By the algorithm (inequality (7.5)), we increase z(p,j) at the
same rate as y(t) only when x(p,r(p,t)) = 1 and so p ∈ B′(t). Thus,
the derivative of the left-hand side is

∑
p∈B(t)\(B′(t)∪{pt}) x̃(p,r(p,t)).

By inequality (7.4), this sum is at most |B(t)| − k − |B′(t)| which is
exactly the derivative of the right-hand side of the inequality. Thus, C1

is at most the profit of a feasible dual solution multiplied by (1 + ln k).

Bounding C2: We bound the derivative of the increase of variables
x(p,j) in line (4) by the derivative of the dual profit accrued in the
same round. In each round, only variables x(p,j) that belong to the new
primal constraint (and correspond to the new dual variable y(t)) are
being increased. However, variables x(p,j) that belong to the new pri-
mal constraint but have already reached the value of 1 are not increased
anymore, and so do not contribute to the primal cost. In the dual
program, the new variable y(t) is raised with rate 1, and also all the
variables z(p,j) that correspond to variables x(p,j) (in the new primal
constraint) that are already equal to 1. It is useful for the purpose of the
analysis to think of the latter process as increasing a time variable τ ,
and then raising the variable y(t) and the appropriate variables z(p,j)
with rate 1 with respect to the time variable τ . Using this notation we
get that:

dC2

dτ
=

∑
p∈B(t)\{pt},1/k≤x(p,j)<1

cp · dx(p,r(p,t))
dy(t)

· dy(t)
dτ

=
∑

p∈B(t)\{pt},1/k≤x(p,j)<1

x(p,r(p,t)) (7.9)

≤ (|B(t)| − k) −
∑

p∈B(t)\{pt},x(p,j)=1

1 (7.10)

= (|B(t)| − k)
dy(t)
dτ

−
∑

p∈B(t)\{pt},x(p,j)=1

dz(p,j)
dτ

.

Equality (7.9) follows since dy(t)/dτ = 1 and also dx(p,j)/dy(t) =
1/cp · x(p,j) for each x(p,j), 1/k ≤ x(p,j) < 1. Inequality (7.10) holds
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since the new primal constraint is not yet satisfied and thus:∑
p∈B(t)\{pt},1/k≤x(p,j)<1

x(p,r(p,t))

+
∑

p∈B(t)\{pt},x(p,j)=1

x(p,r(p,t)) < |B(t)| − k.

We also remark that by the properties of the algorithm, any variable
x(p,j) which is strictly less than 1/k is actually equal to 0. Finally, the
last term exactly equals the derivative of the dual profit with respect
to τ . Therefore, the change in the dual profit is greater than or equal
to the change in C2. Thus, C2 is at most the profit of a feasible dual
solution multiplied by (1 + ln k).

Completing the analysis: It follows that C1 + C2 is at most twice the
profit of a feasible dual solution multiplied by (1 + ln k). Note that
the profit of any dual feasible solution is always a lower bound on
the optimal solution. Therefore, we conclude by weak duality that the
algorithm is 2(1 + ln k)-competitive.

7.1.3 A Fractional Algorithm for the Weighted
(h,k)-Caching Problem

A common approach to proving better performance of an online caching
algorithm is the (h,k)-caching problem where an online algorithm with
cache size k is compared to an offline algorithm with cache size h. In this
section, we show a simple modification of the algorithm for this setting.

The modified online algorithm generates a primal solution to a linear
program in which the cache size is k. However, the algorithm generates
a dual solution which corresponds to a linear program in which the
cache size is h ≤ k. We will perform a primal–dual analysis and show
that the primal cost is no more than O(log(k/(k − h + 1))) times the
dual cost:

∑
t

(|B(t)| − h)y(t) −
n∑

p=1

r(p,t)∑
j=1

z(p,j).

Since the dual cost is a lower bound on the offline cost with cache size h,
the desired result follows. For convenience, let η denote (k − h + 1)/k.
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To avoid trivialities, we assume that k ≥ h and h > 1, implying that
1/k ≤ η < 1. Intuitively, η replaces the value 1/k in our algorithm. Con-
sider the following modified online algorithm:

Fractional Caching algorithm: At time t, when page pt is
requested:

• Set the new variable: x(pt, r(pt, t))← 0. (It can only be
increased in times r(pt, t) < t′ < r(pt, t) + 1.)

• If the primal constraint corresponding to time t is satis-
fied, then do nothing.

• Otherwise: increase primal and dual variables, until the
primal constraint corresponding to time t is satisfied, as
follows:

(1) Increase variable y(t) continuously;
for each variable x(p,j) that appears in the (yet
unsatisfied) primal constraint that corresponds
to time t:

(2) If x(p,j) = 1, then increase z(p,j) at the same
rate as y(t).

(3) If x(p,j) = 0 and
t(p,j+1)−1∑

t=t(p,j)+1

y(t)


 − z(p,j) = cp,

then set x(p,j)← η.

(4) If η ≤ x(p,j) < 1, increase x(p,j) according to
the following function:

η · exp


 1

cp




t(p,j+1)−1∑

t=t(p,j)+1

y(t)


 − z(p,j) − cp




 .

It follows from the algorithm that x(p,j) ≤ 1 implies that

t(p,j+1)−1∑
t=t(p,j)+1

y(t) − z(p,j) ≤ cp(1 + ln(1/η)),



160 Generalized Caching

and hence y(t), scaled down by a factor of (1 + ln(1/η)), is a feasible
dual solution (to the dual of the linear program with only h pages).
As before, we split the primal cost into two parts, C1 and C2, where
C1 is the contribution to the primal cost from due to the increase of
variables x(p,j) from 0 to η (line (3) of the algorithm), and C2 is the
contribution to the primal cost due to the increases of variables x(p,j)
according to the exponential function (line (4) of the algorithm).

We first observe that the argument for bounding C2 follows along
the exact same lines as the argument used for the case h = k. In partic-
ular, ∆, the derivative of the dual profit with respect to y(t), is equal
to |B(t)| − h minus the number of variables x(p,j) that have already
reached the value of 1. Moreover, we have that

dx(p,j)
dy(t)

=
1
cp

x(p,j),

and hence the change in the primal cost is equal to the sum of the
variables x(p,j) that are at least η and strictly less than 1. Since the
primal constraint is still unsatisfied, the sum of the variables x(p,j)
can be at most |B(t)| − k, which is at most |B(t)| − h (as k ≥ h), and
hence the sum of the variables x(p,j) that are strictly less than 1 is at
most ∆. Thus, C2 is bounded by the (scaled down) dual cost.

Bounding C1 is also very similar to the case h = k. The only change
is in the dual complementary slackness condition. In the modified online
algorithm, we set the primal variables to η instead of 1/k. Again, at
time t let B′(t) be the set of pages p ∈ B(t) such that x(p,r(p,t)) = 1.
In the dual solution, if y(t) increases at time t, then:∑

p∈B(t)\(B′(t)∪{pt})

x̃(p,r(p,t)) ≤ |B(t)| − h − |B′(t)|. (7.11)

Inequality (7.11) follows since there are |B(t)| − 1 − |B′(t)| variables in
the constraint corresponding to t. By definition for each p, x̃(p,r(p,t)) ≤
η = (k − h + 1)/k. Thus, even if for all p, x̃(p,r(p,t)) = (k − h + 1)/k,
the left-hand side adds up to (|B(t)| − 1 − |B′(t)|)(k − h + 1)/k ≤
|B(t)| − h − |B′(t)|. The latter inequality holds since |B(t)| − |B′(t)| ≥
k + 1, since otherwise the constraint at time t is already satisfied and
the algorithm stops increasing the variable y(t).



7.2 Randomized Online Algorithm for Weighted Caching 161

Thus, it follows that C1 is bounded by the (scaled down) dual cost.
Hence, C1 + C2 is at most 2(1 + ln(1/η)) = 2(1 + ln(k/(k − h + 1)))
times the optimum solution, which implies that the modified online
algorithm is O(log(k/(k − h + 1)))-competitive.

7.2 Randomized Online Algorithm for Weighted Caching

In this section, we obtain a randomized algorithm by rounding online
the fractional solution to an integral solution. A randomized algorithm
defines a probability distribution on the various configurations (deter-
ministic states) in each state of the algorithm. For the caching problem
this corresponds to specifying the distribution on k-tuples of pages that
are in the cache. Such a distribution induces another (simpler) dis-
tribution x(p,t) on the pages, specifying the probability that a page
is in the cache at time t. Clearly, this map is not a bijection. For
example, the distribution (1/2,1/2,1/2,1/2) on four pages A,B,C,D

could be induced by the distribution D1 on two states (A,B) and
(C,D), where each state occurs with probability 1/2 each, or it can
be induced by the distribution D2 where each of six possible states
(A,B), (A,C), . . . ,(C,D) occur with probability 1/6 each.

For the caching problem, the distribution on the pages can be viewed
as a probability mass of k units distributed among the n pages, and
the “move” of an algorithm simply corresponds to redistributing this
mass among the pages. In this view, when an algorithm moves ε units
of mass from page i, it incurs a cost of ε · ci. We call this the frac-
tional view, in contrast to working with the probability distribution on
states which we call the actual view. We note that a fractional view can
easily be obtained from a solution to a linear program (LP-caching),
since the variables in the linear program indicate what fraction of a
page is already evacuated from the cache. More formally, at time t the
probability that page p is in the cache is simply 1 − x(p,r(p,t)).

Our goal is to generate a randomized algorithm from a fractional
view. The main difficulty in doing so is demonstrated in the following
example. Consider the distribution (1/2,1/2,1/2,1/2) on pages A,B,C

and D induced by the actual view, where cache states (A,B) and (C,D)
each occur with probability 1/2. Pages A and B have weight 1 and
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pages C and D have a large weight M . Suppose the fractional algorithm
moves 1/2 unit of mass from page A to page B leading to the state of
(0,1,1/2,1/2). In the fractional view, this algorithm incurs a cost of
1/2. However, it is instructive to see that it is impossible to modify the
actual distribution (to be consistent with the fractional distribution)
without incurring a cost of Θ(M). In fact, the only actual distribution
consistent with (0,1,1/2,1/2) is probability 1/2 on state (B,C) and
probability 1/2 on state (B,D). Thus, from the previous cache state
(C,D), either C or D must be moved to make room for B, which incurs
cost Θ(M).

To get around this problem, we restrict our actual distributions
to a certain subclass of distributions (e.g., in the scenario described
above, we do not allow the distribution, in which states (A,B) and
(C,D) have probability half each, to correspond to the distribution
(1/2,1/2,1/2,1,2)). In particular, we show below how to maintain an
online mapping from induced distributions to actual distributions, such
that any fractional move with cost c is mapped to a move on actual
distributions with cost at most 5c.

We first round up the page fetching costs to their nearest power
of 2 (increasing the competitive ratio by at most a factor of 2). Let
c1 < c2 < · · · < c� denote the rounded weights. A page belongs to class
i if its rounded weight is ci. We refer to an individual page as the jth
page of class i. For convenience of analysis, throughout this section, we
consider the (equivalent) cost version of the problem where we pay ci/2
for both fetching and evicting a class i page.

Recall that in the fractional view of the problem, the algorithm
maintains a distribution on the pages with total mass k. Any such distri-
bution P is completely specified by pij ∈ [0,1] such that

∑
i

∑
j pij = k,

where pij is the mass on the jth page of weight class i. Given two dis-
tributions P and P ′ on pages, let Cf (P,P ′) denote the cheapest way to
move from P to P ′, where it costs ci/2 to move one unit of mass either
into or out of a class i page. For those familiar, Cf is just the transship-
ment cost of flow from P to P ′ (we refer the reader to [38] for details
about transshipment cost between distributions). Let δij = pij − p′

ij .
Clearly, Cf (P,P ′) is at least

∑
i(ci/2)(

∑
j |δij |) since at least |δij | units

of mass either needs to enter or leave page j of class i. Moreover, any



7.2 Randomized Online Algorithm for Weighted Caching 163

greedy algorithm that arbitrarily moves mass out of pages with excess
(δij > 0) to those with a deficiency (δij < 0) has cost

∑
i(ci/2)(

∑
j |δij |)

implying that Cf (P,P ′) =
∑

i(ci/2)(
∑

j |δij |).
A randomized algorithm on the other hand needs to work with a

distribution on valid cache states. Given two distributions D and D′

on the cache states, let C(D,D′) denote the cheapest way of mov-
ing from D to D′ (by definition, this is the cost incurred by the ran-
domized algorithm). Let Π(D) denote the distribution induced on the
pages by D. We say that P and D are consistent if P = Π(D). Clearly,
Cf (Π(D),Π(D′) is a lower bound on C(D,D′).

For the unweighted caching problem, Blum et al. [24] showed that
given any P , P ′ and D such that Π(D) = P , there exists some D′ such
that Π(D′) = P ′ and C(D,D′) ≤ 2Cf (P,P ′). Their procedure is the
following. Suppose without loss of generality that P ′ is obtained from
P by removing ε units of mass from page a and putting the mass on
page b. Then, remove page a arbitrarily from ε measure of caches that
contain a, and add page b to ε measure of caches that do not contain b.
Now, some caches may have k + 1 pages (an excess) while some may
have k − 1 pages (a hole). Arbitrarily match the caches with an excess
to those with a hole (clearly, the measure of caches with excess is equal
to those with a hole). Consider any matched pair; the cache with an
excess must contain a page that does not lie in its matched cache, so we
simply transfer this page. It can easily be verified that C(D,D′) ≤ 2ε,
while the fractional cost Cf (P,P ′) = ε.

However, the situation for weighted caching is more involved. Recall
our example that shows that there exist P,P ′ and D consistent with
P , such that C(D,D′)
 Cf (P,P ′) for every D′ satisfying P ′ = Π(D′).
Thus, we cannot work with any arbitrary D that is consistent with P ,
as in the unweighted case. Interestingly, we get around this problem by
carefully restricting the space of distributions D that we are allowed to
work with. Formally, we show the following.

Theorem 7.3. Let the costs ci be such that ci+1/ci ≥ 2 for 1 ≤ i ≤
� − 1. There is a subclass D of distributions on cache states, along with
a map T from (D × P)→D with the following property: Given any
two distributions on pages P and P ′, and given any D ∈ D satisfying
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Π(D) = P , we can obtain another distribution D′ = T (D,P ′) such that
Π(D′) = P ′, D′ ∈ D and C(D,D′) ≤ 5Cf (P,P ′).

The theorem gives us the desired mapping between a distribution P on
pages and a distribution D on cache states. Whenever the fractional
algorithm moves from state P to P ′, the randomized algorithm moves
from D to D′ = T (D,P ′). Since Π(D′) = P ′ and D′ ∈ D, the process
can be applied repeatedly.

Proof. Let P be a distribution on pages with total mass k. Let D(P )
denote the set of distributions D ∈ D that are consistent with P . Spec-
ifying D(P ) for each P suffices to describe D completely. Each distri-
bution D ∈ D is specified by associating a cache state C(α) with each
real number α in the interval [0,1).

Let ki =
∑

j pij denote the mass on class i pages as determined
by P . Consider the interval I = [0,k], and imagine this interval
partitioned into I1, . . . , Il where I1 = [0,k1), I2 = [k1,k1 + k2),. . . , I� =
[k1 + . . . ,k�−1,k1 + · · · + k�). Consider an α ∈ [0,1). Let T (α) denote
the set of real numbers {α,1 + α,2 + α, . . . ,k − 1 + α}. For every
D ∈ D(P ), the cache C(α) has ni pages of ci where ni = |T (α) ∩ Ii|. By
construction, each cache C(α) has either ki� or �ki� pages of fetching
cost ci, and the expected number of pages of cost ci is ki. Consider any
arbitrary way of filling the caches C(α), for 0 ≤ α < 1, with pages such
that: (i) no C(α) contains two identical pages and (ii) it is consistent
with P (i.e., the probability measure of caches that contain page j of
class i is exactly pij). Such a filling always exists since, for example, we
can put the first page of class 1 in C(α) corresponding to α = [0,p11),
the second page of class 1 in C(α) corresponding to α = [p11,p11 + p12)
(where the range of α is considered modulo 1) and so on. Any way
of filling C(α) that satisfies the properties above is a valid element
D ∈ D(P ).

We now describe the transformation T . Suppose we are given
some D ∈ D(P ), and the fractional algorithm changes state from
P to P ′. By separating the pages for which p′

ij > pij and those
for which p′

ij < pij and arbitrarily matching the increases in
mass with decreases, we can decompose the move P to P ′ into
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the sequence P = P0→ P1→ P2→ ·· · → P ′ such that Cf (P,P ′) =∑
i≥0 Cf (Pi,Pi+1) and each move Pi to Pi+1 is an exchange where some

infinitesimally small ε units of mass is moved from some page pa to
some page pb. Thus, it suffices to prove the theorem for such exchanges
P → P ′. Let i be the weight class of page a, and j be that of page b.
For this move, the fractional algorithm pays ε(ci + cj)/2.

We now describe and analyze the move D→ D′. We divide the cost
into two parts. One due to cache size changes, and the second due to
the change in the composition of the cache. We first consider the sim-
pler case when i = j. Here, the quantities k1, . . . ,k� and the intervals
I1, . . . , I� associated with P remain unchanged, and hence the struc-
ture of C(α) remains unchanged. We essentially apply the argument of
Blum et al. [24] to class i pages. The only difference is that we need to
verify that their argument works even when caches contain either �ki�
or ki� class i pages (in [24] all caches have the same size). We arbi-
trarily remove page a from an ε measure of caches that contain a, and
arbitrarily add b to an ε measure of caches that do not contain b. We
say that a cache has a hole if it has one fewer page than it is supposed
to, and it has an excess if it has one extra page than it is supposed to.
Any cache with a hole has size either ki� − 1 or ki�, and every cache
with excess has size either �ki� or �ki� + 1, and hence is strictly larger.
We arbitrarily pair up the caches with a hole to those with excesses,
and transfer some page from the larger cache that does not lie in the
smaller cache. The cost incurred is at most 2εci/2 + 2εci/2 = 2εci.

We now consider the case when i < j (the case when i > j is analo-
gous). Consider the intervals I1, . . . , I�. When we move from P to P ′ the
right boundary of Ii shifts ε units to the left, the intervals Ii+1, . . . , Ij−1

shift to the left by ε units, and finally, the left boundary of Ij shifts left
by ε and its right boundary stays fixed.

We break the analysis into two parts. We first consider the classes
h for i < h < j. For each such h at most ε fraction of caches C(α) must
lose a page of cost ch (as their quota for class h shrinks from �kh�
to kh� and similarly, at most ε fraction of caches must gain a page).
Moreover, the fraction of caches that must lose a cost ch page is exactly
equal to the fraction that must gain such a page. We arbitrarily pair
these caches. As any cache that must lose a page is strictly larger than
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a cache that must gain one, for every matched pair of caches, there is
some page in the larger cache that does not lie in the smaller cache and
hence can be transferred to it. The movement cost incurred per class is
at most 2ε(ch/2), and hence the total contribution due to such classes
h is

∑
i<h<j εch ≤ ε(ci + cj), as consecutive weights differ by a factor

of at least 2.
Finally, we consider the case when h = i (the argument for h = j is

analogous). Without loss of generality we assume that �ki� = �ki − ε�
(otherwise we can split ε into at most two parts ε1, ε2, and apply the
argument separately). Consider the caches C(α) that are supposed to
lose a cost ci page (because ki becomes ki − ε). We say that these
caches have an excess, and note that they all contain exactly �ki� class
i pages. Next, we arbitrarily choose ε measure of caches that contain a,
and remove a from them. These caches have a hole, and strictly fewer
class i pages than caches with excess (a cache with a hole has either ki�
or ki� − 1 pages). We arbitrarily pair caches with an excess to caches
with a hole, and transfer some page from the larger cache that does
not lie in the smaller cache. The cost incurred is at most 3εci/2. By an
identical argument for class j, the cost incurred is at most 3εcj/2.

The distribution D′ obtained satisfies all the conditions required for
it to lie in the set D(P ′). Moreover, the total cost incurred in moving
from D to D′ is 5ε(ci + cj)/2 which is at most five times the fractional
cost.

7.3 The Generalized Caching Problem

In this section, we extend the main ideas presented earlier for weighted
caching and design an algorithm for the generalized caching problem. In
the generalized caching problem, there is a cache of size k and n pages
of sizes w1 ≤ w2 ≤ ·· · ≤ wn, belonging to ∈ [1,k]. It is not assumed that
page sizes are integral and k can be viewed as the ratio between the
cache size and the smallest page size. For any subset S of pages, let
W (S) =

∑
p∈S wp be the sum of the sizes of the pages in S. Page p has

a fetching cost of cp. With this terminology, in the fault model cp = 1
for each page p, in the bit model cp = wp for each page p, and in the
general model the values of cp and wp are arbitrary.
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7.3.1 LP Formulation for Generalized Caching

The formulation that we used for the weighted caching can easily be
extended to the case of generalized caching. This obvious extension
gives us the following integer formulation for the problem:

min
n∑

p=1

r(p,t)∑
j=1

cp · x(p,j).

For any time t: ∑
p∈B(t)\{pt}

wpx(p,r(p,t)) ≥W (B(t)) − k.

For any p,j:

x(p,j) ∈ {0,1}.
In a fractional solution, we relax x(p,j) to take any value between 0
and 1. However, there is a fundamental problem with this relaxation,
as it can have an integrality gap of Ω(k), and therefore is not suitable
for our purposes. For example, suppose the cache size is k = 2� − 1,
and there are two pages of size �, requested alternately. Only one page
can be in the cache at any time and hence there is a cache miss in each
request. A fractional solution, on the other hand, can keep almost one
unit of each page and then it only needs to fetch an O(1/k) fraction of
a page in each request.

