
188

Constraint satisfaction algorithms’

BERNARD A. NADEL
Computer Science Department, Wayne State University, Detroit, MI 48202, U.S.A.

Received January 6, 1988
Revision accepted September 25, 1989

2

Constraint satisfaction problems are ubiquitous in artificial intelligence and many algorithms have been developed
for their solution. This paper provides a unified survey of some of these, in terms of three classes: (i) tree search,
(i i) arc consistency (AC), and (iii) hybrid tree search/arc consistency algorithms. It is shown that several important
algorithms, when slightly rearranged, are of the latter hybrid form, but with arc consistency components that d o not
necessarily achieve full arc consistency at the tree nodes. Accordingly, we define several new partial AC procedures,
ACYs, AC1/4, ACY3, and AC1/2, analogous to the well-knownfull AC algorithms which Mackworth has called ACI,
AC2, and AC3. The fractional suffixes on our AC algorithms are roughly proportional to the degree of partial arc
consistency they achieve. Unlike traditional versions, our AC algorithms (full and partial) are presented in a parameterized
form to allow them to be embedded efficiently at the nodes of a tree search process. Algorithm complexities are com-
pared empirically, using the n-queens problem and a new version called confused n-queens. Gaschnig’s Backmarking
(a tree search algorithm) and Haralick’s Forward Checking (a hybrid algorithm) are found to be the most efficient.
For the hybrid algorithms, we find that it pays to do little arc consistency processing at the nodes, incurring more
nodes, but sufficiently reducing the work per node so as to obtain less work over the whole tree. The unified view
taken here suggests several new algorithms. Preliminary results show one of these to be the best algorithm so far.

Key words: constraint satisfaction problem, network consistency algorithms, arc consistency algorithms, tree search
algorithms, Backtracking, Backjumping, Backmarking, Forward Checking.

Les problemes de satisfaction des contraintes sont omnipresents dans le domaine de l’intelligence artificielle et bon
nombre d’algorithmes ont etk Clabores afin de les resoudre. Cet article fait etat d’une etude de ces algorithmes selon
trois classes : les algorithmes de (i) recherche arborescente, de (ii) consistance d’arc (AC) et de (iii) recherche hybride
arborescente - consistance d’arc. I1 est demontre que plusieurs algorithmes importants, lorsque legkrement modifies,
font partie de la dernikre classe dite hybride, avec cependant des composantes de consistance d’arc qui ne permettent
pas nkessairement d’obtenir une consistance d’arc complete aux nceuds d’arbre. Par consequent, nous avons elabore
plusieurs nouvelles procedures AC partielles. AC%, ACY4, ACY3 et AC 1/z, qui sont analogues aux algorithmes bien
connus complets AC que Mackworth a appele ACI, AC2 et AC3. Les suffixes fractionnaux de nos algorithmes AC
sont plus ou moins proportionnels au degre de consistance d’arc partielle qu’ils obtiennent. Contrairement aux ver-
sions traditionnelles, nos algorithmes AC (complets et partiels) sont prisentes dans une forme parametree afin de leur
permettre d’@tre emboites efficacement aux noeuds dans un processus de recherche arborescente. La complexite des
algorithmes est comparee de facon empirique, A I’aide du problkme n-reines et d’une nouvelle version, dite n-reines
confuses. Le marquage arriere de Gaschnig (un algorithme de recherche arborescente) et la verification avant de Haralick
(un algorithme hybride) se sont reveles les plus efficaces. Dans le cas des algorithmes hybrides, nous avons constate
qu’il etait profitable de peu traiter la consistance d’arc aux nceuds, car, bien que cela entrain: davantage de nceuds,
le travail par nceud s’en trouve rkduit, au point de donner moins de travail pour l’arbre entier. Le point de vue unifie
adopt6 ici suggkre plusieurs nouveaux algorithmes. Les resultats preliminaires permettent de classer I’un d’entre eux
comme le meilleur algorithme jusqu’a present.

Mots clPs : problkme de satisfaction des contraintes, algorithmes de consistance de reseau, algorithmes de consistance
d’arc, algorithmes de recherche arborescente, retour-arriere, saut arrikre, marquage arriere, verification avant.

[Traduit par la revue]
Cornput. Inrell. 5. 188-224 (1989)

1. Introduction
T h e Constraint Satisfaction Problem (CSP) is ubiquitous

in artificial i n t e l l i g e n ~ e . ~ It has received intense study from
many researchers, including Fikes (1970), Waltz (1973,
Gaschnig (1974, 1977, 1978, 1979), Rosenfeld ef al. (1976),

‘A preliminary version appeared as “Tree search and arc con-
sistency in constraint satisfaction algorithms” in Search in Artificial
Intelligence, edited by L. Kana1 and V. Kumar, Springer-Verlag.
New York, 1988, pp. 287-342. Portions of this article that are the
same or similar are reprinted by permission of Springer-Verlag,
New York.

’Previously Nudel.
’We will use CSP to refer to the problem class, and csp to refer

to an individual problem instance. The word problem will be used
both for the class and an instance. The meaning should be clear
from context.