To get around this problem, we use an idea introduced by Carr
et al. [36] of adding exponentially many knapsack cover inequali-
ties. These constraints are redundant in the integer program, but
they dramatically reduce the integrality gap of the LP relaxation.
There are two main ideas. First, consider a subset of pages S ⊂
B(t) such that pt ∈ S and W (S) > k. The pages in S \ {pt} can
occupy at most k − wpt units in the cache at time t. Thus, at least
W (S) − wpt − (k − wpt) = W (S) − k cumulative size of pages in S \
{pt} must be absent from the cache. Hence, we can add the constraint∑

p∈S\{pt} wpx(p,r(p,t)) ≥W (S) − k for each such set S at time t. The
second idea is that for each such constraint, we can truncate the size of
a page to be equal to the right-hand side of the constraint, i.e., we have
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∑
p∈S\{pt} min(W (S) − k,wp)x(p,r(p,t)) ≥W (S) − k. Clearly, trun-

cating the size has no effect on the integer program. Our linear program
is as follows:

min
n∑

p=1

r(p,t)∑
j=1

cp · x(p,j)

For any time t and any set of requested pages S ⊆ B(t) such that pt ∈ S

and W (S) > k:∑
p∈S\{pt}

min{W (S) − k,wp}x(p,r(p,t)) ≥W (S) − k. (7.12)

For any p,j:

0 ≤ x(p,j) ≤ 1. (7.13)

We now note a simple observation about knapsack cover inequalities
that will be quite useful.

Observation 7.4. Given a fractional solution x, if a knapsack cover
inequality is violated for a set S at time t, then it is also violated
for the set S′ = S \ {p : x(p,r(p,t)) = 1}, obtained by omitting pages
which are already completely evicted from the cache.

Proof. Suppose that inequality (7.12) is violated for some S and
x(p,r(p,t)) = 1 for p ∈ S. First, it must be the case that min(W (S) −
k,wp) < W (S) − k, otherwise (7.12) is trivially satisfied. Suppose we
delete p from S. The right-hand side decreases by exactly wp. The
left-hand side decreases by wp and possibly more since the term
min(W (S) − k,wp′) may decrease for pages p′ ∈ S. Thus, inequality
(7.12) is also violated for S \ {p}. The claim follows by repeatedly
applying the argument.

Observation 7.4 implies that in any feasible solution to the con-
straints given by (7.12), it does not “help” having x(p,j) > 1. Hence, it
can be assumed that x(p,j) ≤ 1 without loss of generality, and we can
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drop the upper bounds on x(p,j), simplifying the LP formulation to:

min
n∑

p=1

r(p,t)∑
j=1

cp · x(p,j) (LP-caching)

For any time t and any set of requested pages S ⊆ B(t) such that pt ∈ S

and W (S) > k:∑
p∈S\{pt}

min{W (S) − k,wp}x(p,r(p,t)) ≥W (S) − k. (7.14)

For any p,j:

0 ≤ x(p,j). (7.15)

In the dual program, there is a variable y(t,S) for each time t and
set S ⊆ B(t) such that pt ∈ S and W (S) > k. The dual program is as
follows:

max
∑

t

∑
S⊆B(t),pt∈S

(W (S) − k)y(t,S).

For each page p and the jth time it is requested:

t(p,j+1)−1∑
t=t(p,j)+1

∑
S | p∈S

min{W (S) − k,wp}y(t,S) ≤ cp. (7.16)

We will sometimes denote min{W (S) − k,wp} by w̃S
p .

7.3.2 A Fractional Primal–Dual Algorithm

Our online caching algorithm produces fractional primal and dual solu-
tions to LP-caching and it is very similar to the weighted caching case
(where pages have uniform size). In the online case, the constraints of
LP-caching are revealed in sets — at any time t exponentially many
new linear knapsack-cover constraints appear and the goal is to pro-
duce a feasible assignment to the (primal) variables that satisfies all
the constraints. Since there are exponentially many constraints, poly-
nomial running time is not obvious; however, we later show that our
online algorithm can be made to run in polynomial time.
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Upon arrival of a new set of constraints at time t, if all constraints
are already satisfied, then the algorithm does nothing. Otherwise, the
algorithm needs to satisfy all the current constraints by increasing some
of the primal variables. We call a set S minimal if x(p,r(p,t)) < 1 for
each p ∈ S. By Observation 7.4, it suffices to consider primal constraints
corresponding to minimal sets. Satisfying all the constraints at time t

guarantees that there is enough space (fractionally) in the cache to
fetch the new page.

To this end, the algorithm arbitrarily picks an unsatisfied primal
constraint corresponding to some minimal set S and starts increas-
ing continuously its corresponding dual variable y(t,S). This, in turn,
tightens some of the dual constraints corresponding to primal variables
x(p,j) whose current value is 0. Whenever such an event happens,
the value of x(p,j) is increased from its initial setting of 0 to 1/k.
Meanwhile, variables x(p,j) which are already set to 1/k are increased
(continuously) according to an exponential function of the new dual
variable y(t,S). When variable x(p,j) reaches 1, the set S is no longer
minimal, and page p is dropped from S. As a result, from this time on,
the value of x(p,j) remains 1. When this primal constraint is satisfied
the algorithm continues on to the next infeasible primal constraint.

Since there are exponentially many primal constraints in each itera-
tion this process may not be polynomial. However, the rounding process
we design in Section 7.4 does not need the solution to satisfy all primal
constraints. Specifically, for each model we show that there exists a
(different) value γ > 1 such that the algorithm needs to guarantee that
at time t the primal constraint of the set S = {p | x(p,r(p,t)) < 1/γ}
is satisfied. Thus, the algorithm may actually consider only that set.1

Fortunately, the requirement of the online primal–dual framework that
variables can only increase monotonically makes this task simple. In
particular, as the primal variables increase, some pages reach 1/γ and
“leave” the set S. The algorithm then tries to satisfy the set S′ that
contains the rest of the pages. Since pages can only leave S, this pro-
cess may continue for at most n rounds. For simplicity, we describe the

1 In general, for knapsack cover constraints in an offline setting, all possible subsets may
be needed since it is not clear a priori which set S will have this property, nor can it be
expressed as a linear or even a convex program. See [36] for more details.
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algorithm that satisfies all the constraints. The algorithm is presented
in a continuous fashion, but it can easily be implemented in a discrete
fashion. The algorithm is the following:

Fractional caching algorithm: At time t, when page pt is
requested:

• Set the new variable: x(pt, r(pt, t))← 0. (It can only be
increased at times r(pt, t) < t′ < r(pt, t) + 1.)

• Until all the primal constraint corresponding to time t

are satisfied do the following. Assume that the primal
constraint of minimal set S is not satisfied:

(1) Increase variable y(t,S) continuously; for each
variable x(p,j) such that p ∈ S \ {pt}:

(2) If x(p,j) = 1, then remove p from S, i.e. S ←
S \ {p}.

(3) If x(p,j) = 0 and
∑t(p,j+1)−1

t=t(p,j)+1

∑
S:p∈S w̃S

p y(t,S) =
cp, then x(p,j)← 1/k.

(4) If 1/k ≤ x(p,j) < 1, increase x(p,j) according to
the following function:

1
k

exp


 1

cp




t(p,j+1)−1∑

t=t(p,j)+1

∑
S:p∈S

w̃S
p y(t,S)


 − cp




 ,

where w̃S
p denotes min{W (S) − k,wp}.

Theorem 7.5. The algorithm is O(log k)-competitive.

Proof. The proof of the theorem is along the same lines as the proof of
Theorem 7.1. First, we note that the primal solution generated by the
algorithm is feasible. This follows since, in each iteration, the variables
x(p,j) are increased until all new primal constraints are satisfied. Also,
each variable x(p,j) is never increased to be greater than 1.

Next, we show that the dual solution that we generate is feasible
up to an O(log k) factor. Whenever x(p,j) reaches 1, the variables



172 Generalized Caching

y(t,S) for sets S containing p do not increase anymore, and hence the
value of x(p,j) does not change any more. Thus, for the dual constraint
corresponding to page p and the jth time it is requested, we get that:

x(p,j) =
1
k

exp


 1

cp




t(p,j+1)−1∑

t=t(p,j)+1

∑
S:p∈S

w̃S
p y(t,S)


 − cp




 ≤ 1

where w̃S
p = min{W (S) − k,wp}. Simplifying, we get that:

t(p,j+1)−1∑
t=t(p,j)+1

∑
S | p∈S

min{W (S) − k,wp}y(t,S) ≤ cp(1 + ln k).

Thus, the dual solution can be made feasible by scaling it down by
a factor of (1 + ln k). We now prove that the primal cost is at most
twice the dual profit, which means that the primal solution produced
is O(log k)-competitive.

We partition the primal cost into two parts, C1 and C2. Let C1

be the contribution to the primal cost from step (3) of the algorithm,
due to the increase of variables x(p,j) from 0 to 1/k. Let C2 be the
contribution to the primal cost from step (4) of the algorithm, due
to the incremental increases of the variable x(p,j) according to the
exponential function.

Bounding C1: Let x̃(p,j) = min(x(p,j),1/k). We bound the term∑n
p=1

∑r(p,t)
j=1 cpx̃(p,j). To do this, we need two observations. First,

it follows from the algorithm that if x(p,j) > 0, and equivalently if
x̃(p,j) > 0, then:

t(p,j+1)−1∑
t=t(p,j)+1

∑
S | p∈S

min{W (S) − k,wp}y(t,S) ≥ cp. (7.17)

We shall refer to (7.17) as primal complementary slackness. Next, in
the dual solution, if y(t,S) > 0, then:∑

p∈S\{pt}
min{W (S) − k,wp}x̃(p,r(p,t)) ≤W (S) − k. (7.18)

We shall refer to (7.18) as dual complementary slackness. To see why
(7.18) holds, consider the following two cases depending on whether
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|S| ≥ k + 1 or not. Recall that x̃(p,r(p,t)) ≤ 1/k for all pages. If |S| ≥
k + 1 then W (S) ≥ k + 1 and so:

∑
p∈S\{pt}

1
k

min{W (S) − k,wp} ≤ 1
k
·

∑
p∈S\{pt}

wp

=
W (S) − w(pt)

k
≤ W (S) − 1

k
≤W (S) − k.

If |S| ≤ k + 1, then:

∑
p∈S\{pt}

1
k

min{W (S) − k,wp} ≤ 1
k

∑
p∈S\{pt}

(W (S) − k)

≤ k

k
(W (S) − k) = W (S) − k.

The last inequality follows since W (S) ≥ k. The primal and dual
complementary slackness conditions imply the following:

n∑
p=1

r(p,t)∑
j=1

cpx̃(p,j) (7.19)

≤
n∑

p=1

r(p,t)∑
j=1


t(p,j+1)−1∑

t=t(p,j)+1

∑
S | p∈S

w̃S
p y(t,S)


 x̃(p,j) (7.20)

=
∑

t

∑
S⊆B(t),pt∈S


 ∑

p∈S\{pt}
w̃S

p x̃(p,r(p,t))


y(t,S) (7.21)

≤
∑

t

∑
S⊆B(t),pt∈S

(W (S) − k)y(t,S). (7.22)

Inequality (7.20) follows from inequality (7.17), Equality (7.21) follows
by changing the order of summation, and inequality (7.22) follows from
inequality (7.18). Thus, C1 is at most the profit of a feasible dual solu-
tion multiplied by (1 + ln k).

Bounding C2: We bound the derivative of the primal cost of variables
x(p,j) in step (4) by the derivative of the dual profit accrued in the same
round. Variables x(p,j) that have already reached the value of 1 do not
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contribute anymore to the primal cost. The derivative of a variable
x(p,j), 1/k ≤ x(p,j) < 1, as a function of y(t) is

dx(p,j)
dy(t,S)

=
min{W (S) − k,wp}

cp
x(p,j). (7.23)

Therefore, the derivative of the primal is at most:
dX

dy(t,S)
=

∑
p∈S\{pt}:x(p,r(p,t))<1

w̃S
p x(p,r(p,t))

≤ W (S) − k =
dY

dy(t,S)
.

The inequality in the second step above follows since the primal con-
straint of the set S is still satisfied. Thus, C2 is at most the profit of a
feasible dual solution multiplied by (1 + ln k).

Completing the analysis: It follows that C1 + C2 is at most twice the
profit of a feasible dual solution multiplied by (1 + ln k). Note that
the profit of any dual feasible solution is always a lower bound on
the optimal solution. Therefore, we conclude by weak duality that the
algorithm is O(log k)-competitive.

7.4 Rounding the Fractional Solution Online

In this section, we show how to obtain a randomized (integral) online
algorithm from the fractional solution generated in the previous section
for LP-caching. The ideas here generalize those used earlier in the sim-
pler weighted caching case. For convenience of analysis, throughout this
section we consider the (equivalent) cost version of the problem where
we pay cp for both fetching and evicting a page p. This assumption can
change the cost of the fractional solution by at most a factor of two. At
any point of time, the LP solution x1, . . . ,xn (for LP-caching), where
we denote by xp � x(p,r(p,t)), specifies the probability that each of the
pages is absent from the cache. However, in order to obtain an actual
randomized algorithm we need to specify a probability distribution over
the various cache states that is consistent with the LP solution. That
is, we need to simulate the moves of the LP over the set of pages by
consistent moves over the actual cache states. We adopt the following
approach to do this simulation.
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Let γ ≥ 1 be a parameter and set yp = min(γxp,1). Let µ be a dis-
tribution on subsets of pages. We say that µ is consistent with y (or
γ-consistent with x) if µ induces the distribution y on the page set.
That is,

∀p :
∑
D

AD
p · µ(D) = yp, (7.24)

where, for a set of pages D, AD
p = 1 if p ∈ D and 0 otherwise. We will

view µ as a distribution over the complement of the cache states. To
be a meaningful simulation, it suffices to require the following:

(1) Size property : For any set D with µ(D) > 0, the sum of the
sizes of the pages in D is at least W (B(t)) − k. That is, D

corresponds to the complement of a valid cache.
(2) Bounded cost property : If y changes to y′ while incurring a

fractional cost of d, the distribution µ can be changed to
another distribution µ′ which is consistent with y′, while
incurring a (possibly amortized) cost of at most βd, where
β > 0.

It is easy to see that if xp changes by ε, then yp changes by at
most γε. Hence, given a fractional algorithm with competitive ratio
c, the existence of a simulation with the above properties implies an
actual randomized online algorithm with competitive ratio γβc. We
provide three different simulation procedures for the bit model, general
model, and the fault model. These are organized in increasing order of
complexity.

7.4.1 The Bit Model

In this section, we will show how to obtain an O(log k)-competitive
randomized algorithm for the generalized caching problem in the bit
model. Let U � log 2k�. For i = 0 to U , we define the size class S(i) to
be the set of pages of sizes between 2i and less than size 2i+1. Formally,
S(i) = {p | 2i ≤ wp < 2i+1}. Let x1, . . . ,xn be the LP solution at the
current time step. Recall that it satisfies the knapsack cover inequalities
for all subsets. For each page p let yp = min{1,3xp} (i.e., γ = 3).
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Definition 7.1 (Balanced subsets). We say that a subset of pages
D is balanced with respect to y if:

(1) If yp = 1 then p is evicted in all cache states, i.e., AD
p = 1 for

all D with µ(D) > 0.
(2) The following holds for all 0 ≤ j ≤ U : U∑

i=j

∑
p∈S(i)

yp

 ≤ U∑
i=j

∑
p∈S(i)

AD
p ≤




U∑
i=j

∑
p∈S(i)

yp


 . (7.25)

We first show that the size property follows from the requirement
that sets are balanced.

Lemma 7.6. Let x and y be defined as above. Then, for any subset
D which is balanced with respect to y, the sum of the sizes of all the
pages in D is at least W (B(t)) − k.

We first prove a simple mathematical claim.

Claim 7.7. Let x1,x2, . . . ,xn and y1,y2, . . . ,yn be two sequences of
non-negative real numbers and let 0 = a0 ≤ a1 ≤ a2 ≤ ·· · ≤ an be a
non-decreasing sequence of positive numbers. If for every 1 ≤ j ≤ n:∑n

i=j xi ≥ −1 + (
∑n

i=j yi), then:
∑n

i=1 aixi ≥ −an +
∑n

i=1 aiyi.

Proof. For every j, 1 ≤ j ≤ n, multiply the jth inequality by (aj −
aj−1) (which is non-negative), yielding:

(aj − aj−1)
n∑

i=j

xi ≥ −(aj − aj−1) + (aj − aj−1)
n∑

i=j

yi.

Summing up over all the inequalities yields the desired result.

Proof [Lemma 7.6]. For the proof it suffices to use the left-hand side
of condition (7.25) (i.e., the lower bound). Let S′ ⊆ S be the set of
pages with yp < 1, and let S′(i) = S′ ∩ S(i) be the class i pages in S′.
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Since AD
p = 1 whenever yp = 1, condition (7.25) implies that for every

0 ≤ j ≤ U :

U∑
i=j

∑
p∈S′(i)

AD
p ≥

 U∑
i=j

∑
p∈S′(i)

yp

 ≥

 U∑

i=j

∑
p∈S′(i)

yp


 − 1. (7.26)

The sum of the sizes of the pages in D is
∑

p∈S wpA
D
p . Since AD

p = 1
for p ∈ S \ S′, it suffices to show that

∑
p∈S′ wpA

D
p ≥W (S′) − k for the

proof. Consider the following:∑
p∈S′

wpA
D
p ≥

∑
p∈S′

min{wp,W (S′) − k}AD
p

=
U∑

i=0

∑
p∈S′(i)

min{wp,W (S′) − k}AD
p

≥ 1
2

U∑
i=0

∑
p∈S′(i)

min{2wp,W (S′) − k}AD
p

≥ 1
2

U∑
i=0

min{2i+1,W (S′) − k}
∑

p∈S′(i)

AD
p (7.27)

≥ −1
2

min{2U+1,W (S′) − k}

+
1
2

U∑
i=0

min{2i+1,W (S′) − k}
∑

p∈S′(i)

yp (7.28)

≥ −1
2
(W (S′) − k)

+
1
2

U∑
i=0

∑
p∈S′(i)

min{wp,W (S′) − k}yp (7.29)

≥ −1
2
(W (S′) − k) +

3
2
(W (S′) − k) ≥W (S′) − k. (7.30)

Here, inequality (7.27) follows since wp ≥ 2i for each p ∈ S′(i). Inequal-
ity (7.28) follows by applying Claim 7.7 with ai = min{2i+1,W (S′) −
k}, xi =

∑
p∈S′(i) A

D
p and yi =

∑
p∈S′(i) yp, and observing that (7.26)
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implies that the conditions of the claim are satisfied. Inequality (7.29)
follows since wp < 2i+1, and finally inequality (7.30) follows since by the
LP knapsack constraints, and the fact that yp = 3xp for each p ∈ S′:

U∑
i=0

∑
p∈S′(i)

min{wp,W (S′) − k}yp

= 3
∑
p∈S′

min{wp,W (S′) − k}xp ≥ 3(W (S′) − k).

We show how to maintain the bounded cost property using both
left- and right-hand sides of condition (7.25).

Lemma 7.8. Let µ be any distribution on balanced sets that is con-
sistent with y. Then the cost property holds with β = 10. That is, if y

changes to y′ while incurring a fractional cost of d, then the distribution
µ can be modified to another distribution µ′ over balanced sets such
that µ′ is consistent with y′ and the cost incurred while modifying µ

to µ′ is at most 10d.

Proof. By considering each page separately, it suffices to show that
the property holds whenever yp increases or decreases for some page p.
Assume first that the weight yp of page p for p ∈ S(i) is increased by
ε. The argument when yp is decreased is analogous. Page p belongs to
S(i), and so wp ≥ 2i. Thus, the fractional cost is at least ε2i.

We construct µ′ as follows. To ensure the consistency with y′, i.e.,
Equation (7.24), we add page p to ε measure of the sets D that do
not contain p, incurring a cost of at most 2i+1ε (in the bit model).
However, condition (7.25) for classes j ≤ i may now be violated. We
iteratively fix condition (7.25) starting with class i. Consider class
i. Let s = �∑U

j=i

∑
p∈S(j) yp� and suppose first that �∑U

j=i

∑
p∈S(j) y

′
p�

remains equal to s. Then in µ′, let ε′ be the measure of sets that have
s + 1 pages in classes i or higher. Note that ε′ ≤ ε. Consider the sets
with s − 1 pages in classes i or higher and arbitrarily choose ε′ mea-
sure of these (this is possible since s = �∑U

j=i

∑
p∈S(j) y

′
p�). Arbitrarily

pair the sets with s + 1 pages to those with s − 1 pages. Consider any
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pair of sets (D,D′). Since µ′ satisfies condition (7.25) for class i + 1,
the number of pages in D and D′ that lie in classes i + 1 or higher
differ by at most 1. Hence, D \ D′ contains some class i page. We move
this page from D to D′. Note that (7.25) is satisfied for i after this
procedure. Now, consider the case when �∑U

j=i

∑
p∈S(j) y

′
p� increases to

s + 1. Note that in this case, condition (7.25) is violated for class i for
at most ε′ ≤ ε of the sets that have precisely s − 1 pages in classes i or
higher. We arbitrarily pair the classes with s − 1 pages to those with
s + 1 pages and apply the argument above. The total cost incurred in
this step is at most (2ε′) · 2i+1 ≤ 2i+2ε.

After applying the above procedure to fix class i, condition (7.25)
might be violated for class i − 1 for at most ε measure of sets. We
apply the matching procedure sequentially to i − 1 and lower classes
incurring an additional cost of

∑i−1
j=0 2ε · 2j+1 < 4ε2i. Thus, the total

cost incurred is at most 10ε2i.

Theorem 7.9. There is an O(log k)-competitive algorithm for the
generalized caching problem in the bit model.

7.4.2 The General Cost Model

In this section, we study the general cost model and show how to obtain
an O(log2 k)-competitive randomized caching algorithm for this model.
Let U � log2 k�. Let C = log2 Cmax�. For i = 0 to U , and j = 0 to C,
we define S(i, j) to be the set of pages of sizes at least 2i and less
than 2i+1, and fetching cost between 2j and less than 2j+1. Formally,
S(i, j) = {p | 2i ≤ wp < 2i+1 and 2j ≤ cp < 2j+1}. Let x1, . . . ,xn be the
LP solution at the current time step that satisfies the knapsack cover
inequalities for all subsets. Let γ = U + 3. Thus, for each page p, yp =
min{1,(U + 3) · xp} = O(log k) · xp.

Definition 7.2. A set D of pages is balanced with respect to y if the
following two conditions hold:

(1) If yp = 1 then p is evicted in all cache states, i.e., AD
p = 1 for

all D with µ(D) > 0.
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(2) For each size class 0 ≤ i ≤ U , it holds that for each 0 ≤ j ≤
log Cmax�: C∑

z=j

∑
p∈S(i,z)

yp

 ≤ C∑
z=j

∑
p∈S(i,z)

AD
p ≤




C∑
z=j

∑
p∈S(i,z)

yp


 . (7.31)

We first show that the size property follows from the requirement that
the sets are balanced.

Lemma 7.10. Let x and y be defined as above. Then, for any subset
D that is balanced with respect to y, the sum of the sizes of all the
pages in D is at least W (B(t)) − k.

Proof. For the proof it suffices to use the left-hand side of condi-
tion (7.31) (i.e., the lower bound). Let S′ denote the subset of pages
with yp < 1. As yp = 1 whenever AD

p = 1, it suffices to show that∑
p∈S′ wpA

D
p ≥W (S′) − k. Moreover, condition (7.31) implies that for

any 0 ≤ i ≤ U :

C∑
z=0

∑
p∈S′(i,z)

AD
p ≥ 

C∑
z=0

∑
p∈S′(i,z)

yp� ≥ −1 +
C∑

z=0

∑
p∈S′(i,z)

yp. (7.32)

Thus, the total size of pages from S′ that are in D can be lower bounded
as follows:∑

p∈S′
wpA

D
p ≥

∑
p∈S′

min{wp,W (S′) − k}AD
p

=
U∑

i=0

C∑
j=0

∑
p∈S′(i,j)

min{wp,W (S′) − k}AD
p

≥ 1
2

U∑
i=0

C∑
j=0

∑
p∈S′(i,j)

min{2wp,W (S′) − k}AD
p

≥ 1
2

U∑
i=0

min{2i+1,W (S′) − k}
C∑

j=0

∑
p∈S′(i,j)

AD
p (7.33)
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≥ 1
2

U∑
i=0

min{2i+1,W (S′) − k}

−1 +

C∑
j=0

∑
p∈S′(i,j)

yp


 (7.34)

≥ −U + 1
2

(W (S′) − k)

+
1
2

U∑
i=0

C∑
j=0

∑
p∈S′(i,j)

min{wp,W (S′) − k}yp (7.35)

≥ −U + 1
2

(W (S′) − k) +
U + 3

2
(W (S′) − k)

= W (S′) − k. (7.36)

Inequality (7.33) follows since wp ≥ 2i for each page p ∈ S′(i, j), and
inequality (7.34) follows from (7.32). Inequality (7.35) follows since
wp ≤ 2i+1 for each page p ∈ S′(i, j). Finally, inequality (7.36) follows
from the knapsack constraints:

U∑
i=0

C∑
j=0

∑
p∈S′(i,j)

min{wp,W (S′) − k}yp

=
∑
p∈S′

min{wp,W (S′) − k}yp

= (U + 3)
∑
p∈S′

min{wp,W (S′) − k}xp

≥ (U + 3)(W (S′) − k).

We use here the fact that yp = (U + 3)xp for p ∈ S′.

We now show how to maintain the bounded cost property with β = 10.
For this we need to use both the left- and right-hand sides of condition
(7.31), and we use an argument similar to the one used in the proof of
Lemma 7.8.

Lemma 7.11. Given any distribution µ over balanced sets that is
consistent with y. If y changes to y′ incurring a fractional cost of d,
then the distribution µ can be modified to another distribution µ′ over
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balanced sets consistent with y′ such that the total cost incurred is at
most 10d.

Proof. Suppose that yp increases by ε and p lies in the class S(i, j). Note
that the balancing condition (7.31) holds for every size class different
from i, and moreover for size class i the condition also holds for all cost
classes higher than j. We apply the procedure used in Lemma 7.8 to
size class i. Note that applying this procedure does not have any effect
on size classes different from i, and we can thus iteratively balance cost
classes starting from j down to 0 in size class i. To bound the cost,
observe that the analysis in the proof of Lemma 7.8 only used the fact
that the cost of the classes are geometrically decreasing. Thus, a similar
analysis implies that the cost incurred is no more than 10ε · 2j .

We conclude with the next theorem:

Theorem 7.12. There is an O(log2 k)-competitive algorithm for the
caching problem in the general model.

7.4.3 The Fault Model

In this section, we study the fault model and show how to obtain
an O(log k)-competitive randomized caching algorithm for this model.
Note that an O(log2 k)-competitive algorithm follows directly from the
result for the general model. Recall that in the proofs for the bit model
and the general model we crucially used the fact that the cost in the dif-
ferent classes is geometrically decreasing. However, this is not the case
for the fault model, making the proof significantly more involved and
requiring the use of a potential function so as to perform an amortized
analysis.

We sort the n pages with respect to their size, i.e., w1 ≤ w2 ≤ ·· · ≤
wn. Let x1, . . . ,xn be the LP solution at the current time step that
satisfies the knapsack cover inequalities for all subsets. For each page
p, let yp = min{1,15 · xp}. Let S′ denote the set of pages with yp < 1.
During the execution of the algorithm we maintain a grouping G of
pages in S′ into groups G(i), 1 ≤ i ≤ �. Each group G(i) contains a
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sequence of consecutive pages in S′. As the pages are ordered in non-
decreasing order with respect to size, for any i the largest page size in
group G(i) is at most the smallest page size in G(i + 1).

Definition 7.3 (Good grouping). A grouping G of pages in S′ is
called good if it satisfies the following properties:

(1) For each i, 1 ≤ i ≤ �, we have
∑

p∈S(i) yp ≤ 12.
(2) If

∑
p∈S′ yp ≥ 3, then for each group i, 1 ≤ i ≤ �, we have∑

p∈G(i) yp ≥ 3. If
∑

p∈S′ yp < 3, then there is exactly one
group G(1) containing all the pages in S′.

We define
∑

p∈G(i) yp to be the weight of group G(i).

Definition 7.4 (Balanced set). Given a good grouping G, a set of
pages D is called balanced if the following two properties hold:

(1) If yp = 1, then AD
p = 1.

(2) For each i, the number of pages |D ∩ G(i)| = ∑
p∈G(i) A

D
p

satisfies  ∑
p∈G(i)

yp

 ≤ ∑
p∈G(i)

AD
p ≤




∑
p∈G(i)

yp


 . (7.37)

The simulation procedure works as follows. At any time the algo-
rithm maintains a good grouping G of the pages. It also maintains a
probability distribution µ on balanced sets D which is consistent with y.
At each step of the algorithm, as the value of y changes, the algorithm
modifies the distribution µ to be consistent with y. Additionally, as
y changes, the grouping G may also possibly change (so as to remain
good), in which case a previously balanced set need not remain bal-
anced anymore. In such a case, we also modify µ since only balanced
sets can belong to the support of µ.

We first show that the size property holds for balanced sets D, and
then show how to update G and µ as y changes, such that the cost
property holds with β = O(1) in an amortized sense.
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Lemma 7.13. Let y be as defined above and let G be a good grouping
with respect to y. Then any balanced set D with respect to G has size
at least W (S) − k.

Proof. Let S′ be the set of pages p for which yp < 1. As D is balanced,
each page with yp = 1 belongs to D and hence it suffices to show that∑

p∈S′ wpA
D
p ≥W (S′) − k. If W (S′) − k ≤ 0, then we are already done.

Henceforth, we assume that W (S′) − k > 0.
The linear program constraint for the set S′ implies that∑

p∈S′ min{wp,W (S′) − k}xp ≥W (S′) − k. This implies that∑
p∈S′ xp ≥ 1 and so

∑
p∈S′ yp ≥ 15. Hence, by the second condi-

tion for a good grouping, each group G(i) has weight at least 3.
For each group G(i) let wi(min) and wi(max) denote the smallest

and largest page size in G(i). Recall that for each i, we have that
wi(min) ≤ wi(max) ≤ wi+1(min). (Define w�+1(min) = w�(max).) Let
mi = min(wi(min),W (S′) − k) for i = 1, . . . , � + 1. We lower bound the
total size of pages in D ∩ S′ as follows:∑

p∈S′
wpA

D
p ≥

∑
p∈S′

min{wp,W (S′) − k}AD
p

=
�∑

i=1

∑
p∈G(i)

min{wp,W (S′) − k}AD
p

≥
�∑

i=1

mi

∑
p∈G(i)

AD
p ≥

�∑
i=1

mi(−1 +
∑

p∈G(i)

yp)

≥ 2
3

�∑
i=1

mi

∑
p∈G(i)

yp (7.38)

=
2
3


 �∑

i=1

mi+1
∑

p∈G(i)

yp


 − 2

3


 �∑

i=1

(mi+1 − mi)
∑

p∈G(i)

yp




≥ 2
3


 �∑

i=1

mi+1
∑

p∈G(i)

yp


 − 8

(
�∑

i=1

(mi+1 − mi)

)
(7.39)
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=
2
3


 �∑

i=1

mi+1
∑

p∈G(i)

yp


 − 8m�+1 + 8m1

≥ 2
3


 �∑

i=1

∑
p∈G(i)

min{wp,W (S′) − k}yp


 − 8(W (S′) − k) (7.40)

≥ 2(W (S′) − k).

Here, inequality (7.38) follows since D is balanced, and hence for each
1 ≤ i ≤ �,

∑
p∈G(i)

AD
p ≥

 ∑
p∈G(i)

yp

 ≥ −1 +
∑

p∈G(i)

yp,

and by observing that G is good and hence
∑

p∈G(i) yp ≥ 3 for each
1 ≤ i ≤ � and thus

−1 +
∑

p∈G(i)

yp ≥ 2
3


 ∑

p∈G(i)

yp


 .

Inequality (7.39) follows since mi+1 − mi ≥ 0 for each 1 ≤ i ≤ �, and
since G is good, for each 1 ≤ i ≤ � we have that

∑
p∈G(i) yp ≤ 12. Finally,

inequality (7.40) follows by considering the knapsack cover inequality
for the set S′ and observing that yp = 15xp for each p ∈ S′:

�∑
i=1

∑
p∈G(i)

min{wp,W (S) − k}yp

=
∑
p∈S′

min{wp,W (S′) − k}15xp ≥ 15(W (S′) − k).

Lemma 7.14. As the solution y changes over time we can maintain
a good grouping G and a consistent distribution on balanced sets with
amortized cost at most a constant times the fractional cost.

Proof. The online fractional algorithm has the following dynamics.
After a page p is requested, variable yp can only increase (the page is
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gradually evicted). This process stops when page p is requested again
and yp is set to zero. Whenever yp changes, we need to modify the
distribution µ on balanced sets D to remain consistent. Moreover, a
change in yp may change the structure of the groups. This happens
if either the weight of G(i) exceeds 12, or if it falls below 3, or if yp

becomes 1 and leaves the group G(i) (recall that groups only contain
pages q with yq < 1). We view a change in yp as a sequence of steps
where yp changes by an infinitesimally small amount ε. Thus, at each
step exactly one of the following events happens.

Event 1 : Variable yp < 1 (of page p) increases or decreases by ε.
Event 2 : The weight of group G(i) reaches 12 units.
Event 3 : The weight of group G(i) drops to 3 units.
Event 4 : The value of yp for page p reaches 1 and p leaves the

set S(i).

We prove that in all cases the amortized cost of the online algorithm
is at most O(1) times the fractional cost. For amortization, we use the
following potential function:

Φ = 13
∑
p∈S′

yp + 11
�∑

i=1

∣∣∣∣∣∣6 −
∑

p∈G(i)

yp

∣∣∣∣∣∣ .
In each possible event, let Con be the total cost of the online algorithm.
Let Cf be the fractional cost, and let ∆Φ be the change in the potential
function. We show that in each of the events:

∆Con + ∆Φ ≤ 405∆Cf . (7.41)

Since Φ is always positive, this will imply the desired result.

Event 1 : Assume first that yp such that p ∈ G(i) is increased by ε. If
yp increases by ε it must be that xp is increased by at least ε/15. Thus,
in the fault model the fractional cost is at least ε/15.

To maintain consistency, we add p to ε measure of the sets D that do
not contain p. However, this might make some of these sets unbalanced
by violating (7.37). Suppose first that s = �∑p∈G(i) yp� does not change
when yp is increased by ε. In this case, we match the sets with s + 1
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pages in G(i) (the measure of these is at most ε) arbitrarily with sets
containing s − 1 pages, and transfer some page from the larger set
(that does not lie in the smaller set) to the smaller set. An analogous
argument works when s increases as yp is increased. Note that after
this step, the sets become balanced.

The total online cost is 3ε. Moreover, the potential change ∆Φ is at
most 13ε + 11ε = 24ε and hence (7.41) holds. An analogous argument
works if yp is decreased (in fact it is even easier since the potential only
decreases).

Event 2 : Consider an event in which the total weight of a group G(i)
reaches 12 units. In this case, we split G(i) into two sets such that
their weight is as close to 6 as possible. Suppose one set is of size
6 + x and the other is of size 6 − x where 0 ≤ x ≤ 1/2. Let Φ(s) and
Φ(e) denote the potential function before and after the change, respec-
tively. The contribution of the first term does not change. The second
term corresponding to G(i) initially is at least 11(12 − 6) = 66 and
the final contribution is 11(|6 − (6 − x)| + |6 − (6 + x)|) = 22x ≤ 11.
Thus, ∆Φ = Φ(e) − Φ(s) = 11 − 66 ≤ −55.

Next, we redistribute the pages in the original group G(i) among the
sets D such that they are balanced with respect to the two new groups.
Observe that in the worst case, each set D might need to remove all the
12 pages it previously had and bring in at most �6 + x� + �6 − x� ≤ 13
new pages. Thus, the total cost incurred is at most 25. Again, (7.41)
holds as the fractional cost Cf is 0 and the decrease in potential more
than offsets the cost Con.

Event 3 : Consider the event when the weight of a group G(i) decreases
to three units. If G(i) is the only group (i.e., � = 1) then all the prop-
erties of a good grouping still hold. Otherwise, we merge G(i) with one
of its neighbors (either G(i − 1) or G(i + 1)). If G(i) has a neighbor
with weight at most 9, then we merge G(i) with this neighbor. Note
that before the merge each balanced set D has exactly three pages
from G(i) and hence it also remains balanced after the merge. Also,
since |6 − 3| + |6 − x| ≥ |6 − (x + 3)| for all 3 ≤ x ≤ 9, the potential
function does not increase in this case. Thus, (7.41) holds trivially.
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Now suppose that all neighbors of G(i) have weight greater than 9.
Consider any such neighbor and let x > 9 be its weight. We merge G(i)
with this neighbor to obtain a group with weight 3 + x which lies in the
range (12,15]. Then, as in the handling of Event 2, we split this group
into two groups with as close weight as possible. Since the weight is at
most 15, the cost of balancing the sets D is at most 16 + 15 = 31 (using
an argument similar to that in Event 2). We now consider the change
in potential. The only change is due to second terms corresponding to
G(i) and its neighbor (the first term does not matter since the total
weight of pages in S′ does not change upon merging or splitting). Before
the merge, the contribution was 11 · 3 + 11 · (x − 6) = 11x − 33 ≥ 66.
After the merge (and the split), the maximum value of the potential
is obtained for the case when the size of the merged group is 15 which
upon splitting leads to sets of size 7 + y and 8 − y where y ≤ 0.5, in
which case its value is 11(1 + y + 2 − y) = 33. Thus, the potential func-
tion decreases by at least 33 while the online cost is at most 31, and
hence (7.41) holds.

Event 4 : Suppose some yp increases to 1 and exits the group G(i).
Note that if yp = 1, then all balanced sets D contain p. Thus, removing
p from G(i) keeps the sets balanced.

Let us first assume that the weight of G(i) does not fall below
3 when p is removed. In this case, the groups and the balanced sets
remain unchanged. Thus the online algorithm incurs zero cost. The first
term of the potential decreases by 13, and the second term increases
by at most 11, and hence (7.41) holds. Now consider the case when
the weight of G(i) falls below 3. We apply an argument similar to
that for Event 3. If G(i) can be merged with some neighbor without
its weight exceeding 12, then we do so. This merge may cause some
sets D to become unbalanced. However, this imbalance is no more
than one page and can be fixed by transferring one page from each
set to another, appropriately chosen, set. The total cost incurred in
this case is at most 2. We now consider the change in potential. The
first term decreases by 13. For the second term, the original group G(i)
contributes function 11(6 − (3 + x)) = 11(3 − x), with x < 1 and its
neighbor contributes 11(|6 − z|) where 3 ≤ z ≤ 9 is its weight. After the
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merge, the second term corresponding to the merged group contributes
11(|6 − (z + 2 + x)|) which is at most 11(|6 − z| + (2 + x)). Over-
all, ∆Φ ≤ −13 + 11(2 + x) − 11(3 − x) = 22x − 24 < −2. Thus (7.41)
holds.

If we need to split the merged set, we note that the above analysis,
showing that (7.41) holds, is also valid when 9 ≤ z ≤ 12. Next, when
this merged set is split, we can apply the analysis in Event 3, and then
the potential function decreases by at least 33 units, while the cost
incurred is at most 31, and hence (7.41) holds.

We conclude with the next theorem:

Theorem 7.15. There is an O(log k)-competitive algorithm for the
caching problem in the fault model.

7.5 Notes

The results in this chapter are based on the work of Bansal et al. [14,
15]. The weighted caching problem was studied in [14], while the more
general setting where pages have both sizes and fetching costs was
studied in [15]. Converting a fractional view to an actual view has
been considered previously by Bartal et al. [19] and Blum et al. [24].
Blum et al. [24] showed that for the unweighted caching problem it is
possible to convert online a fractional view to an actual view, such that
the expected cost incurred is at most twice the cost of the fractional
view.

The unweighted paging problem is very well understood. In their
seminal paper, Sleator and Tarjan [88] showed that any deterministic
algorithm is at least k-competitive, and also showed that LRU (least
recently used) is exactly k-competitive. They also considered the more
general (h,k)-paging problem where the online algorithm with cache
size k is compared against the offline algorithm with cache size h.
They showed that any deterministic algorithm is at least k/(k − h + 1)-
competitive, and that LRU is exactly k/(k − h + 1)-competitive. When
randomization is allowed, Fiat et al. [48] designed the randomized
marking algorithm which is 2Hk-competitive against an oblivious
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adversary. Hk denotes the kth harmonic number. They also showed that
any randomized algorithm is at least Hk-competitive. Subsequently,
McGeoch and Sleator [81] gave a matching Hk-competitive algorithm,
and Achlioptas et al. [1] gave another Hk-competitive algorithm which
is easier to state and analyze. For (h,k)-paging, Young [91] gave a
2 ln(k/(k − h))-competitive algorithm (ignoring lower order terms) and
showed that any algorithm is at least ln(k/(k − h))-competitive. There
has been extensive work on paging along several other directions, and
we refer the reader to the excellent book by Borodin and El-Yaniv [28]
for further details.

For weighted paging, a (tight) k-competitive deterministic algo-
rithm follows from the more general work of Chrobak et al. [40] on
the k-server problem in trees (see below). Subsequently, Young [92]
gave a tight k/(k − h + 1)-competitive deterministic algorithm for the
more general (h,k)-paging problem. The status of the randomized com-
petitiveness of the weighted paging problem remained open until it
was fully settled by Bansal et al. [14]. Irani [66] gave an O(log k)-
competitive algorithm for the two weight case, i.e. when each page
weight is either 1 or some fixed M > 1. Blum et al. [25] gave an
O(log2 k)-competitive algorithm for the case of n = k + 1 pages. Later,
Fiat and Mendel [50] gave an improved O(log k) competitive algorithm
for the case of n = k + c pages, where c is a constant. For large n,
however, no o(k)-competitive algorithm was known even for the case of
three distinct weights.

Paging can be viewed as a special case of the much more general
and challenging k-server problem. Suppose there are k-servers located
in an n-point metric space. The requests are given at the points of the
metric and they are served by moving a server to the requested point.
The goal is to minimize the overall distance traveled by the servers.
The unweighted paging problem is exactly the k-server problem on a
uniform metric space. The weighted paging problem is equivalent (up
to an additive constant) to the k-server problem on a star metric in
which the distance between any two pages a and b is (w(a) + w(b))/2,
where w(·) denotes the page weights.

The k-server problem has a fascinating history and substantial
progress has been made on deterministic algorithms for the problem.
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It is known that any deterministic algorithm must be at least k-
competitive on any metric space with more than k points. Fiat et al. [51]
gave the first algorithm for which the competitive ratio was only a func-
tion of k. Their algorithm was O((k!)3)-competitive. After a series of
results, a breakthrough was achieved by Koutsoupias and Papadim-
itriou [76] who gave an almost tight 2k − 1 competitive algorithm.
This is still the best known bound (for both deterministic and ran-
domized algorithms) for general metric spaces. A tight competitive
factor of k is known for certain special cases, e.g., for trees Chrobak
et al. [40]. We refer the reader to [28] for more details on the k-server
problem.

Nevertheless, randomized algorithms for the k-server problem
remain poorly understood. No lower bound better than ln k is known
for any metric space. Moreover, from the work of Bartal et al. [18]
and Bartal et al. [20], it follows that no metric space with more than k

points can admit an o(log k/ log log k)-competitive algorithm. A widely
believed conjecture is that O(log k)-competitive algorithms exist for
every metric space. In a breakthrough result, Bartal et al. [19] gave a
polylog(N) competitive algorithm for the metrical task system prob-
lem (see definitions in Section 6) that implies a polylog(k)-competitive
algorithm for the k-server on a space with k + c points, where c is a
constant independent of k. This guarantee was improved by Fiat and
Mendel [50] to O(log2 k log log k). However, for n much larger than k,
no algorithms with sublinear competitive ratio are known except for
very few special cases. Besides paging and weighted paging with two
weights, a polylogarithmic competitive algorithm is known for a spe-
cial subclass of certain well-separated spaces [87]. Csaba and Lodha [44]
gave an O(n2/3) competitive algorithm, which is o(k) competitive for
n = o(k3/2), for n uniformly spaced points on a line.2

Generalized caching where the page sizes are also non-uniform is
substantially harder. In contrast to uniform page size caching, even the
offline version of the problem is NP-hard, as it captures the knapsack

2 A generalization of this result was considered by Bartal and Mendel [21], who proposed a
∆1−εpolylogk competitive algorithm for bounded growth metrics with diameter ∆. Unfor-
tunately, their result seems to have a serious error [M. Mendel, personal communication].



192 Generalized Caching

problem as a special case.3 Following a sequence of results [2, 43, 65],
Bar-Noy et al. [16] gave a 4-approximation for the offline problem based
on the local-ratio technique. This is currently the best known approxi-
mation for (offline) generalized caching. For the online case, it is known
that LRU is (k + 1)-competitive for the bit model and also for the fault
model [65], where k denotes the ratio between cache size and the size
of the smallest page. Later on, Cao and Irani [35] and Young [94] gave
a (k + 1)-competitive algorithm for the general model based on a gen-
eralization of the greedy-dual algorithm of Young [92]. An alternate
proof of this result was obtained by Cohen and Kaplan [43]. When
randomization is allowed, Irani [65] designed an O(log2 k)-competitive
algorithm for both fault and bit models. These algorithms are very
complicated and are based on an approach combining offline algorithms
with the randomized marking algorithm. For the general model, no o(k)
randomized algorithms are known. There has been extensive work on
caching in other directions, and we refer the reader for further details
to the excellent book by Borodin and El-Yaniv [28] and to the survey
by Irani [64] on paging.

3 It remains NP-hard for the bit model. For the fault model, it is open whether the problem
is polynomially solvable [65].



8
Load Balancing on Unrelated Machines

In this section, we show how to use the online primal–dual approach to
design an optimal online algorithm for the problem of load balancing
on unrelated machines. In this setting, there is a set of m machines S =
{s1,s2, . . . ,sm} and a set of jobs R. There is a load p(i, j) associated with
each job ri ∈ R and machine sj ∈ S, corresponding to the processing
time of ri on sj . The load on each machine is defined to be the sum of
the processing times of the jobs that are assigned to the machine. Our
goal is to distribute the jobs between the m machines so as to minimize
the maximum load on a machine. In the online setting, the jobs arrive
one-by-one and need to be assigned to a machine upon arrival. The
assignment of a job to a machine is final and it cannot be changed at
a later point of time.

8.1 LP Formulation and Algorithm

The first idea we need is that of “guessing” the value of the optimum.
That is, our online algorithm is going to guess the value of the maximum
load Λ∗ on a machine in an optimal assignment of the jobs. This will

193



194 Load Balancing on Unrelated Machines

be done by starting from value α = minm
j=1{p(1, j)} and doubling the

guess whenever needed, until α ≥ Λ∗. We design an algorithm that
never assigns more than α · O(log m) units of load to any machine.
The algorithm guarantees success in assigning all jobs when it is given
a value α ≥ Λ∗. When the algorithm is given a value α < Λ∗ it may
fail. Each time the value of α is doubled we “forget” about all previous
assignments and run the online algorithm on the remaining jobs. Since
the assignments we forget about are bounded by a geometric sequence,
it is not hard to see that doubling can deteriorate the competitive ratio
by at most a multiplicative factor of 4.

Given a guess α, we define the normalized load of job ri on machine
sj to be p̃(i, j) = p(i, j)/α. Upon arrival of job j arrives we are going
to consider only machines for which p̃(i, j) ≤ 1. Assuming α ≥ Λ∗, the
job can only be processed by the optimal solution on such machines. If
there is no such machine then our guess of Λ∗ is certainly wrong and
the algorithm fails. Next, we formulate the problem as a packing linear
program. For each job ri, let S(ri) be the set of machines for which
p̃(i, j) ≤ 1. We have a variable y(i, j) indicating that job ri is assigned
to machine sj . The objective function is to maximize the number of
jobs assigned to the machines. The formulation appears as the dual
program (maximization) in Figure 8.1 along with its corresponding
primal program.

Let N = |R| be the number of jobs. The important observation is
that when we guess a value α ≥ Λ∗, then it is possible to assign all the
jobs to the machines without exceeding the load. This means that the
value of the optimal dual solution is exactly N and there is no primal
solution that has value strictly less than N . We are now ready to state
the algorithm:

Primal Dual
Minimize:

∑
sj∈S

x(j) +
∑

ri∈R
z(i) Maximize:

∑
ri∈R

∑
sj∈S(ri)

y(i, j)

subject to: subject to:
∀ri ∈ R, sj ∈ S(ri): p̃(i, j)x(j) + z(i) ≥ 1 ∀ri ∈ R:

∑
sj∈S(ri)

y(i, j) ≤ 1

∀sj ∈ S:
∑

ri∈R,sj∈S(ri)
p̃(i, j)y(i, j) ≤ 1

Fig. 8.1 A primal–dual pair for the load balancing problem on unrelated machines.
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Load balancing algorithm:

Initially: ∀j, x(j)← 1/(2m).
When a new job ri arrives:

(1) If there is no machine sj such that p̃(i, j) ≤ 1, or if there
exists a machine sj with x(j) > 1, return “failure”.

(2) Otherwise:

(a) Let s� ∈ S(ri) be a machine minimizing
p̃(i, �)x(�).

(b) Assign request ri to machine s�

(c) Set z(i)← 1 − p̃(i, �)x(�) and y(i, �)← 1.

(d) x(�)← x(�)(1 + p̃(i,�)
2 ).

Theorem 8.1. If there is a feasible dual solution that assigns all jobs,
then the algorithm assigns all jobs with normalized load O(log m).

Proof. To prove the theorem we prove the following claims:

(1) The load on each machine is at most O(log m).
(2) If the algorithm fails in line (1), then there is a feasible primal

solution whose value is strictly smaller than |R| = N .

Proof of (1): Note that the algorithm never assigns a job to a machine
sj with x(j) > 1 (otherwise, it already fails in line (1)). Also, the initial
value of x(j) is 1/2m and x(j) ≤ 3/2 always holds, since p̃(i, j) ≤ 1. Let
R(sj) be the set of jobs that the algorithm assigned to machine sj . We
thus have the following inequalities:

3
2
≥ x(j) ≥ 1

2m

∏
ri∈R(sj)

(
1 +

p̃(i, j)
2

)
≥ 1

2m

∏
ri∈R(sj)

(
3
2

)p̃(i,j)

=
1

2m
exp


ln

(
3
2

) ∑
ri∈R(sj)

p̃(i, j)


 .
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Simplifying, we get that:∑
ri∈R(sj)

p̃(i, j) ≤ ln(3m)
ln

(3
2

) = O(log m).

Note that this bound also holds in case of failure.

Proof of (2): First note that the algorithm produces a feasible primal
solution. This is true since we set, for each job ri, z(i)← 1 − p̃(i, �)x(�),
where s� is the machine minimizing the value p̃(i, �)x(�). Thus, we sat-
isfy all the new primal constraints that have arrived in the iteration of
job ri. Since the variables x(j) are monotonically non-decreasing, once
a constraint is satisfied in an iteration, it remains so in subsequent iter-
ations. Next, observe that whenever we assign job ri to machine sj the
change in the value of the primal objective function is

1 − p̃(i, �)x(�) +
p̃(i, �)x(�)

2
= 1 − p̃(i, �)x(�)

2
.

Note, however, that the change in x(�) due to the assignment of job ri

is exactly p̃(i, �)x(�)/2. Let x(j)init be the initial value of x(j) (which
is 1/2m). Thus, by this observation, at any time during the execution
of the algorithm the value of the primal objective function is

P =
m∑

j=1

x(j)init + N −
m∑

j=1

(x(j) − x(j)init)

= 2
m∑

j=1

x(j)init + N −
m∑

j=1

x(j) = 1 + N −
m∑

j=1

x(j),

where N is the number of jobs. Assume now that there exists some
variable x(j) > 1. This means that we have a primal solution with value
strictly less than N , meaning that there can be no dual solution with
value exactly N . We now have a certificate that α < Λ∗, concluding the
proof.

8.2 Notes

The results in this chapter are based on the work of Buchbinder and
Naor [34]. The algorithm described in this section and its analysis are
actually a primal–dual view of a previous algorithm by Aspnes et al. [8].
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Many load balancing models were studied in the literature. Per-
haps the simplest one is the identical machines model. There are m

identical machines and the input is n jobs arriving online, each hav-
ing a machine-independent load. An assignment of a job is final and
cannot be changed. For this model, Graham [61] proved that the sim-
ple greedy heuristic that assigns a job to the least loaded machine is
2 − 1/n-competitive. Another popular model is the restricted assign-
ment model. In this model, each job can be assigned only to a prespec-
ified subset of the machines (and not to all of them, as in the identical
machines model). For this model, [13] analyzed the performance of the
same greedy strategy, proving that it is Θ(log m)-competitive. More
refined performance measures of the greedy strategy were later studied
in [34, 58]. For further discussion of online load balancing in a variety
of models we refer the reader to [12].



9
Routing

In this section, we study network routing problems. We have already
discussed two simple routing algorithms and a primal–dual approach for
solving routing problems in Section 4.4.2. In this section, we will design
more complex routing algorithms, taking into account other objective
functions.

Consider a network modeled by a graph G = (V,E) (|V | = n,
|E| = m), which can either be directed or undirected. The edges in
the graph have capacities, denoted by u : E → N, providing an upper
bound on the sum of the flows of the routes that can be packed into an
edge. The set of routing requests is R and, for simplicity, each request
ri ∈ R is associated with a bandwidth demand of one unit1 between a
source vertex si and a target vertex ti. In order to serve a request ri

one should allocate bandwidth for the request on paths that connect
the source vertex si to the target vertex ti. There are several common
ways by which this can be done. The setting in which each request has
to be served via a single path is referred to as unsplittable routing. A
less restrictive setting in which each request can be served via multiple

1 The results in this section can be extended, with obvious limitations, to handle scenarios
in which requests have different bandwidth demands.
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routes is called splittable routing. We associate each request with a set
of allowed paths (routes) P(ri), capturing the fixed routes model, in
which requests can only be served via a unique given path, as a spe-
cial case. Let b(ri) be the sum of all bandwidth allocations assigned
to request ri on all paths P ∈ P(ri). The total bandwidth of a routing
solution is the total bandwidth allocated to all the requests. A feasible
routing solution is an allocation of bandwidth to requests that does
not violate any of the edge capacities. When the routing solution is
infeasible, the load on an edge is the total bandwidth allocated to it
divided by its capacity. The load of a routing solution is the maximum
load taken over all edges.

An important parameter that is used in our analysis is U , which is
defined to be the minimum value by which the capacities in the network
need to be multiplied so as to obtain a feasible splittable solution that
routes all requests. When routes are fixed, U reduces to the maximum,
taken over all edges, of the number of routes that pass through an edge,
divided by its capacity.

The issue of whether requests have to be fully served or not distin-
guishes between different routing models. All-or-nothing routing means
that a request has to be allocated a total bandwidth (splittable or
unsplittable) of one unit. Other models relax this requirement and
allow the routing algorithm to allocate requests less than one unit of
bandwidth.

Routing algorithms are designed to achieve several natural goals.
One goal is to maximize the utility of the network which is the total
bandwidth allocated to all requests. In a somewhat dual setting, the
routing algorithm is not allowed to reject any of the requests, in which
case the goal is to minimize the maximum load. Another important
routing goal is fairness. Fairness can be defined in more than one way,
however, a common notion of fairness is called max–min fairness. To
define a fair routing solution, we consider the bandwidth allocation to
the requests (b(ri) to request ri) as a vector in which the entries (allo-
cations) are sorted from small to large. This vector is called a band-
width vector. A max–min fair routing solution is then an allocation of
bandwidth to requests defining a lexicographically maximal bandwidth
vector. An intuitive way of viewing a max–min fair solution is that
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the bandwidth allocation to a request ri cannot be increased without
decreasing the bandwidth allocated to requests that have received no
more than the bandwidth allocated to ri.

An even more general fairness measure studied in the literature is
the notion of coordinate-wise competitive solution. A routing solution is
called γc-coordinate-wise competitive, if for every i, the ith coordinate
of the bandwidth vector is at least 1/γc times the ith coordinate in
any feasible routing solution. The beauty of this definition is that a γc-
coordinate-wise competitive routing approximates all possible routings.
In particular, it approximates the max–min fair routing, as well as
the routing solution that maximizes the total bandwidth allocated,
achieving in a sense a solution which is the “best of all worlds.”

Two parameters are of particular interest in routing problems. The
first one is the amount of bandwidth that the algorithm routes with
respect to an optimal routing, and the second one is the maximum load
on the edges. A (c1, c2)-competitive routing algorithm routes at least
1/c1 of the maximum possible bandwidth, while guaranteeing that the
load on each edge is at most c2. With this notation in mind we re-
examine the first algorithm in Section 4.4.2 and conclude that it is
(3,O(log n))-competitive. This algorithm is actually a bicriteria com-
petitive algorithm that routes a constant fraction of the optimal number
of requests while incurring a load of O(log n).

It turns out that getting a uni-criteria competitive algorithm (i.e.,
an (1,O(log n))-competitive algorithm) is a crucial non-trivial step for
getting better routing solutions for many routing goals.2 In particular,
we will show that given such an algorithm it is easy to design an algo-
rithm that achieves fair routing. A simple example shows that such a
result is optimal for an online algorithm. In addition, the generic algo-
rithm we design here generates an unsplittable all-or-nothing routing;
however, to allow the use of the algorithm in a wide variety of routing
models, its performance is compared to a splittable optimal routing
which is allowed to allocate to each request (total) bandwidth of at

2 Note that we can easily transform a (c1, c2)-competitive algorithm to a (c1 · c2,1)-
competitive algorithm by scaling down all allocated bandwidth. However, obtaining a
(1, c1 · c2)-competitive factor is not as easy, since requests can only be allocated band-
width of at most 1.
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most 1. It turns out that this stronger performance allows the use of
the generic algorithm as a “building block” for the design of online
routing solutions for several models and objectives, yielding improved
bounds. Here we will only show one such application for getting a fair
routing.

9.1 A Generic Routing Algorithm

In this section, we design a generic online routing algorithm which
is based on the primal–dual approach. The algorithm generates in
an online fashion an unsplittable all-or-nothing routing which is
(1,O(log n))-competitive with respect to all splittable routings. To this
end, maintaining a single primal solution is not sufficient, leading us to
the simultaneous maintainance of several primal solutions that will be
used throughout for making clever routing decisions. We will use the
same primal–dual pair that was used in Section 4.4.2, see Figure 9.1
(same as Figure 4.2).

The algorithm decomposes the graph G = (V,E) into graphs
G0,G1, . . . ,Gk. For each j, the vertex set of Gj is V . The edges of
Gj are all the edges of G having capacity at least mj . The capacity
of each edge in the jth copy, Gj , is set to u(e,j)← min{u(e),mj+2}.
Let Gk be the last copy of the graph which is non-empty (i.e., the
maximum capacity in G, u(max) ≤mk). The algorithm maintains
a primal solution in each copy of the graph. We denote by x(e,j)
and z(ri, j) the primal variables corresponding to the jth copy. Let
u(min, j) be the minimal edge capacity in the jth copy (which is at
least mj).

Primal Dual
Minimize:

∑
e∈E u(e)x(e) +

∑
ri

z(ri) Maximize:
∑

ri

∑
P∈P(ri)

f(ri,P )
subject to: subject to:
∀ri ∈ R,P ∈ P(ri):

∑
e∈P x(e) + z(ri) ≥ 1 ∀ri ∈ R:

∑
P∈P(ri)

f(ri,P ) ≤ 1
∀e ∈ E:

∑
ri∈R,P∈P(ri)|e∈P f(ri,P ) ≤ u(e)

∀ri,z(ri) ≥ 0, ∀e,x(e) ≥ 0 ∀ri,P : f(ri,P ) ≥ 0

Fig. 9.1 The splittable routing problem (maximization) and its corresponding primal
problem.
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Routing algorithm:

Initially, ∀j: x(e,j)← u(min, j)/m · u(e,j).
When new request ri = (si, ti,P(ri)) arrives:

(1) Consider all copies of G from Gk to G0. In each copy Gj :

(a) Let P (ri, j) ∈ P(ri, j) be the shortest path with
respect to x(e,j) and let α be the length of
P (ri, j).

(b) If α < 1:

(i) Route the request on P (ri, j).
(ii) For each edge e in P (ri, j):

x(e,j)← x(e,j)(1 + 1/u(e,j)).
(iii) z(ri, j)← 1 − α.

(c) Else (α > 1):

(i) If the total bandwidth routed in this step
in Gj is less than u(min, j), and the cur-
rent request can be routed in Gj , route
the request in an arbitrary feasible path
P ∈ P(ri, j).

(d) If the request is routed — finish.

(2) Reject requests that got rejected from all copies.

The following claims are used for analyzing the algorithm.

Lemma 9.1. Let Nj be the total number of requests that are intro-
duced to the jth copy. Let M be the maximum total bandwidth of
any feasible splittable routing in Gj (out of Nj). Then, the algorithm
accepts at least M requests in Gj , and the load on each edge in Gj is
O(log n).

Proof. First, observe that when the algorithm decides to route a request
in step (1b), the total primal value maintained in the jth copy increases
by (1 − α) +

∑
e∈P (ri,j) x(e,j) = 1. When a request is rejected from



9.1 A Generic Routing Algorithm 203

the jth copy, the primal value in the jth copy does not change. Second,
observe that the primal solution maintained in each copy is feasible with
respect to the requests introduced to this copy. This follows, since, if
the shortest path in P(ri, j) is already at least 1, the constraints of the
new request are all satisfied. If the shortest path is of length α < 1, then
the algorithm updates z(ri, j) to be 1 − α to make the current new set
of constraints feasible. All previous constraints remain feasible. Finally,
note that initially the total primal value in the jth copy is

∑
e∈E

u(e,j)
u(min, j)
m · u(e,j)

= u(min, j).

Assume to the contrary that the algorithm routes in step (1b) a
total bandwidth M ′ < M − u(min, j). This immediately implies that
we have a feasible primal solution of value strictly less than M −
u(min, j) + u(min, j) = M , contradicting the fact that we have a fea-
sible dual solution of value M (out of Nj). This means that M −M ′

is at most u(min, j) and thus, at least M −M ′ (or zero, if this value
is negative) are routed in Gj in step (1c), proving the first part of the
claim.

We next prove the second part of the claim. The initial value of
each x(e,j) is u(min, j)/m · u(e,j). Each time a new request is routed
on edge e in step (1b), x(e,j) is multiplied by 1 + 1/u(e,j) ≤ 2. The
algorithm never routes requests in step (1b) on edges with x(e,j) > 1,
thus, x(e,j) ≤ 2. Let R(e) be the set of requests that are routed on an
edge e. We get that:

u(min, j)
m · u(e,j)

exp


 ln 2

u(e,j)

∑
ri∈R(e)

1


 =

u(min)
m · u(e,j)

∏
ri∈R(e)

21/u(e,j)

≤ u(min, j)
m · u(e,j)

∏
ri∈R(e)

(
1 +

1
u(e,j)

)

≤ 2.

Simplifying, the total bandwidth that the algorithm routes on edge
e in step (c) is u(e,j)O(log(m · u(e,j)/u(min, j))). Since u(e,j) ≤
m2u(min, j), the latter expression is equal to u(e,j)O(log n). The total
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bandwidth that the algorithm routes on edge e in the jth copy in step
(d) is at most u(min, j), thus completing the proof.

Theorem 9.2. The routing algorithm is (1,O(log n))-competitive with
respect to all splittable routing solutions.

Proof. Let M be the maximum bandwidth that can be routed split-
tably in G (without violating the constraints). The solution that routes
bandwidth of M can be decomposed into routing paths P ∗

1 ,P ∗
2 , . . . ,P ∗

� ,
and let b∗

1, b
∗
2, . . . , b

∗
� be the bandwidth allocated to each of the paths.

Note that each request can be served via multiple routes and get a total
bandwidth in the interval [0,1].

We start by proving that the total bandwidth that the algo-
rithm routes is at least M . For each of the � routing paths, let
wj ← mine∈P ∗

j
u(e), i.e., wj is the minimum capacity used in path P ∗

j .
We partition the paths into separate groups M0,M1, . . . ,Mk. Group Mi

consists of all paths for which mi ≤ wj ≤mi+1. Let |Mi| be the total
bandwidth of all paths in Mi. Note that

∑k
i=1 |Mi| = M . We prove by

backward induction that the total bandwidth allocated by the algo-
rithm in levels Gj to Gk is at least |Mj | + |Mj+1| + · · · + |Mk|. There-
fore, the total bandwidth that the algorithm allocates in levels G0 to
Gk is at least M .

Induction basis: For j = k, the graph Gk consists of edges with capacity
at least mk. In this graph, the capacities of the edges are the same as
their capacities in the graph G. Group Mk consists of paths in which
the minimum capacity is at least mk. Thus, all the paths in Mk also
exist in the graph Gk. By Lemma 9.1, the algorithm routes a total
bandwidth of at least |Mk| out of N (all the requests).

Inductive step: Let Gj be any level j < k. Let M ′
j+1,M

′
j+2, . . . ,M

′
k be the

groups of requests that were routed by the algorithm in Gj+1, . . . ,Gk.
By the inductive hypothesis, |M ′

j+1| + |M ′
j+2| + · · · + |M ′

k| ≥ |Mj+1| +
|Mj+2| + · · · + |Mk|.

We consider the set of paths S in (Mj ∪Mj+1 ∪ ·· · ∪Mk) that do
not belong to requests that are routed in Gk,Gk−1, . . . ,Gj+1. Let |S| be
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the total bandwidth allocated by the feasible solution on these paths.
These paths all belong to requests that are given to the graph Gj (i.e.,
counted as part of Nj). We claim that it is possible to route in Gj

a total bandwidth of at least min{|Mj |, |S|} out of the requests that
are given to the algorithm in level j. In order to prove this, we prove
that if we take any part of the total flow of the paths in S with total
bandwidth of at most |Mj |, it is possible to route this flow on the graph
Gj without violating capacities.

Set S consists of paths in groups of at least Mj , thus each path
P ∗

j ∈ S contains only edges with capacity at least mj . Gj contains all
the edges whose capacity is at least mj , so the path P ∗

j exists in the
graph Gj . Each path in Mj also contains an edge with capacity at most
mj+1. This means that the total bandwidth allocated by the feasible
solution on all paths that belong to Mj is at most mj+2. The capacity
of the edges in Gj is restricted to min{u(e),mj+2}. Thus, if we take
part of the total flow of the paths in S with a total bandwidth of at
most |Mj | ≤mj+2, it is possible to route this flow on the graph Gj

without violating the capacities.
By the above claim and Lemma 9.1, the total bandwidth

of requests that are routed in Gj is at least min{|Mj |, |S|}.
If |S| ≥ |Mj |, then a total bandwidth of at least |Mj | will be
routed in Gj , and since |M ′

j+1| + |M ′
j+2| + · · · + |M ′

k| ≥ |Mj+1| +
|Mj+2| + · · · + |Mk| the induction hypothesis holds. If |S| < |Mj |, then
bandwidth of at least |S| ≥ (|Mj | + |Mj+1| + · · · + |Mk|) − (|M ′

j+1| +
|M ′

j+2|+ · · ·+ |M ′
k|) will be routed in Gj , and the induction hypothesis

holds again.
To prove the second part of the theorem consider an edge e with

capacity mj ≤ u(e) < mj+1. Its capacity in levels � > j is zero. There-
fore, no requests are routed through e in G� for � > j. The capacity
of e in levels j,j − 1, j − 2 is u(e) and in levels j − 3, j − 2, . . . ,0 the
capacity drops to mj−1,mj−2, . . . ,m2. Thus, the total capacity of the
copies of edge e in all levels is at most four times its capacity. In each
level Gj , the ratio between the maximum and minimum capacity of the
edges is at most m2. Thus, the total bandwidth of the requests that
are routed on edge e in each level is at most u(e,j)O(log n). Therefore,
the total number of requests routed on edge e in all levels is at most



206 Routing

O(log n) times the sum of the capacities of e in all levels, which remains
O(log n) times the capacity of edge e in G.

9.2 Achieving Coordinate-Wise Competitive Allocation

We now show how the generic routing algorithm can be used for achiev-
ing a fair allocation. We design an almost optimal online algorithm
for achieving a coordinate-wise routing solution. In this setting, the
algorithm should output an unsplittable routing and assign bandwidth
b ∈ [0,1] to each request. We design an O(1/ε log n log U(log log U)1+ε)-
competitive algorithm for any ε > 0 and prove an almost matching
lower bound of Ω(log n log U + log U log log U) even when splittable
routing is allowed. The algorithm is quite simple. It considers copies of
the graph referred to as levels. In levels � = 0,1,2, . . . we multiply all
edge capacities by 2�.

Algorithm: When a request ri = (si, ti,P(ri)) arrives:

(1) Run the generic routing algorithm on levels � = 0,1,2, . . .

(2) Route the request in the lowest level � in which the algo-
rithm accepts the request.

(3) Assign the request bandwidth of (ε/(c log n2�(1 + �)
(H(1 + �))1+ε)) where c is a constant and H(·) is the
harmonic number.

Theorem 9.3. The algorithm is O(1/(ε logn logU(log logU)1+ε))-
coordinate-wise competitive.

We first prove a useful lemma that will help us in the analysis:

Lemma 9.4. If it is possible to route M (out of N) requests in a
splittable way when multiplying the capacities of the edges in G by 2k,
then the following holds:

• The algorithm routes at least M requests using levels 1 to k.
• The total number of requests that are routed on edge e in

level k is at most 2ku(e)O(log n).
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Proof. Let M ′ be the group of requests that are routed in levels 1 to
k − 1. If |M ′| ≥ |M |, then we are done. Otherwise, it is possible to
route in level k a total bandwidth of at least |M | − |M ′| out of the
requests that are rejected by levels 1 to k − 1. Thus, by Theorem 9.2,
the algorithm routes at least |M | − |M ′| requests in level k, and we are
done. The second claim is immediate from Theorem 9.2.

Proof [of Theorem 9.3]. To prove that the algorithm is γc-coordinate-
wise competitive, we need to show that the value of any coordinate in
the bandwidth vector of the solution we generate is at least 1/γc of this
coordinate in any other feasible solution. Consider the ith coordinate
of the bandwidth vector, i.e., the ith “poorest” request. We need to
show that if there exists a solution that assigns the ith coordinate
bandwidth b, then our algorithm assigns to at least N − i + 1 requests
bandwidth b · Ω(ε/(log m log U(log log U)1+ε)). Now, if there exists a
feasible solution that assigns bandwidth b to the ith coordinate, then
it must assign bandwidth at least b to at least N − i + 1 coordinates.
This means that there exists a feasible solution that routes at least
N − i + 1 requests when multiplying the capacities in the graph G by
1/b. Thus, by Lemma 9.4, at least N − i + 1 requests will be routed
in the first k levels where 2k ≤ 2/b. All these requests are, therefore,
assigned bandwidth at least

b · ε
2c log m(1 + k)(H(1 + k))1+ε

= b · Ω
(

ε

log m log U(log log U)1+ε

)
.

The last equality follows since, by Lemma 9.4 and the definition of U ,
all the requests will be routed until level k, such that 2k ≤ 2U .

It is left to prove that the algorithm does not violate the capacity
of any of the edges. By Lemma 9.4, the number of requests routed on
an edge e in level k is at most 2ku(e)O(log n). Thus, when we choose
a large enough constant c, the total bandwidth assigned to each edge
e is at most:

∞∑
j=0

2j · u(e)O(log n)
ε

c log n2j(1 + j)(H(1 + j))1+ε

≤ u(e)
c′

∞∑
j=1

ε

j(H(j))1+ε
≤ u(e).
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Lower bounds: In [59], a lower bound of (approximately) Ω(log n +
log U log log U) was proved. We improve on this lower bound obtaining
an almost matching lower bound for the problem.

Lemma 9.5. Any deterministic algorithm (splittable or unsplittable)
is Ω(log n log U)-coordinate-wise competitive.

Proof. Let G = (V,E) be a directed line with n nodes. Assume without
loss of generality that n is a power of 2. The first U requests are going to
be routed either from node 1 towards node n/2, or from node n/2 + 1
towards node n. To generate such requests, the graph also contains a
source node and a sink node: there are outgoing edges from the source
to nodes 1 and n/2 + 1, and incoming edges to the sink from nodes
n/2 and n.

After the first U requests, the adversary continues to generate
requests, either in the left half of the line or the right half, depending
on which half contains more than half of the bandwidth. For instance,
if it is the left half, then the adversary introduces U new requests that
can be routed either from node 1 to node n/4 or from node n/4 + 1
to node n/2. The adversary continues on with this strategy for log n

rounds. We note that only O(n) new source/sink nodes are added to
the graph while generating the requests.

Next, consider an optimal solution that routes at most U requests
on each edge. With this choice of paths there is a feasible bandwidth
allocation that allocates log n requests with bandwidth 1. There is also
a feasible solution that allocates bandwidth 1/2 to 2log n requests. In
general, there is a feasible solution that allocates bandwidth of value
1/i to i log n requests, where 1 ≤ i ≤ U . This means that an algorithm
which is γc coordinate-wise competitive must allocate bandwidth of
more than 1/γc to at least log n requests. In general, for any 1 ≤ i ≤ U ,
the algorithm must give bandwidth at least 1/iγc to at least i log n

requests. By this observation, the total bandwidth allocated by any
γc-coordinate-wise online algorithm must be at least

U∑
i=1

log n

iγc
≥ log n log U

γc
.
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By the adversary’s strategy, there exists an edge such that at least
half of the total bandwidth is routed on it. Since the total bandwidth
allocated to this edge is at most 1, we get that

γc ≥ log n log U

2
= Ω(log n log U).

9.3 Notes

The results in this chapter are based on the work of Buchbinder and
Naor [33]. In this work, several routing algorithms (achieving various
routing goals in several models) are designed using the generic algo-
rithm. Other models studied in [33] are, for example, the fixed routes
model and a model in which the algorithm is allowed to allocate weights
to requests instead of actual bandwidths (see [33]).

Routing algorithms have been studied extensively in the literature.
In [8, 11], two different (but similar in spirit) online routing algo-
rithms were suggested. The objective in [11] is maximizing the total
throughput, while the algorithm in [8] minimizes the load. Both of these
algorithms can be recast within the primal–dual framework (see [33]).

The notion of all-or-nothing routing was defined in [39]. The elegant
notion of max–min fairness was considered in many settings [23, 67].
The general framework of prefix and coordinate-wise competitiveness
was suggested in [74]. More properties of these measures (in the offline
case) were studied later on in [57, 77]. Goel et al. [59] studied the prob-
lem of achieving coordinate-wise competitiveness online. They designed
an algorithm which is O(1(ε log2 n(logU)1+ε))-coordinate-wise compet-
itive for any ε > 0. In a more relaxed setting where the algorithm is
allowed to assign weights instead of allocating bandwidth directly, Goel
et al. [59] designed an algorithm which is O(log2 n log U)-coordinate-
wise competitive.



10
Maximizing Ad-Auctions Revenue

Maximizing the revenue of a seller in an online auction has recently
received much attention and studied in many models and settings.
In particular, the way search engine companies such as Microsoft,
Google, and Yahoo! maximize their revenue out of selling ad-auctions
has been studied extensively. In the search engine environment, adver-
tisers link their ads to (search) keywords and provide a bid on the
amount paid each time a user clicks on their ad. When users send
queries to search engines, along with the (algorithmic) search results
returned for each query, the search engine displays funded ads cor-
responding to ad-auctions. The ads are instantly sold, or allocated,
to interested advertisers (buyers). The total revenue out of this fast
growing market is currently billions of dollars. Thus, algorithmic ideas
that can improve the allocation of ads, even by a small percentage, are
crucial.

The ad-auctions problem is modeled as a generalization of the online
bipartite matching problem. There is a set I of n buyers, each buyer
i (1 ≤ i ≤ n) has a known daily budget of B(i). There is a set M of
items of size m. In the online setting, the items arrive one-by-one and

210
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upon arrival of item j, 1 ≤ j ≤m, each buyer provides a bid b(i, j) for
buying it. The online algorithm can allocate (or sell) the item to any
one of the buyers. We distinguish between integral and fractional allo-
cations. In an integral allocation, an item can only be allocated to a
single buyer. In a fractional allocation, items can be fractionally allo-
cated to several buyers; however, for each item the sum of the fractions
allocated to buyers cannot exceed 1. The revenue received from each
buyer is defined to be the minimum between the sum of the bids of the
items allocated to a buyer (times the fraction allocated) and the total
budget of the buyer. That is, buyers can never be charged by more than
their total budget. The objective is to maximize the total revenue of
the seller. Let Rmax = maxi∈I,j∈M{b(i, j)/B(i)} be the maximum ratio
between a bid of any buyer and his total budget.

A linear programming formulation of the fractional (offline) ad-
auctions problem appears in Figure 10.1. Let y(i, j) denote the fraction
of item j allocated to buyer i. The objective function is maximizing the
total revenue. The first set of constraints guarantees that an item is not
allocated (fractionally) more than once, i.e., the sum of the fractions
of each item is at most 1. The second set of constraints guarantees
that each buyer does not spend more than his budget. In the primal
problem there is a variable x(i) for each buyer i, a variable z(j) for
each item j, and the constraint b(i, j)x(i) + z(j) ≥ b(i, j) needs to be
satisfied.

10.1 The Basic Algorithm

The basic algorithm for the online ad-auctions problem generates
primal and dual solutions to the linear program of Figure 10.1.

Dual (Packing) Primal (Covering)
maximize:

∑m
j=1

∑n
i=1 b(i, j)y(i, j) minimize :

∑n
i=1 B(i)x(i) +

∑m
j=1 z(j)

subject to: subject to:
∀1 ≤ j ≤ m:

∑n
i=1 y(i, j) ≤ 1 For each (i, j): b(i, j)x(i) + z(j) ≥ b(i, j)

∀1 ≤ i ≤ n:
∑m

j=1 b(i, j)y(i, j) ≤ B(i) ∀i, j: x(i),z(j) ≥ 0
∀i, j: y(i, j) ≥ 0

Fig. 10.1 The fractional ad-auctions problem (dual) and the corresponding primal problem.
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Allocation algorithm:

• Initially, for each buyer i, x(i)← 0.
• Upon arrival of new item j, allocate it to buyer i maxi-

mizing b(i, j)(1 − x(i)).
• If x(i) ≥ 1, then do nothing. Otherwise:

(1) Charge the buyer the minimum between b(i, j)
and his remaining budget and set y(i, j)← 1

(2) z(j)← b(i, j)(1 − x(i)).

(3) x(i)← x(i)(1 + b(i, j)/B(i)) +
b(i, j)/((c − 1) · B(i)) (c is determined later).

Theorem 10.1. The allocation algorithm is (1 − 1/c)(1 − Rmax)-
competitive, where c = (1 + Rmax)1/Rmax . When Rmax→ 0, the com-
petitive ratio tends to (1 − 1/e).

Proof. Let P and D denote the values of the primal and dual solutions
during the execution of the algorithm. We prove three simple claims:

(1) The algorithm produces a primal feasible solution.
(2) In each iteration, ∆P ≤ (1 + 1/(c − 1)) · ∆D, where ∆P and

∆D are the changes to the values of the primal and dual
objective functions.

(3) The algorithm produces an almost feasible dual solution.

Proof of (1): Consider a primal constraint corresponding to buyer i and
item j. If x(i) ≥ 1 then the primal constraint is satisfied. Otherwise, the
algorithm allocates the item to the buyer i′ for which b(i′, j)(1 − x(i′))
is maximized. Setting z(j) = b(i′, j)(1 − x(i′)) guarantees that the con-
straint is satisfied for all (i, j). Subsequent increases of the variables
x(i)’s cannot make the solution infeasible.

Proof of (2): Whenever the algorithm updates the primal and dual
solutions, the change in the dual profit is b(i, j). (Note that even if the
remaining budget of buyer i, to whom item j is allocated, is less than
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his bid b(i, j), variable y(i, j) is still set to 1.) The change in the primal
cost is

B(i)∆x(i) + z(j) =
(

b(i, j)x(i) +
b(i, j)
c − 1

)
+ b(i, j)(1 − x(i))

= b(i, j)
(

1 +
1

c − 1

)
.

Proof of (3): The algorithm never updates the dual solution for
buyers satisfying x(i) ≥ 1. We prove that for any buyer i, when∑

j∈M b(i, j)y(i, j) ≥ B(i), then x(i) ≥ 1. This is done by proving that:

x(i) ≥ 1
c − 1

(
c

∑
j∈M b(i,j)y(i,j)

B(i) − 1
)

. (10.1)

Thus, whenever
∑

j∈M b(i, j)y(i, j) ≥ B(i), we get that x(i) ≥ 1. We
prove (10.1) by induction on the (relevant) iterations of the algorithm.
Initially, this assumption is trivially true. We are only concerned with
iterations in which an item, say k, is sold to buyer i. In such an iteration
we get that:

x(i)end = x(i)start

(
1 +

b(i,k)
B(i)

)
+

b(i,k)
(c − 1)B(i)

≥ 1
c − 1

[
c

∑
j∈M\{k} b(i,j)y(i,j)

B(i) − 1
](

1 +
b(i,k)
B(i)

)
+

b(i,k)
(c − 1) · B(i)

=
1

c − 1

[
c

∑
j∈M\{k} b(i,j)y(i,j)

B(i)

(
1 +

b(i,k)
B(i)

)
− 1

]

≥ 1
c − 1

[
c

∑
j∈M\{k} b(i,j)y(i,j)

B(i) c

(
b(i,k)
B(i)

)
− 1

]

=
1

c − 1

[
c

∑
j∈M b(i,j)y(i,j)

B(i) − 1
]
.

The second inequality follows from the induction hypothesis, and
the one before last inequality follows since, for any 0 ≤ x ≤ y ≤ 1,
ln(1 + x)/x ≥ ln(1 + y)/y. Note that when b(i,k)/B(i) = Rmax the lat-
ter inequality holds with equality. This is why we set the value of c to be
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(1 + Rmax)
1

Rmax . Thus, it follows that whenever the sum of charges to
a buyer exceeds his budget, we stop charging this buyer. Hence, there
can be at most one iteration in which a buyer is charged by less than
b(i, j). Therefore, for each buyer i:

∑
j∈M

b(i, j)y(i, j) ≤ B(i) + max
j∈M
{b(i, j)},

and thus the profit extracted from buyer i is at least:
∑

j∈M

b(i, j)y(i, j)


 B(i)

B(i) + maxj∈M{b(i, j)}

≥

∑

j∈M

b(i, j)y(i, j)


(1 − Rmax).

By the second claim the dual value is at least 1 − 1/c times the primal
value, and thus (by weak duality) we conclude that the competitive
ratio of the algorithm is (1 − 1/c)(1 − Rmax).

10.2 Multiple Slots: The Role of Strong Duality

In this section, we consider a more general ad-auctions model in which
there are several advertisement slots available. We show how to extend
the allocation algorithm in a very elegant way using strong duality.
Suppose there are � slots to which ad-auctions can be allocated and
suppose that buyers are allowed to provide bids on keywords which are
slot-dependent. Denote the bid of buyer i on keyword j and slot k by
b(i, j,k). The restriction is that an (integral) allocation of a keyword
to two different slots cannot be sold to the same buyer. The linear
programming formulation of the problem appears in Figure 10.2. We
are going to solve a maximum weight matching problem in a bipartite
graph for each new keyword that appears. Our analysis of the compet-
itive factor crucially relies on strong duality, i.e., the value of a max-
imum weight (integral) matching is equal to the value of an optimal
primal solution. This, in a sense, allows us to extend the analysis of
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Dual (Packing)

maximize:
∑m

j=1
∑n

i=1
∑k

�=1 b(i, j, �)y(i, j, �)

subject to:

∀1 ≤ j ≤ m, 1 ≤ k ≤ �:
∑n

i=1 y(i, j,k) ≤ 1

∀1 ≤ i ≤ n:
∑m

j=1
∑�

k=1 b(i, j,k)y(i, j,k) ≤ B(i)

∀1 ≤ j ≤ m,1 ≤ i ≤ n:
∑�

k=1 y(i, j,k) ≤ 1

Primal (Covering)

minimize :
∑n

i=1 B(i)x(i) +
∑m

j=1
∑�

k=1 z(j,k) +
∑n

i=1
∑m

j=1 s(i, j)
subject to:
∀i, j,k: b(i, j,k)x(i) + z(j,k) + s(i, j) ≥ b(i, j,k)

Fig. 10.2 The fractional multi-slot problem (dual) and the corresponding primal problem.

the single slot case to the multiple slot case in an almost “black box”
fashion.

The algorithm for the online ad-auctions problem is as follows. Note
that the algorithm does not update the variables z(·) and s(·) explicitly.
These variables are only used for the purpose of analysis.

Allocation algorithm:

• Initially, for each buyer i, x(i)← 0.
• Upon arrival of a new item j:

(1) Generate a bipartite graph H: n buyers on one
side and � slots on the other side. Edge (i,k) ∈ H

has weight b(i, j,k)(1 − x(i)).

(2) Find a maximum weight (integral) matching in
H, i.e., an assignment to the variables y(i, j,k).

(3) Charge buyer i the minimum between∑�
k=1 b(i, j,k)y(i, j,k) and his remaining budget.

(4) For each buyer i, if there exists slot k for which
y(i, j,k) > 0, then:

x(i)← x(i)
(

1 +
b(i, j,k)y(i, j,k)

B(i)

)
+

b(i, j,k)y(i, j,k)
(c − 1)B(i)

.
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Theorem 10.2. The algorithm is (1 − 1/c)(1 − Rmax)-competitive,
where c tends to e when Rmax→ 0.

Proof. We prove three simple claims:

(1) The algorithm produces a primal feasible solution.
(2) In each iteration, ∆P ≤ (1 + 1/(c − 1)) · ∆D.
(3) The algorithm produces an almost feasible dual solution.

To prove the claims, we crucially use strong duality. The value of a
maximum weight (integral) matching in H is equal to the value of an
optimal primal solution. The primal and dual linear programs for the
maximum weight matching problem appear in Figure 10.3. Note that
in the dual problem, x(i), 1 ≤ i ≤ n, is now a constant. Further, note
that the primal variables are actually the same as the primal variables
of the multiple-slot problem (see Figure 10.2). By strong duality, the
maximum weight matching algorithm outputs optimal primal and dual
solutions satisfying:

n∑
i=1

�∑
k=1

b(i, j,k)(1 − x(i))y(i, j,k) =
n∑

i=1

s(i, j) +
�∑

k=1

z(j,k).

Proof of (1): Recall that the primal constraint of the multiple-slot prob-
lem for buyer i, item j, and slot k (see Figure 10.2) is

∀i, j,k : b(i, j,k)x(i) + z(j,k) + s(i, j) ≥ b(i, j,k).

Since z(j,k) + s(i, j) ≥ b(i, j,k)((1 − x(i)), the above constraint is
satisfied.

Dual (Packing) Primal (Covering)

maximize:
∑n

i=1
∑�

k=1 b(i, j,k)(1 − x(i))y(i, j,k) minimize :
∑n

i=1 s(i, j) +
∑�

k=1 z(j,k)
subject to: subject to:
∀1 ≤ k ≤ �:

∑n
i=1 y(i, j,k) ≤ 1 ∀(i,k): s(i, j) + z(j,k) ≥ b(i, j,k)(1 − x(i))

∀1 ≤ i ≤ n:
∑�

k=1 y(i, j,k) ≤ 1 ∀i,k: s(i, j),z(j,k) ≥ 0
∀i,k: y(i, j,k) ≥ 0

Fig. 10.3 The maximum weight matching problem for item j.
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Proof of (2): Upon arrival of the jth item:

∆P =
n∑

i=1

z(j, i) +
�∑

k=1

s(j, i) +
n∑

i=1

B(i)∆x(i)

=
n∑

i=1

�∑
k=1

b(i, j,k)(1 − x(i))y(i, j,k)

+
n∑

i=1

�∑
k=1

B(i)
(

b(i, j,k)x(i)y(i, j,k)
B(i)

+
b(i, j,k)y(i, j,k)
(c − 1) · B(i)

)

=
n∑

i=1

�∑
k=1

b(i, j,k)y(i, j,k)
(

1 +
1

c − 1

)
.

Since ∆D =
∑n

i=1
∑�

k=1 b(i, j,k)y(i, j,k), the claim follows.

Proof of (3): The algorithm never updates the dual solution for
buyers satisfying x(i) ≥ 1. We prove that for any buyer i, when∑m

j=1
∑�

k=1 b(i, j,k)y(i, j,k) ≥ B(i), then x(i) ≥ 1. This is done by
showing that

x(i) ≥ 1
c − 1

(
c

∑m
j=1

∑�
k=1 b(i,j,k)y(i,j,k)

B(i) − 1

)
. (10.2)

Thus, whenever
∑m

j=1
∑�

k=1 b(i, j,k)y(i, j,k) ≥ B(i), we get that
x(i) ≥ 1. We prove (10.2) by induction on the (relevant) iterations of
the algorithm. Initially, it is trivially true. We are only concerned about
iterations in which the kth slot of item j is sold to buyer i. The proof is
the same as the proof of Theorem 10.1 in the basic case and we omit it.

It follows from the above that whenever the sum of the charges to
a buyer exceeds his budget, we stop charging this buyer. Thus, there
can be at most one iteration in which we charge the buyer by less than
b(i, j,k). Therefore, for each buyer i:

∑
j∈M

�∑
k=1

b(i, j,k)y(i, j,k) ≤ B(i) + max
j∈M,k

{b(i, j,k)},
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and thus the profit extracted from buyer i is at least:
∑

j∈M

b(i, j,k)y(i, j,k)


 B(i)

B(i) + maxj∈M,k{b(i, j,k)}

≥

∑

j∈M

�∑
k=1

b(i, j,k)y(i, j,k)


(1 − Rmax).

By the second claim, the value of the dual is at least 1 − 1/c times the
value of the primal, and thus we conclude that the competitive ratio of
the algorithm is (1 − 1/c)(1 − Rmax).

10.3 Incorporating Stochastic information

Can the worst-case bound shown in the previous sections on the com-
petitive factor be improved under certain (mild) stochastic assump-
tions? Let us assume that either stochastically, or in accordance with
historical data, we know that a bidder is likely to spend a good frac-
tion of his budget. We want to tweak the allocation algorithm so that
under this assumption the worst-case bound on the competitive factor
improves. As we tweak the algorithm it is likely that the bidder may
change the fraction of the budget spent. So we propose to tweak the
algorithm gradually until some steady state is reached, i.e., no more
tweaking is required. Let 0 ≤ gi ≤ 1 be a lower bound on the fraction
of the budget buyer i is going to spend in a steady state. We show that
having this additional information allows us to improve the (worst-case)
competitive ratio to 1 − (1 − g)/(e1−g), where g = mini∈I{gi}.

The main idea behind the improved allocation algorithm is that if a
buyer spends at least a gi fraction of his budget, then it means that the
primal variable x(i) is going to be large at the end. Thus, the value of
z(j) can be lowered, providing in turn additional “money” that can be
used to increase x(i) faster. The main issue is to determine the value
of x(i) once the buyer has spent a gi fraction of his budget. Denote
this value by xs(i). We choose it so that after the buyer has spent a gi

fraction of his budget, x(i) = xs(i), and after having extracted all of his
budget, x(i) = 1. In addition, we need the change in the primal cost to
be the same with respect to the dual profit in iterations where we sell
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the item to a buyer i who has not yet passed the spending threshold
of gi. The optimal choice of xs(i) turns out to be gi/(c1−gi − (1 − gi)),
and the growth function of the primal variable x(i), as a function of
the fraction of the budget spent, should be linear until the buyer has
spent a gi fraction of his budget, and exponential (as in the previous
sections) from that point on. The modified algorithm is as follows:

Allocation algorithm:

• Initially, for each buyer i, x(i)← 0.
• Upon arrival of a new item j: allocate it to the buyer

i maximizing b(i, j)(1 − max{x(i),xs(i)}), where xs(i) =
gi/(c1−gi − (1 − gi)) (c is determined later).

• If x(i) ≥ 1, then do nothing. Otherwise:

(1) Charge the buyer the minimum between b(i, j)
and his remaining budget.

(2) z(j)← b(i, j)(1 − max{x(i),xs(i)}).
(3) x(i)← x(i) + max{x(i),xs(i)}b(i, j)/B(i) +

xs(i)b(i, j)/B(i).

Theorem 10.3. If each buyer spends at least a gi fraction of his bud-
get, then the algorithm is (1 − (1 − g)/c1−g)(1 − Rmax)-competitive,
where c = (1 + Rmax)1/Rmax .

Proof. We first prove a more general claim regarding the final value of
the primal variable x(i) corresponding to buyer i. Let x(i,end) be the
final (highest) value of x(i) (upon termination). By our assumption,
buyer i extracted at least a gi fraction of his budget. Whenever we
charge a buyer i for an item, and x(i) < xs(i), the algorithm updates:

x(i)← x(i) +
b(i, j)
B(i)

(
xs(i) +

1 − gi

c1−gi − (1 − gi)

)
.

Thus, the final value of x(i) is

x(i,end) ≥ gi

(
xs(i) +

1 − gi

c1−gi − (1 − gi)

)
= gixs(i) + (1 − gi)xs(i)

= xs(i) (10.3)
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We next prove three simple claims:

• The algorithm produces a primal feasible solution.
• In each iteration, ∆P ≤ (1 + (1 − g)/(c1−g − (1 − g)))∆D.
• The algorithm produces an almost feasible dual solution.

Proof of (1): Consider the primal constraint corresponding to buyer i

and item j. In order to make this constraint feasible, we need to set
z(j) ≥max{0, b(i, j)(1 − x(i,end))}. By Equation (10.3), x(i,end) ≥
xs(i). Thus, when item j arrives, setting z(j) to be b(i, j)(1 −
max{x(i),xs(i)}) ≥ b(i, j)(1 − x(i,end)) suffices to satisfy the con-
straint. Since the algorithm chooses the buyer i maximizing this value,
and sets z(j) accordingly, we get that the constraint is satisfied.

Proof of (2): Whenever the algorithm allocates item j to buyer i, the
change in the dual profit is b(i, j). (Note that even if the remaining
budget of buyer i is less than his bid b(i, j), variable y(i, j) is still set
to 1.) The change in the primal cost is

B(i)∆x(i) + z(j)

= B(i)
(

b(i, j)max{x(i),xs(i)}
B(i)

+
b(i, j)
B(i)

1 − gi

c1−gi − (1 − gi)

)
+b(i, j)(1 − max{x(i),xs(i)})

= b(i, j)
(

1 +
1 − gi

c1−gi − (1 − gi)

)
≤ b(i, j)

(
1 +

1 − g

c1−g − (1 − g)

)
.

Proof of (3): The algorithm never updates the dual solution for a
buyer i satisfying x(i) ≥ 1. We prove that for any buyer i, x(i) ≥ 1,
if

∑
j∈M b(i, j)y(i, j) ≥ B(i). This is done by proving that if buyer i

extracted g′
i fraction of his budget (i.e.,

∑
j∈M b(i, j)y(i, j) = g′

i · B(i))
then:

x(i) ≥



g′
i

[
xs(i) + 1−gi

c1−gi−(1−gi)

]
if g′

i ≤ gi,

xs(i)cg′
i−gi + 1−gi

c1−gi−(1−gi)
[cg′

i−gi − 1] if g′
i > gi.

(10.4)

It is easy to check that when g′
i = gi, the above two bounds coincide

and are equal to xs(i). Thus, if the claim is correct, then whenever
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buyer i extracts all his budget we get that:

x(i) ≥ xs(i)c1−gi +
1 − gi

c1−gi − (1 − gi)
[
c1−gi − 1

]
=

gi

c1−gi − (1 − gi)
c1−gi +

1 − gi

c1−gi − (1 − gi)
[
c1−gi − 1

]
= 1.

We prove inequality (10.4) by induction on the (relevant) iterations
of the algorithm. Initially, it is trivially true. We are only concerned
about iterations in which an item, say k, is sold to buyer i. Let g′

i be the
fraction of the budget buyer i spent before the current allocation, and
let g′′

i = g′
i + b(i, j)/B(i) be the fraction of the budget buyer i spends

after the current allocation. In iterations in which x(i) < xs(i) we get
from equality (10.3) that g′

i < gi and thus:

x(i)end = x(i)start + xs(i)
b(i,k)
B(i)

+
b(i,k)
B(i)

1 − gi

c1−gi − (1 − gi)

≥ g′
i

[
xs(i) +

1 − gi

c1−gi − (1 − gi)

]
+ xs(i)

b(i,k)
B(i)

+
b(i,k)
B(i)

1 − gi

c1−gi − (1 − gi)

= g′′
i

[
xs(i) +

1 − gi

c1−gi − (1 − gi)

]
,

where the second inequality follows from the induction hypothesis. We
also remark here that if the fraction of the budget extracted from buyer
i before the iteration is less than gi, and the budget extracted after the
iteration is strictly more than gi, then it is possible to divide the cost
b(i, j) of the item into two costs: b(i, j)1 + b(i, j)2 = b(i, j), such that the
budget extracted after virtually selling b(i, j)1 is exactly gi. We virtually
sell both items to buyer i and change x(i) in two iterations. It is easy to
verify that the change of x(i) is the same as if this was done in a single
iteration.
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In iterations in which x(i) ≥ xs(i) we get from equality (10.3) that
g′
i ≥ gi, and thus:

x(i)end = x(i)start

(
1 +

b(i,k)
B(i)

)
+

b(i,k)
B(i)

1 − gi

c1−gi − (1 − gi)

≥
[
xs(i)cg′

i−gi +
1 − gi

c1−gi − (1 − gi)
[cg′

i−gi − 1]
]

×
(

1 +
b(i,k)
B(i)

)
+

b(i,k)
B(i)

1 − gi

c1−gi − (1 − gi)
(10.5)

= xs(i)cg′
i−gi

(
1 +

b(i,k)
B(i)

)

+
1 − gi

c1−gi − (1 − gi)

(
cg′

i−gi

(
1 +

b(i,k)
B(i)

)
− 1

)

≥ xs(i)cg′
i−gic

(
b(i,k)
B(i)

)

+
1 − gi

c1−gi − (1 − gi)

(
cg′

i−gic

(
b(i,k)
B(i)

)
− 1

)
(10.6)

= xs(i)cg′′
i −gi +

1 − gi

c1−gi − (1 − gi)
[cg′′

i −gi − 1],

where inequality (10.5) follows from the induction hypothesis, and
inequality (10.6) follows since for any 0 ≤ x ≤ y ≤ 1, ln(1 + x)/x ≥
ln(1 + y)/y.

By the above, it follows that whenever the sum of the charges to
a buyer is more than his budget, we stop charging this buyer. Thus,
there can be at most one iteration in which we charge the buyer by less
than b(i, j). Therefore, for each buyer i:∑

j∈M

b(i, j)y(i, j) ≤ B(i) + max
j∈M
{b(i, j)},

and thus the profit extracted from buyer i is at least:
∑

j∈M

b(i, j)y(i, j)


 B(i)

B(i) + maxj∈M{b(i, j)}

≥

∑

j∈M

b(i, j)y(i, j)


(1 − Rmax).
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By the second claim the dual value is at least:

1 − 1 − gi

c1−gi
≥ 1 − 1 − g

c1−g

times the primal value, and thus (by weak duality) we con-
clude that the competitive ratio of the algorithm is (1 − Rmax)
(1 − (1 − g)/c1−g).

10.4 Notes

The results in this chapter are based on the work of Buchbinder
et al. [30]. The paper contains further extensions and variants of the
basic model. The ad-auctions model studied here was originally intro-
duced by Mehta et al. [82] and they also proposed a simple deterministic
online (1 − 1/e)-competitive algorithm. The analysis of the algorithm
uses the notion of trade-off revealing LP. The work of Mehta et al. [82]
builds on previous work on online bipartite matching [73] and online
b-matching [69]. The online b-matching problem is a special case of the
online ad-auctions problem in which all buyers have a budget of b and
the bids are either 0 or 1. In [69], a deterministic online algorithm is
given for b-matching with competitive ratio tending to (1 − 1/e) (from
below) as b increases. For online matching (b-matching where b = 1) [73]
designed a randomized algorithm which is 1 − 1/e competitive.

In general, maximizing the revenue of a seller in both offline and
online settings has been studied extensively in many different models [7,
26, 27, 80].



11
Graph Optimization Problems

In this section, we describe applications of the primal–dual approach
to a wide range of graph and network optimization problems, focusing
on problems that arise in the study of connectivity and cuts in graphs.
As in previous chapters, the first step is formulating the problem in
hand as an (online) covering linear program, thus enabling the use of
the generic algorithms described in Section 4.2. This yields a fractional
solution for the problem. We then implement known offline rounding
methods in an online fashion so as to obtain integral solutions. This
part of the solution is problem dependent.

Connectivity and cut problems in graphs are defined on an input
graph G = (V,E) (directed or undirected), a cost function c : E → R

+,
and a requirement function f (to be defined later). The goal is to find
a minimum cost subgraph that satisfies the requirement function f .
Our model is online; that is, the requirement function is not known in
advance and it is given “step-by-step” to the algorithm, while the input
graph is known in advance. We consider an online version of a class
of problems which we call generalized connectivity. The requirement
function is a set of demands of the form D = (S,T ), where S and T are
subsets of vertices in the graph such that S ∩ T = ∅. A feasible solution

224
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is a set of edges, such that for each demand D = (S,T ) there is a path
from a vertex in S to a vertex in T . Examples of problems belonging
to this class are Steiner trees, generalized Steiner trees, and the group
Steiner problem. Less obvious examples are the set cover problem and
non-metric facility location.

Cut problems in graphs involve separating sets of vertices from each
other. We concentrate on a family of cut problems which we call gen-
eralized cuts. The requirement function is a set of demands of the form
D = (S,T ), where S and T are subsets of vertices in the graph such
that S ∩ T = ∅. A feasible solution is a set of edges that separates for
each demand D = (S,T ), any two vertices s ∈ S and t ∈ T . Examples
of problems belonging to this class are the multiway cut problem and
the multicut problem (see e.g., [90]).

There is a natural linear programming relaxation for the problems
that we consider. For generalized connectivity problems, a feasible frac-
tional solution associates a fractional weight (capacity) with each edge,
such that for each demand D = (S,T ) a unit of flow can be sent from
S to T , where the flow on each edge does not exceed its weight. For
generalized cuts, a feasible fractional solution associates a fractional
weight (length) with each edge, which we interpret as inducing a dis-
tance function. The constraint is that for each demand D = (S,T ), the
distance between any two vertices s ∈ S and t ∈ T is at least 1. This
linear programming relaxation is very useful for computing (offline)
an approximate solution for many problems which fall in this cate-
gory. (Refer to [90] for more details.) We note that fractional solutions
have a motivation of their own in certain network design problems and
bandwidth allocation problems (see, e.g., [84]).

11.1 Formulating the Problem

Let G = (V,E) be a graph (directed or undirected) with cost function
c : E → R

+ associated with the edge set E. Suppose further that there
is a weight function (or capacity function) w : E → R

+ associated with
the edge set E. The cost of w is defined to be

∑
e∈E cewe.

Let A ⊂ V and B ⊂ V be subsets of V such that A ∩ B = ∅. Let G′

be the graph obtained from G by adding a super-source s connected
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to all vertices in A and a super-sink t connected to all vertices in B.
The edges from s to A are directed into A and have infinite weight,
and the edges from B to t are directed into t and have infinite weight.
We say that there is a flow from A to B of value α if there exists a
valid flow function that sends α units of flow from s to t satisfying
the capacity function w. The shortest path from A to B is defined to
be the shortest path with respect to w from any vertex u ∈ A to any
vertex v ∈ B (i.e., the minimal distance between any pair of vertices
in A and B). A requirement function is a set of demands of the form
Di = (Si,Ti), 1 ≤ i ≤ k, where Si ⊂ V , Ti ⊂ V and Si ∩ Ti = ∅.

We first define the generalized connectivity problem. The input for
the problem is a graph G = (V,E) with cost function c : E → R

+ and
a requirement function. A feasible integral solution is an assignment
of weights (capacities) w from {0,1} to E, such that for each demand
Di = (Si,Ti), 1 ≤ i ≤ k, there is a flow from Si to Ti of value at least 1.
A feasible fractional solution is an assignment of weights (capacities)
w from [0,1] to E, such that for each demand Di = (Si,Ti), 1 ≤ i ≤ k,
there is a flow from Si to Ti of value at least 1. We note that it suffices
to satisfy the flow constraint for each demand (Si,Ti) separately. The
cost of a solution is defined to be the cost of w. It is possible to define
an LP relaxation for the fractional offline problem. For each demand
Di, let C(Di) be the set of cuts that separate Si from Ti. The LP
formulation is as follows:

(P ) : min
∑
e∈E

cewe

subject to:

for all i,1 ≤ i ≤ k, and each cut

C ∈ C(Di) :
∑
e∈C

we ≥ 1

for all e ∈ E,we ≥ 0.

We next define the generalized cuts problem. The input for this prob-
lem is again a graph G = (V,E) with cost function c : E → R

+ and
a requirement function. A feasible integral solution is a set of edges
E′ ⊆ E that separates, for each demand Di = (Si,Ti), any two vertices
a ∈ Si and b ∈ Ti. Alternatively, we can think of each edge e ∈ E′ as
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having weight w(e) = 1. Thus, the weight function w induces a distance
function on the graph such that the distance between vertices separated
by E′ is at least 1. A feasible fractional solution is an assignment of
weights w from [0,1] to E, such that for each demand Di = (Si,Ti),
1 ≤ i ≤ k, the distance induced by w between each a ∈ Si and b ∈ Ti is
at least 1. The cost of a solution is defined to be the cost of w. Again, it
is possible to obtain a covering LP formulation for the generalized cuts
problem. For each demand Di let P (Di) be the set of paths between
any two vertices in Si and Ti. The LP formulation is as follows:

(P ) : min
∑
e∈E

cewe

subject to:

for all i,1 ≤ i ≤ k, and each cut

P ∈ P (Di) :
∑
e∈P

we ≥ 1

for all e ∈ E,we ≥ 0

In an online setting, the graph G = (V,E) along with the cost func-
tion c is known to the algorithm (as well as to the adversary) in advance.
The set of requests of the form Di = (Si,Ti) is then given one-by-one
to the algorithm in an online fashion. Upon arrival of a new demand,
the algorithm can only satisfy it by increasing weights of edges in the
graph. However, the algorithm is not allowed to decrease the weight of
an edge. Thus, previous demands remain satisfied.

Online algorithm: It is not hard to see that the online setting of both
the generalized connectivity problem and the generalized cuts problem
belongs to the primal–dual framework. The linear programming formu-
lation of both problems is a covering problem. In particular, whenever
a new demand Di arrives, the new set of constraints corresponding
to the set of paths, or cuts, between Si and Ti is added to the LP.
Although this set may contain an exponential number of constraints,
it is still possible to use the algorithms from Section 4 for solving the
problem, since it suffices to either determine that a solution is feasi-
ble, or find an unsatisfied primal constraint. This can be easily done
using a maximum flow computation from the set Si to the set Ti for
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the case of generalized connectivity, or a shortest path computation in
the case of generalized cuts. We note that the basic algorithm can be
modified so that the total number of update iterations is polynomial in
the size of the graph. Thus, it is possible to compute online a monoton-
ically increasing fractional solution which is O(log m)-competitive. It
is even possible to improve the factor to O(log |Cmax|), where Cmax is
the maximum cut in the graph in the case of generalized connectivity.
In the case of generalized cuts, the competitive ratio can be improved
to O(log d), where d is the diameter of the graph.

11.2 The Group Steiner Problem on Trees

In this section, we derive a randomized online integral solution to a
special case of the generalized connectivity. This is done by convert-
ing an offline randomized rounding method into an online randomized
rounding method. We demonstrate these ideas using the group Steiner
problem on trees.

The group Steiner tree problem on a rooted tree is defined as fol-
lows. We are given a rooted tree T = (V,E,r) with a non-negative cost
function c : E → R

+ and groups g1,g2, . . . ,gk ⊂ V . Let r denote the root
of the tree T . The objective is to find a minimum cost rooted subtree T ′

that contains at least one vertex from each of the groups gi, 1 ≤ i ≤ k.
That is, using the terminology of the generalized connectivity problem,
each request is of the form (r,gi). In the online setting of the group
Steiner problem, the groups arrive one-by-one, and the algorithm has
to choose additional edges to its solution upon arrival of a new request,
so that the solution contains at least one vertex from the new group.
Note that the online set cover problem is a special case of this problem.

The group Steiner tree problem has an O(log n log k)-approximation
algorithm, where k is the number of groups and n is the number of
leaves in the tree [56]. This approximation is based on a clever ran-
domized rounding technique and analysis. We show here how to derive
an online randomized rounding algorithm for the problem. This is done
by basically imitating the offline randomized rounding method of [56].

The randomized rounding method we propose covers each group
with probability Ω(1/ log N), where N is the maximum size of any
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group. In addition, we prove that its expected cost is at most the cost
of the fractional solution. We then run O(log k log N) independent tri-
als of this randomized rounding method in parallel, where k is the
number of groups asked by the adversary. The algorithm takes to the
solution each edge that was selected in any of the trials. Using sim-
ple probabilistic analysis we get that our algorithm has a competitive
ratio of O(log n log k log N) and each of the groups is covered with
probability at least 1 − 1/k. In order to guarantee that the algorithm
produces a feasible solution, we can use the shortest path to a group
in case the algorithm fails to cover it. The cost of this path is certainly
a lower bound on the optimal solution, and since this event happens
with probability at most 1/k, it changes the expected competitive ratio
of the algorithm by only a negligible factor. Since we do not know in
advance the value of k we can increase the number of trials gradually
by doubling k whenever necessary.

Applying the technique of [56] requires that the fractional weights
on a path from the root to any vertex are monotonically decreasing.
However, the fractional solution that our algorithm computes may not
necessarily satisfy this property. Therefore, we define the weight of each
edge to be the maximum flow that can be routed through this edge to
any vertex in its subtree. In the following, we abuse notation and let
we denote the flow on edge e, instead of the actual weight of e. Since
the flow routed on each edge is at most its weight, we note that this
can only decrease the fractional value of the solution serving as our
baseline for bounding the competitive analysis.

Our online randomized rounding method is the following. Initially,
the algorithm starts with an empty cover C = ∅. Consider an iteration
in which the fractional weight of some edges is augmented. Since the
weight of an edge is the maximum flow that can be routed through it,
the fractional weight of an edge can be augmented when the algorithm
augments the weights of other edges as well. If the weight of several
edges is augmented at the same iteration, the rounding algorithm con-
siders the edges one by one, according to a topological ordering, starting
from the edges closer to the root. Let we and w′

e = we + δe be the weight
of edge e before and after the weight augmentation, respectively. Let
δe be the change in the weight of e. Let e(p) be the edge adjacent to e
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and closer to the root r. This definition is only relevant if the edge e is
not incident on the root r. The rounding algorithm randomly chooses
the edges to the solution by the following scheme.

Algorithm:
Consider all edges e for which δe > 0 in any topological order:

• If w′
e > 1, add e to C.

• If e is incident on r, or w′
e(p) > 1, add e to C with proba-

bility δe/(1 − we).
• If e(p) ∈ C, add e to C with probability δe/(w′

e(p) − we).

Note that for each edge e that is not incident on the root, δe/(w′
e(p) −

we) ≤ δe/(w′
e − we) = 1, since w′

e ≤ w′
e(p). Thus, the probabilities are

well defined. Furthermore, note that C induces a connected subtree of
T . This follows since the edges that are augmented at the same itera-
tion are considered in topological order and each edge may be added to
C only if the path connecting it to the root r is already in C. The proof
of the performance of the algorithm is based on the simple observation
that the online algorithm mimics the behavior of the corresponding
offline algorithm in [56]. Thus, showing that the properties of the prob-
ability distribution that were needed for the analysis in the offline case
are also maintained in the online case suffices. One of the tools used
is induction on the steps of the algorithm. We state the main lemmas
and omit the proofs.

Lemma 11.1. For each edge e, at the end of each iteration, the prob-
ability that e ∈ C is w′

e. If we > 1, then e ∈ C with probability 1.

The next lemma follows from linearity of expectation.

Lemma 11.2. At the end of each iteration, the expected cost of the
edges in C is at most

∑
e∈T

cew
′
e, where w′

e is the weight of edge e at
the end of the iteration.

Let N be the maximum size of a group g = {{v1,v2, . . . ,vk}. Let wg

be the total flow that can be routed to the vertices in g simultaneously.
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The next lemma bounds from below the probability that any group g

with wg ≥ 1 is covered.

Lemma 11.3. In any iteration, if, for a group g = {v1,v2, . . . ,v�},
wg ≥ 1, then the probability that there exists vi ∈ C (1 ≤ i ≤ �) is
Ω(1/ log N).

To conclude, we state the performance of the randomized algorithm for
the online group Steiner on trees.

Theorem 11.4. There is a randomized online algorithm for the group
Steiner problem in trees with a competitive ratio of O(log2 n log k).

The group Steiner problem on general graphs: It is possible to combine
the above theorem with the results of [46] on embedding a general
metric (graph) in HSTs (similarly to what was done in the offline case).
This gives the following result for the online group Steiner in general
graphs.

Theorem 11.5. There is a randomized online algorithm for the
group Steiner problem in general graphs with a competitive ratio of
O(log3 n log k).

11.3 Notes

The results in this chapter are based on the work of Alon et al. [4].
The online fractional algorithm is analyzed in [4] via a potential func-
tion method rather than through the primal–dual approach. The paper
contains several other problems that can be solved using the same
approach.

The offline group Steiner was studied in [56]. They suggested an
O(log n log k)-approximation algorithm for the problem on trees, where
k is the number of groups and n is the number of leaves of the tree.
For general undirected graphs the best approximation factor known
for the group Steiner problem is O(log2 n log k) by combining [56]
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with [46]. Online network optimization problems have been studied
extensively. The online Steiner problem was considered in [63] who gave
an O(log n)-competitive algorithm and showed that in a general metric
space this is indeed best possible. The online generalized Steiner prob-
lem was considered in [9], where an O(log2 n)-competitive algorithm
was given. This bound was later improved to an O(log n)-competitive
algorithm by Berman and Coulston [22].

There is a vast literature on efficient (offline) approximation algo-
rithms for problems involving connectivity and cuts. The reader is
referred to [62, 90] for more details. In particular, the offline version of
the generalized connectivity problem was considered in [37] who gave
a polylogarithmic (offline) approximation to it.



12
Dynamic TCP-Acknowledgement Problem

In this section, we consider the dynamic TCP-acknowledgement prob-
lem, defined as follows. A source sends a stream of packets to a des-
tination and it needs to receive an acknowledgement for each one of
the packets. However, it is possible to acknowledge several packets
by a single acknowledgement message. This can save on communica-
tion overhead, but requires delaying the acknowledgement of some of
the packets (which is undesirable in general). For example, suppose
the destination acknowledges the reception of packets 100,101, . . . ,120
by a single message, then the acknowledgement of packets 100 + i,
0 ≤ i ≤ 19, is delayed till packet 120 arrives at the destination (or, pos-
sibly, even later). Two extreme solutions for the acknowledgement prob-
lem are acknowledging all packets by a single message, or acknowledging
each packet by a separate message. Thus, there is a trade-off between
the delay in acknowledging packets and the number of acknowledge-
ment messages. The objective function is defined to be the number of
acknowledgement messages sent plus the sum of the acknowledgement
delays of the packets.
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Dual (Packing) Primal (Covering)
maximize:

∑
j∈M

∑
t|t≥t(j) y(j, t) minimize :

∑
t∈T xt +

∑
j∈M

∑
t|t≥t(j)

1
d
z(j, t)

subject to: subject to:
∀t ∈ T :

∑
j | t≥t(j)

∑
t′≥t y(j, t′) ≤ 1 ∀j, t|t ≥ t(j):

∑k=t
k=t(j) xk + z(j, t) ≥ 1

∀j, t|t ≥ t(j): y(j, t) ≤ 1
d

Fig. 12.1 The fractional TCP problem (primal) and the corresponding dual problem.

Let M be the set of packets. For each packet j ∈M , let t(j) be the
time of arrival at the destination. Assume now that packets can only
arrive in discrete times of 1/d. We later take d→∞ so this assumption
is not going to be limiting. With the time discretizing assumption we
can formulate the TCP-acknowledgement problem as a covering linear
program which appears in Figure 12.1. In this formulation, we have a
variable xt for each discrete time t which is set to 1 if the algorithm
sends an acknowledgement message at time t. For each packet j and
time t ≥ t(j), we have a variable z(j, t) which is set to 1 if packet j

is delayed between time t and time t + 1/d. By this formulation, our
objective is minimizing,

∑
t∈T

xt +
∑
j∈M

∑
t|t≥t(j)

1
d
z(j, t).

For each j and {t|t ≥ t(j)} we require that
∑t

k=t(j) xk + z(j, t) ≥ 1. This
guarantees that either the packet is delayed between time t and time
t + 1/d, or an acknowledgement message was sent to the source since
the arrival time of the packet. The dual packing problem has variables
y(j, t) for each packet j and t ≥ t(j).

12.1 The Algorithm

The covering linear programming formulation of the dynamic TCP-
acknowledgment problem allows for the design of a simple primal–
dual based algorithm for the problem. The algorithm is similar
in spirit to the online algorithm presented for the ski rental in
Section 3.
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Dynamic TCP-acknowledgement algorithm:

• Initially, ∀k, xk ← 0.
• At each discrete time t (iteration), consider each of the

packets j for which
∑k=t

k=t(j) xk < 1.
• For each such packet j do the following update:

(1) z(j, t)← 1 −∑k=t
k=t(j) xk

(2) xt← xt + 1/d
∑k=t

k=t(j) xk + 1/((c − 1) · d) (c is cho-
sen later).

(3) y(j, t)← 1/d.

The analysis is not very difficult: First, the primal solution we
produce is feasible. This follows since we update for each unsatisfied
packet z(j, t)← 1 −∑k=t

k=t(j) xk for each time t.
The second observation is that for each packet j and time t in which

we the variables are updated, the change in the dual profit is 1/d, while
the change in our primal cost is:

1 −
k=t∑

k=t(j)

xk


 1

d
+

1
d


 k=t∑

k=t(j)

xk +
1

c − 1


 =

1
d

(
1 +

1
c − 1

)
.

Finally, we choose the parameter c to guarantee dual feasiblity.
Consider a time t and a corresponding dual constraint∑

j | t≥t(j)

∑
t′≥t

y(j, t′) ≤ 1.

We want to guarantee that after d updates of a variable y(j, t′) “belong-
ing” to the constraint, all packets that arrived not later than t are sat-
isfied, and therefore there are no more updates of variables belonging
to the constraint. We prove that after d such updates,

∑
k≥t xk ≥ 1,

and therefore packets that have arrived prior to time t are satisfied.
We prove by induction on the update steps that∑

k≥t

xk ≥ (1 + 1/d)q − 1
c − 1

,

where q is the number of updates. Before the first update, the claim
trivially holds. Consider an update of y(j, t′) (at time t′) such that t′ ≥ t
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and packet j arrived not later than t. From the algorithm we get:

xt′ ← xt′ +
1
d

k=t′∑
k=t(j)

xk +
1

(c − 1)d
≥ xt′ +

1
d

k=t′∑
k=t

xk +
1

(c − 1)d

Therefore,
∑

k≥t xk satisfies:(
1 +

1
d

)∑
k≥t

xk +
1

(c − 1)d

≥
(

1 +
1
d

)
(1 + 1/d)q−1 − 1

c − 1
+

1
(c − 1)d

=
(1 + 1/d)q − 1

c − 1
,

where the inequality follows by the induction hypothesis. Thus, choos-
ing c = (1 + 1/d)d suffices, and if d→∞ we get a (1 − 1/e)-competitive
algorithm.

In order to get a randomized integral solution we arrange the vari-
ables xt on the infinite line. We choose a random number p ∈R [0,1].
We then send an acknowledgement message at each time segment xt

that falls in p + k for some integer value k. We remark that we need the
random choices to be correlated. It can be verified that our expected
cost is the same as the cost of our fractional algorithm, completing the
analysis.

12.2 Notes

The results in this chapter are based on the work of Buchbinder
et al. [30]. The TCP-acknowledgment problem was introduced by
Dooly et al. [45] who gave a 2-competitive algorithm for the problem.
This bound was later improved by [70] to a randomized (1 − 1/e)-
competitive algorithm. Our algorithm is an alternative primal–dual
view of this algorithm. Buchbinder et al. [31] studied an online inven-
tory problem which is a variant of the classical joint replenishment
problem (JRP) that has been studied extensively over the years. This
inventory problem is actually a generalization of the dynamic TCP-
acknowledgment. In [31], a deterministic 3-competitive algorithm is
given for the problem which is also based on a primal–dual approach.
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The Bounded Allocation Problem: Beating

(1 − 1/e)

We consider here the allocation problem, a special case of the ad-
auctions problem that was studied in Chapter 10. In the allocation
problem, a seller is interested in selling items to a group of buyers,
where buyer i has budget B(i). The seller introduces the items one-by-
one and sets for each new item j a fixed price b(j).1 Each buyer then
announces whether he is interested in buying the item for the set price.
The seller then decides (instantly) to which of the interested buyers to
sell the item. There is a lower bound example showing that without fur-
ther assumptions any algorithm for the problem has competitive ratio
of at most 1 − 1/e [73]. This lower bound uses an instance in which
the number of buyers interested in each item may be as large as the
total number of buyers. However, in many realistic settings, for each
item the set of interested buyers is much smaller than the total number
of buyers. The question is whether we can take advantage of this fact
to improve on the competitiveness of the algorithm. We answer this
question in the affirmative. The main novel idea we demonstrate here
is a non-intuitive fractional algorithm for the problem.

1 Note that in the ad-auctions problem the price is not fixed for all buyers.
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Table 13.1 Upper and lower bounds on the competitive ratio for some values of d.

Lower bound Upper bound Lower bound Upper bound
d = 2 0.75 0.75 d = 10 0.662 0.651
d = 3 0.704 0.704 d = 20 0.648 0.641
d = 5 0.686 0.672 d → ∞ 0.6321. . . 0.6321. . .

For each item j let S(j) be the set of interested buyers. We assume
that there is an upper bound d such that for each item j, |S(j)| ≤ d.
We are interested in the case in which d� n, where n is the total
number of buyers. We design an online algorithm with competitive
ratio C(d) = 1 − (d − 1)/(d(1 + 1/(d − 1))d−1). This factor is strictly
better than 1 − 1/e for any value of d, and approaches (1 − 1/e) from
above as d goes to infinity. We also prove lower bounds for the problem
that indicate that the competitive factor of the online algorithm is
quite tight. The improved bounds for certain values of d are shown in
Table 13.1.

13.1 The Algorithm

The first step is to cast the problem as a linear program using the same
formulation as in Section 10. Let y(i, j) be an indicator to the event
that item j is allocated to buyer i. Then the offline problem can be cast
as the dual linear formulation in Figure 13.1.

In a fractional solution to the problem, each item is sold fractionally
to several buyers. The fractional version of the problem has a motiva-
tion of its own, e.g., in case items can be divided between buyers. An
example of a divisible item is the allocation of bandwidth in a com-
munication network. The fractional algorithm we design is somewhat
counter-intuitive. In particular, a newly arrived item is not split equally

Dual (Packing) Primal (Covering)
maximize:

∑m
j=1

∑
i∈S(j) b(j)y(i, j) minimize :

∑n
i=1 B(i)x(i) +

∑m
j=1 z(j)

subject to: subject to:
∀1 ≤ j ≤ m:

∑
i∈S(j) y(i, j) ≤ 1 For each j, i ∈ S(j): b(j)x(i) + z(j) ≥ b(j)

∀1 ≤ i ≤ n:
∑

j|i∈S(j) b(j)y(i, j) ≤ B(i) ∀i, j: x(i),z(j) ≥ 0
∀i, j: y(i, j) ≥ 0

Fig. 13.1 The fractional allocation problem (dual) and the corresponding primal problem.
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between buyers who have spent the least fraction of their budget. Such
an algorithm is referred to in the literature as a “water level” algo-
rithm and it is not hard to verify that it does not improve upon the
(1 − 1/e) worst case ratio, even for small values of d. Rather, the idea is
to split the item between several buyers that have approximately spent
the same fraction of their total budget.

We divide the buyers into levels according to the fraction of the
budget already spent. For 0 ≤ k ≤ d, let L(k) be the set of buyers
that have spent at least a fraction of k/d and less than a fraction
of (k + 1)/d of their budget (buyers in level d have exhausted their
budget). We refer to each L(k) as level k and say that it is non-empty
if it contains buyers. The formal description of the algorithm is as
follows:

Allocation algorithm: Upon arrival of a new item j, allocate the
item to the buyers according to the following rules:

• Allocate the item equally and continuously between
interested buyers in the lowest non-empty level contain-
ing buyers from S(j). If, during the allocation, some of
the buyers have moved to a higher level, then continue
to allocate the item equally only among the buyers in
the lowest level.

• If all interested buyers in the lowest level have moved to
a higher level, then allocate the remaining fraction of the
item equally and continuously between the buyers in the
new lowest level. If all interested buyers have exhausted
their budget, then stop allocating the remaining fraction
of the item.

For the analysis, we find the best trade-off function, fd, relating the
values of the primal variables to the value of the dual objective function.
The best function turns out to be a piecewise linear function consisting
of d linear segments. As d grows, the function approximates the expo-
nential function f(d=∞)(x) = (ex − 1)/(e − 1). The linear pieces are
obtained from a geometric sequence at (1 ≤ t ≤ d), defined inductively
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as follows:

a1 =
1

d
(
1 + 1

d−1

)d−1 − (d − 1)
, . . . ,at = a1

(
1 +

1
d − 1

)t−1

.

The sequence at is a geometric sequence and we only consider the first
d elements in the sequence. The potential function fd is defined for
any 0 ≤ j ≤ d to be fd(j/d) �

∑j
t=1 at. A simple calculation yields the

following, for any j, 1 ≤ j ≤ d:

fd

(
j

d

)
=

j∑
i=1

ai = a1

(
1 + 1

d−1

)j − 1

(1 + 1
d−1) − 1

= a1

[
d

(
1 +

1
d − 1

)j−1

− (d − 1)

]
.

In particular, setting j = d, we get fd(d/d) = 1. This piecewise linear
approximation allows us to better analyze the algorithm and improve
the competitive factors. The function fd appears in Figure 13.2 for d =
2, d = 3, and d tending to infinity. Next, we use the potential function to
prove that the allocation algorithm has the desired competitive factor
with respect to an optimal offline fractional solution.

Theorem 13.1. The allocation algorithm is C(d)-competitive, where
C(d) = 1 − (d − 1)/(d(1 + 1/(d − 1))d−1).
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Fig. 13.2 The function fd for d = 2 and d = 3. The y middle value for d = 2 is 1/3. The y
middle values for d = 3 are 4/19 and 10/19.
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Proof. Let Y (j) denote the total profit of the algorithm (the dual pack-
ing) in the jth iteration. In each iteration, we maintain a corresponding
feasible primal solution whose value is denoted by X(j). Upon arrival of
a new item we update both primal and dual programs. The dual (pack-
ing) program is updated by adding a new constraint corresponding to
the new item which has arrived, and by adding a new term b(j)y(i, j) to
each constraint of an interested buyer. The primal program is updated
by adding a new variable z(j) for the new item and a constraint of the
form b(j)x(i) + z(j) ≥ b(j) for each interested buyer.

Initially, the dual and primal programs are empty. In the jth iter-
ation, the change in the values of the primal and dual solutions is
denoted by ∆X(j) and ∆Y (j), correspondingly. We prove that in each
iteration:

∆X(j) ≤ 1
C(d)

∆Y (j).

The primal solution is an assignment of values to the variables x(i)
and z(j). Since these values are not used by the allocation algorithm,
we can set them using future knowledge. For each buyer i, let t(i)
(0 ≤ t ≤ d) be the highest level i to which this buyer belongs during
the execution of the algorithm. Thus, buyer i spent overall at least
t(i)/d fraction of his budget. The variable x(i) grows as a function of
the fraction of money that buyer i spent, which in fact depends on the
corresponding dual constraint. Specifically, for buyer i:

x(i)=




fd


 1

B(i)

∑
j | i∈S(j)

b(j)y(i, j)


 if

1
B(i)

∑
j | i∈S(j)

b(j)y(i, j) ≤ t(i)
d

,

fd

(
t(i)
d

)
if

1
B(i)

∑
j | i∈S(j)

b(j)y(i, j) ≥ t(i)
d

.

The variables x(i) are monotonically increasing and thus, once a
primal constraint is satisfied, it remains satisfied throughout the run of
the algorithm. Hence, in each iteration, it suffices to satisfy the newly
added primal constraints.

Consider first the case in which item j was not fully sold by the
algorithm. This means that at the end of the jth iteration all the buyers
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in S(j) exhausted their budget. In this case, the corresponding variables
x(i) at the end of the iteration are all 1, and thus all the new primal
constraints are satisfied, and we can set z(j) = 0. We only need to show
that the change in the primal profit in this iteration is not too large.
When we increase a variable y(i, j), the derivative of the dual profit of
the algorithm is b(j). The derivative of the primal cost is

B(i)
dfd

d(y(i, j))
≤ B(i)

b(j)
B(i)

dad =
1

C(d)
b(j).

The inequality follows by taking the maximum derivative of the
(convex) function fd which is

dad = da1

(
1 +

1
d − 1

)d−1

=
1

C(d)
.

Thus, we get that in this iteration ∆X(j) ≤ (1/C(d))∆Y (j).
Assume now that item j was fully sold to the buyers. Let t, 0 ≤

t ≤ d − 1, be the highest level of buyers to which the item was sold.
Since the algorithm always allocates the item to buyers in the lowest
possible level, it means that all buyers in S(j) used at least t/d fraction
of their money. Let ∆0, ∆1, . . . , ∆t be the fraction of the item that
was allocated in each level k ≤ t. By our assumption,

∑t
k=1 ∆k = 1. We

consider two cases.

Case 1: All the buyers in S(j) spend during the algorithm at least t′/d

of their budget for t′ > t. In this case, for each buyer i, the derivative
of the primal cost due to the change in x(i) is

B(i)
dfd

d(y(i, j))
≤ B(i)

b(j)
B(i)

dat+1 = b(j)dat+1.

The inequality follows by taking the derivative of fd in the highest
level in which the item is sold. We fully allocate the item and hence∑

i∈S(j) y(i, j) = 1. Thus, the total change of the primal cost due to the
change in the variables x(i) is at most b(j)dat+1. Since all buyers in
S(j) eventually spend during the algorithm at least (t + 1)/d of their
budget, variable x(i) corresponding to buyer i ∈ S(j) will be at the end
of the allocation process at least f((t + 1)/d). Therefore, it is safe to
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set z(j) = b(j)(1 − f((t + 1)/d)) in order to satisfy all the new primal
constraints. Thus, the total change in the primal cost in this iteration is:

z(j) +
∑

i∈S′(j)

B(i)∆(x(i))

≤ b(j)
(

1 − f(
t + 1

d
)
)

+ b(j)dat+1

= b(j)

(
1 − a1

[
d

(
1 +

1
d − 1

)t

− (d − 1)

])

+b(j)da1

(
1 +

1
d − 1

)t

= b(j)(1 + a1(d − 1))

= b(j)


1 +

d − 1

d
(
1 + 1

d−1

)d−1 − (d − 1)




=
1

C(d)
b(j).

Since the item was fully sold the dual profit in this case is b(j) and
hence we are done with this case.

Case 2: There exists at least one buyer in S(j) who eventually spends
(throughout the algorithm) less than a fraction of (t + 1)/d of his bud-
get (but spends at least t/d). In this case, in order to satisfy the new
primal constraint, it is only safe to set z(j) = b(j)(1 − f(t/d)). How-
ever, note that the buyer that spent less than (t + 1)/d fraction of
his money was present throughout the whole process of dividing the
item equally between all buyers in the last level t. Thus, by our algo-
rithm, this buyer receives at least a fraction of ∆t/d of the item. By the
definition of the function associated with the variable x(i), the growth
function of x(i) in this segment (which is larger than t(i)) is zero. Thus,
the change in the primal cost due to the increase of the dual variables
in the highest level is at most:

b(j)at+1d
d − 1

d
∆t = b(j)(d − 1)at+1∆t. (13.1)
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The change in the primal cost due to the increase of the dual variables in
lower levels is at most b(j)dat(1 − ∆t). But, at+1 = at(1 + 1/(d − 1)),
and so at = ((d − 1)/d)at+1. Thus, the change in the primal cost due
to change in the variables x(i) is at most:

b(j)dat(1 − ∆t) = b(j)d
d − 1

d
at+1(1 − ∆t)

= b(j)(d − 1)at+1(1 − ∆t). (13.2)

Adding up Equations (13.1) and (13.2), we get that the total change
in the primal cost due to the increase in the primal variables x(i) is
b(j)(d − 1)at+1. Since f((t + 1)/d) = at+1 + f(t/d), the total change
in the primal cost is at most:

b(j)
(

1 − f

(
t

d

))
+ b(j)(d − 1)at+1

= b(j)
(

1 − f

(
t + 1

d

)
+ at+1)

)
+ b(j)(d − 1)at+1

= b(j)
(

1 − f

(
t + 1

d

))
+ b(j)dat+1

=
1

C(d)
b(j).

This change is exactly the same as in case 1. Similarly to case 1, the
item was fully sold and so the dual profit is b(j) and we are done with
this case.

Lower bounds: For any value of d it is not hard to prove the following
lower bound.

Lemma 13.2. Let H(·) denote the harmonic number let k be the
largest value for which H(d) − H(d − k) ≤ 1. Then, for any d,

C(d) ≤ 1 − k − kH(d) +
∑k

i=1 H(d − i)
d

.

This general bound is only tight for d = 2, but we note that one can
derive better tailor-made lower bounds for specific values of d. In par-
ticular, it is not hard to show that the algorithm is optimal for d = 3.
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Rounding the fractional solution: It is possible to apply standard ran-
domized rounding techniques in an online fashion. The main issue is
that when applying randomized rounding the algorithm may allocate
to buyer i items with total value of more than B(i). However, using
standard techniques one can prove that when the budget of each buyer
is much larger than the price of the individual items, then with high
probability the budget excess is not going to be large, i.e., the addi-
tional loss in the competitive factor is o(1). In this case, it is also pos-
sible to apply de-randomization methods to the randomized rounding
algorithm to obtain a deterministic algorithm for the problem.

13.2 Notes

The results in this section are based on the work of Buchbinder
et al. [30]. They also showed how to de-randomize the algorithm to
obtain a deterministic algorithm for the problem. The same technique
can be used to improve the competitive ratio for other problems. In the
ski rental problem, for example, one can obtain using this method an
algorithm with improved competitive factor of C(B), where B is the
cost of buying the skis. In the dynamic TCP-acknowledgment problem
studied in Section 12, it is also possible to improve the competitive
ratio in certain scenarios. If packets only arrive in discrete times of 1/d

(and not in any continuous time) then the competitive ratio can be
improved to C(d).



14
Extension to General Packing–Covering

Constraints

In this section, we design primal–dual algorithms for more general set-
tings of packing–covering linear formulations. In the more general (frac-
tional) covering problem, the objective is still to minimize the total
cost given by a linear cost function

∑n
i=1 c(i)x(i). However, the fea-

sible solution space is defined by a set of m linear constraints of the
general form

∑n
i=1 a(i, j)x(i) ≥ b(j), where the entries a(i, j) and b(j)

are non-negative. This generalizes the setting of Section 4 in which
a(i, j) ∈ {0,1} and b(j) = 1. Given an instance of a covering problem we
can always normalize each constraint to the form:

∑n
i=1 a(i, j)x(i) ≥ 1.

Any primal covering instance has a corresponding dual packing problem
that provides a lower bound on any feasible solution to the instance. A
general form of a (normalized) primal covering problem along with its
(normalized) dual packing problem is given in Figure 14.1. Throughout
this chapter we refer to the covering problem as the “primal problem”
and the packing problem as the “dual problem.”

The online setting we study here is the same as the one studied in
Section 4. In the general online fractional covering problem, the cost
function is known in advance, but the linear constraints that define the
feasible solution space are given to the algorithm one-by-one. Again
we are only allowed to increase the variables, but not to decrease any

246
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Primal (Covering) Dual (Packing)
minimize:

∑n
i=1 c(i)x(i) maximize:

∑m
j=1 y(j)

subject to: subject to:
∀1 ≤ j ≤ m:

∑n
i=1 a(i, j)x(i) ≥ 1 ∀1 ≤ i ≤ n:

∑m
j=1 a(i, j)y(j) ≤ c(i)

∀1 ≤ i ≤ n: x(i) ≥ 0 ∀1 ≤ j ≤ m: y(j) ≥ 0

Fig. 14.1 Primal (covering) and dual (packing) problems.

previously increased variable. In the general online fractional packing
problem, the values c(i) (1 ≤ i ≤ n) are known in advance. However,
the profit function and the exact packing constraints are not known
in advance. In the jth round, a new variable y(j) is introduced to the
algorithm, along with its set of coefficients a(i, j) (1 ≤ i ≤ n).1 The
algorithm can increase the value of a variable y(j) only in the round
in which it is given, and cannot decrease or increase the values of any
previously given variables.

For this more general scenario, we need to design two different
schemes. One scheme for the packing setting and a different one for
the covering setting. The performance of the schemes is also different.
For the packing setting, we design a scheme which is B-competitive for
any B > 0 and for each constraint it holds that

m∑
k=1

a(i,k)y(k) = c(i)O


 log n + log ai(max)

ai(min)

B


 ,

where ai(min) = minm
k=1{a(i,k)|a(i,k) �= 0} and ai(max) = maxm

k=1
{a(i,k)}. That is, there is an additional penalty of log(ai(max))
/(ai(min)). We prove that this additional penalty is unavoidable.
For the covering setting, we design a scheme which is O(log n/B)-
competitive for any B > 0 and for each constraint

∑n
i=1 a(i, j)x(i) ≥

1/B. Thus, in this setting, there is no additional loss.

14.1 The General Online Fractional Packing Problem

In this section, we describe an online scheme for computing a near-
optimal fractional solution for the general online fractional packing

1 y(j) can always be normalized so that its coefficient in the objective function is 1.
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problem. The scheme gets the desired competitive ratio B > 0 and
returns a solution which is within a factor of B of the optimal, and
which does not violate the packing constraints by too much (to be
made more precise shortly). We prove that the scheme is optimal
up to constant factors. Our scheme simultaneously maintains pri-
mal (covering) and dual (packing) solutions for the primal and dual
instances.

Initially, each variable x(i) is initialized to zero. In each round, a new
variable y(j) is introduced along with its coefficients a(i, j) (1 ≤ i ≤ n).
In the corresponding primal sub-instance, a new constraint is intro-
duced of the form

∑n
i=1 a(i, j)x(i) ≥ 1. Without loss of generality, we

can assume that this constraint has at least one non-zero coefficient,
otherwise it means that there is no bound on the value of y(j) and
the profit function is unbounded. The algorithm increases the value
of the new variable y(j) and the values of the primal variables x(i)
until the new primal constraint is satisfied. The augmentation method
is described here in a continuous fashion, but it is not hard to imple-
ment the augmentation in a discrete way in any desired accuracy. In
our continuous description, the variables x(i) behave according to a
monotonically increasing function of y(j). To implement the scheme in
a discrete fashion, one should find the minimum y(j) such that the new
primal constraint is satisfied. Note that variable y(j) is being increased
only in the jth round and the values of the primal variables never
decrease. In the following, we describe the jth round. The performance
of the scheme is analyzed in Theorem 14.1.

(1) y(j)← 0; For each x(i): ai(max)← maxj
k=1{a(i,k)}.

(2) While
∑n

i=1 a(i, j)x(i) < 1:

(a) Increase y(j) continuously.

(b) Increase each variable x(i) by the following incre-
ment function:

x(i)← max

{
x(i),

1
nai(max)

[
exp

(
B

2c(i)

j∑
k=1

a(i,k)y(k)

)
− 1

]}
.
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Theorem 14.1. For any B > 0, the above scheme is a B-competitive
algorithm for the general online fractional packing problem. Also, for
each constraint it holds;

m∑
k=1

a(i,k)y(k) = c(i)O


 log n + log ai(max)

ai(min)

B


 ,

where ai(min) = minm
k=1{a(i,k)|a(i,k) �= 0} and ai(max) =

maxm
k=1{a(i,k)}.

Proof. Let X(j) and Y (j) be the values of the primal and dual solutions,
respectively, obtained in round j. We prove the following claims on X(j)
and Y (j):

(1) In each round j: Y (j) ≥ X(j)/B.
(2) The primal solution produced by the scheme is feasible.
(3) For any dual constraint:

m∑
k=1

a(i,k)y(k) ≤ c(i)
2 log

(
1 + nai(max)

ai(min)

)
B

= c(i)O


 log n + log ai(max)

ai(min)

B


 .

The proof of the theorem then follows directly from weak duality.

Proof of (1): Note first that when the value of ai(max) increases, the
value of the primal solution does not change. Thus, the value of the pri-
mal solution only increases when the dual solution increases. Initially,
the values of the primal and dual solutions are zero. Consider the jth
round in which y(j) is being increased continuously. We prove that
∂X(j)/∂y(j) ≤ B(∂Y (j)/∂y(j)), concluding that X(j) ≤ B · Y (j).

∂X(j)
∂y(j)

=
n∑

i=1

c(i)
∂x(i)
∂y(j)

≤
n∑

i=1

c(i)Ba(i, j)
2c(i)

1
nai(max)

exp

(
B

2c(i)

j∑
k=1

a(i,k)y(k)

)
(14.1)
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=
B

2

n∑
i=1

a(i, j)

[
1

nai(max)

(
exp

(
B

2c(i)

j∑
k=1

a(i,k)y(k)

)
− 1

)

+
1

nai(max)

]

≤ B

2

n∑
i=1

a(i, j)
[
x(i) +

1
nai(max)

]
≤ B

2
(1 + 1)

= B = B
∂Y (j)
∂y(j)

, (14.2)

where inequality (14.1) follows by substituting value of the deriva-
tive of x(i), and (14.2) follows since: (i)

∑n
i=1 a(i, j)x(i) < 1, (ii) x(i) ≥

(1/nai(max)[exp((B/2c(i))
∑j

k=1 a(i,k)y(k)) − 1], and (iii) (1/n)
∑n

i=1
a(i, j)/(ai(max)) ≤ 1. The final equality follows since the value of the
dual is

∑j
k=1 y(k), and so ∂Y (j)/∂y(j) = 1.

Proof of (2): This claim is trivial since we increase the primal variables
until the current primal constraint becomes feasible. We never decrease
any x(i), so (feasible) constraints remain feasible.

Proof of (3): Consider the ith dual constraint of the form∑j
k=1 a(i,k)y(k) ≤ c(i). Each time a variable y(k) with coefficient

a(i,k) > 0 is increased, the primal variable x(i) is increased too. Let
ai(min) = minm

k=1{a(i,k)|a(i,k) �= 0} and ai(max) = maxm
k=1{a(i,k)}

be as previously defined. During the run of the algorithm, x(i) ≤
1/ai(min), since if equality holds, then each primal constraint
(1 ≤ j ≤m) with a(i, j) > 0 is already feasible. Thus, we get the
following:

1
nai(max)

[
exp

(
B

2c(i)

j∑
k=1

a(i,k)y(k)

)
− 1

]
≤ x(i) ≤ 1

ai
(min).

Simplifying, we obtain:

j∑
k=1

a(i,k)y(k) ≤
2log

(
1 + nai(max)

ai(min)

)
B

c(i).
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14.1.1 Lower Bounds

In this section, we prove a simple lower bound showing that the
additional additive factor of log(ai(max)/ai(min)) is indeed necessary.

Lemma 14.2. There is an instance of the general fractional packing
problem with a single constraint such that

m∑
j=1

a(i, j)y(j) ≥ H(a(max)/a(min))
B

for any online B-competitive algorithm, where H(m) denotes the mth
harmonic number, and a(max)/a(min) is the ratio between the maxi-
mum and minimum entries in the (single) constraint.

Proof. Consider the following instance, for any m:

max
m∑

j=1

y(j)

subject to
m∑

j=1

(m − j + 1)y(j) ≤ 1 .

Note that for this instance a(max)/a(min) = m. The variables y(j)
arrive one-by-one. After the jth round (for each j), the optimal offline
value is 1/(m − j + 1). Thus, the value of the objective function given
by a B-competitive algorithm must be at least 1/B(m − j + 1). This
yields the following sequence of inequalities:

y(1) ≥ 1/(Bm),

y(1) + y(2) ≥ 1/(B(m − 1)),

y(1) + y(2) + y(3) ≥ 1/(B(m − 2)),

...
...

...

y(1) + y(2) + y(3) + · · · + y(m) ≥ 1/B.
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Summing up over all m inequalities we get the desired bound:
m∑

j=1

(m − j + 1)y(j) ≥ 1
B

m∑
j=1

1
m − j + 1

=
H(m)

B
.

14.2 The General Online Fractional Covering Problem

In this section, we describe our online scheme for computing a near-
optimal fractional solution for the online fractional covering problem.
Our scheme for the general online fractional covering problem gets a
parameter B > 0. The competitive ratio of the scheme is O(log n/B)
and for each constraint

∑n
i=1 a(i, j)x(i) ≥ 1/B holds. The scheme works

in phases; when the first constraint is introduced, the scheme generates
the first lower bound:

α(1)← 1
B

n
min
i=1

{
c(i)

a(i,1)

}
≤ OPT

B
.

During the rth phase, it is assumed that the lower bound on the opti-
mum is α(r), as long as the total primal cost does not exceed α(r).
When the primal cost exceeds this bound, the scheme “forgets” about
all the values given to the primal and dual variables so far, and starts a
new phase in which the lower bound is doubled, i.e., α(r + 1)← 2α(r).
Nevertheless, the values of the “forgotten” variables are accounted
for in the total cost of the solution. That is, the algorithm main-
tains in each phase r a new set of variables x(i,r). However, since
the variables of the linear program are required to be monotoni-
cally non-decreasing, the value of each variable x(i) is actually set
to maxr{x(i,r)} (or alternatively

∑
r x(i,r)). The cost of maintaining

the variables of the linear program is, thus, at most the cost of main-
taining the new variables in each phase. When we start processing
a new phase we also set to zero all dual variables, and start pro-
cessing again all primal constraints starting from the first one. Thus,
in each such phase, our algorithm produces “fresh” primal and dual
solutions.

In the following, we describe our scheme in a single round of the rth
phase. Let

∑n
i=1 a(i, j)x(i) ≥ 1 be the new primal constraint which is
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currently introduced and let y(j) be the corresponding dual variable.
The values of the primal and dual variables are increased as follows.
Note that during each phase x(i) only increases. The performance of
the scheme is analyzed in Theorem 14.3.

(1) y(j)← 0
(2) While

∑n
i=1 a(i, j)x(i) < 1/B:

(a) Increase y(j) continuously.

(b) Increase each variable x(i) by the following incre-
ment function:

x(i)← α(r)
2nc(i)

exp

(
log 2n

c(i)

j∑
k=1

a(i,k)y(k)

)
.

Theorem 14.3. For any B > 0, the scheme for the general online frac-
tional covering problem achieves a competitive ratio of O(log n/B),
such that for each constraint

∑n
i=1 a(i, j)x(i) ≥ 1/B.

Proof. Let X(r) and Y (r) be the values of the primal and dual
solutions, respectively, generated during the rth phase. We prove the
following claims on X(r) and Y (r):

(1) For each finished phase r: Y (r) ≥ Bα(r)/(2 log 2n).
(2) The dual solution generated during the rth phase is feasible.
(3) The total cost of the primal solutions generated from the first

phase until the rth phase is less than 2α(r).
(4) For any primal constraint given to the algorithm,∑n

i=1 a(i, j)x(i) ≥ 1/B.

From the first three claims together with weak duality we conclude that
the total cost of the primal solutions in all the phases up to phase r is
at most:

2α(r) ≤ 4α(r − 1) ≤ 8
log 2n

B
Y (r − 1) ≤ 8

log 2n

B
OPT.

Notice that if the scheme finishes in the first phase, then the total cost
is at most α(1) ≤ OPT/B.



254 Extension to General Packing–Covering Constraints

Proof of (1): Initially, x(i) = α(r)/(2nc(i)), and so X(r) is initially at
most α(r)/2. The total profit of the dual solution is initially zero. From
then on, the primal cost increases only when some dual variable y(j) is
increased. When the phase ends, X(r) ≥ α(r). Thus, it suffices to prove
that during the phase

∂X(r)
∂y(j)

≤ log 2n

B

∂Y (r)
∂y(j)

.

This follows since,

∂X(r)
∂y(j)

=
n∑

i=1

c(i)
∂x(i)
∂y(j)

=
n∑

i=1

c(i) log(2n)a(i, j)
c(i)

α(r)
2nc(i)

exp

(
log 2n

c(i)

j∑
k=1

a(i,k)y(k)

)

= log 2n

n∑
i=1

a(i, j)x(i) ≤ log 2n

B
=

log 2n

B

∂Y (j)
∂y(j)

, (14.3)

where (14.3) follows since
∑n

i=1 a(i, j)x(i) ≤ 1/B. The final equality
follows since the value of the dual solution is

∑j
k=1 y(k) and thus

∂Y (j)/∂y(j) = 1.

Proof of (2): Consider the ith dual constraint of the form∑m
k=1 a(i,k)y(k) ≤ c(i). Each time variable y(k) with coefficient

a(i,k) > 0 is increased, the corresponding primal variable x(i) is
increased too. During the rth phase of the algorithm, x(i) ≤ α(r)/c(i),
since otherwise it would have contributed to the cost of the primal solu-
tion more than α(r), and the current phase would have ended. Thus,
we get the following equation:

x(i) =
α(r)

2nc(i)
exp

(
log 2n

c(i)

j∑
k=1

a(i,k)y(k)

)
≤ α(r)

c(i)
.

Simplifying we get the desired result:

m∑
k=1

a(i,k)y(k) ≤ c(i).
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Proof of (3): We bound the total cost paid by the online algorithm.
The total primal cost in the rth phase is at most α(r). Since the ratio
between α(k) and α(k − 1) is 2, we get that the total cost until the rth
phase is at most

∑r
k=1 α(k) ≤ 2α(r).

Proof of (4): The claim is trivial, since each round terminates only when
the value of the left-hand side of the new primal constraint is at least
1/B. The value of each variable x(i) never decreases, thus all previous
primal constraints remain feasible.

14.3 Notes

The results in this chapter are based on the work of Buchbinder and
Naor [32]. In this work, a more general setting is considered in which
each variable in the covering problem also has an upper bound (box
constraint).



15
Conclusions and Further Research

We have shown in this survey how to extend the primal–dual method to
the setting of online algorithms, establishing it as an important unifying
methodology for the design of online algorithms, applicable to a wide
variety of problems. These include, among others, the classic ski rental
problem, the online set-cover problem, graph optimization problems,
the dynamic TCP-acknowledgement problem, various routing prob-
lems, load balancing, machine scheduling, ad auctions, caching, and
more. All these problems can now be solved using the basic recipe devel-
oped for online packing–covering problems, or simple tweaks thereof.
It is important to note that it is rare to find general algorithmic ideas
that work well for a wide variety of problems and we are certain that
the online primal–dual framework will turn out to be useful for many
more problems and algorithms.

Many open questions and directions for further research remain.
First, it will be interesting to come up with other online scenarios that
can benefit from the primal–dual framework. The k-server problem,
the “holy grail” problem in competitive analysis, is a prime example.
The online primal–dual framework seems very promising for resolv-
ing whether randomized algorithms can yield improved bounds for
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the k-server problem. Another interesting problem is the metrical task
problem in general metrics. It will be nice to use the primal–dual frame-
work to close the gap between the upper and lower bounds. Another
research direction is to extend the primal–dual framework itself beyond
packing–covering formulations. We note that the framework cannot be
extended to general linear programming formulations, however, there
might be other special formulations that can be solved online.
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