P r m d m Canada I Imprimr au Canada

Montanari (1974). Mackworth (1977a), McGregor (1979),
Haralick and Elliot (1980), Haralick and Shapiro (1979,
1980), Haralick ef al. (1978), Purdom (1982, 1983), Freuder
(1978, 1982), Nadel(l986, 1988a, b), Nudel (1982, 19830, b),
Mohr a n d Henderson (1986), Dechter and Pearl (1988), and
Dechter a n d Dechter (1987). Section 2 introduces the CSP
problem class. The n-queens problem a n d a new variant,
confused n-queens, are presented there and provide a con-
venient test-bed f o r the example traces and empirical corn-
parisons that follow.

T h e importance o f CSP is due to the wide range of prac-
tical problems it can be used t o model. Applications o f the
s tandard form of the problem o r a close relative have
included such diverse areas as theorem proving (Purdom and
Brown 1981; Van Hentenryck and Dincbas 1986), belief
maintenance (Dechter 1 9 8 7 ~ ; DeKleer 1986; Doyle 1979),
graph problems (Fowler ef al. 1983; McGregor 1979; Ullman

NADEL I89

1976), machine vision (Davis and Rosenfeld 198 1 ;
Mackworth 1977b; Waltz 1975), event scheduling (Rit 1986;
Tsang 1987), floor-plan design (Eastman 1972), and plan-
ning genetic experiments (Stefik 1981).

As might be expected, many algorithms have been devel-
oped for solving constraint satisfaction problems. This paper
provides a unified comparison for some of these, in terms
of three classes: (i) treesearch, (ii) arc consistency, and (i i i)
hybrid tree search/arc consistency algorithms. Section 3
presents three tree search algorithms: the classic Backtracking
algorithm and two algorithms by Gaschnig, Backjumping
and Backmarking. Backjumping is closely related to
dependency-directed backtracking in truth-maintenance
systems (Doyle 1979) and intelligent backtracking in Prolog
(Bruynooghe and Pereira 1984; Kumar and Lin 1988).
Backmarking is important in being one of the most efficient
algorithms considered here.

Section 4 treats the class of arc consistency (AC) algo-
rithms (Mackworth 1977a; Mohr and Henderson 1986;
Waltz 1975). These are simplification algorithms which
convert the initial problem into a simpler version with the
same solutions. Path consistency algorithms (Mackworth
19770; Mohr and Henderson 1986; Montanari 1974) are
analogous in that they are also a form of simplification algo-
rithm. Freuder (1978) has generalized these simplification
approaches with the concept of j-consistency. In his terms,
arc consistency corresponds to 2-consistency and path con-
sistency to 3-consistency. We do not consider herej-consis-
tency algorithms for j 2 3 because past experiments
(McGregor 1979) show them to be not cost-effective in
general. In fact we go the other way. Section 4.1 introduces
a set of partial arc consistency algorithms, which could be
said to achievej-consistency for 1 < j c 2. These we call
AC’/s, AC1/4, A C h , and AC1/2, where the fractional suf-
fixes are more or less proportional to the degree of arc con-
sistency they attain. They are reduced analogs of the classic
f u f f 0’ = 2) arc consistency algorithms which Mackworth
(1977a) has called ACI, AC2 and AC3. The latter are treated
in Sect. 4.2.

Section 5 considers 13 hybrid algorithms that embed arc
consistency processing at each node of a tree search. This
section builds a bridge between the “network consistency
school of thought” and the “tree search school.” The tree
search/arc consistency hybrid algorithms are considered
along a spectrum according to the degree of arc consistency
they achieve at their search tree nodes. Several new hybrid
algorithms are presented, which arise naturally to fill gaps
in this spectrum. Also, several important known algorithms
- Haralick’s Full and Partial Lookahead and even the
classic Backtracking algorithm - are seen as having this
hybrid form when certain rearrangements are made in the
nesting of their loops. However, the embedded arc con-
sistency components are not necessarily full arc consistency
algorithms. Rather, they may be the above-mentioned par-
tial AC algorithms, AC1/5, AC1/4, AC1/3, and AC’/2, of
Sect. 4.1. The hybrid algorithms of Sect. 5 are treated in
two groups: nine that guarantee full arc consistency4 at
each search tree node (Sect. 5 . 1) and four that guarantee
successively lesser degrees of partial arc consistency at the
nodes (Sect. 5.2).

?his does not necessarily mean that they use only full arc con-
sistency procedures at the nodes, as will be seen in Sect. 5 .

In anticipation of their embedding into a tree search shell,
each of our AC algorithms is parameterized to allow arc con-
sistency processing to be carried out on appropriate, adjust-
able subgraphs of the constraint network local to the corre-
sponding tree node. Figure 8 gives a unified single algorithm
that subsumes all our 13 hybrids. Table 1 gives a summary
of the schematic structures of these hybrids. As seen there,
the structures are all of the form TS + AC, or TS + ACI
+ AC,, where ACI and AC2 are one of the full or partial
AC algorithms of Sect. 4 , and TS stands for the tree search
shell in which they are embedded. Rationalized new names
are suggested for these algorithms which reflect their struc-
tural relationship.

Section 6 presents empirical complexity results for the tree
search algorithms of Sect. 3 and the hybrid algorithms of
Sect. 5 , together with general conclusions. We find that the
Backmarking tree search algorithm and the hybrid algorithm
Forward Checking are the (essentially equal) best two of the
algorithms studied. We also find that of the hybrid algo-
rithms, partial AC hybrids are more efficient than full AC
hybrids. In fact, of the partial AC hybrids, the best one,
Forward Checking, does the second least amount of arc con-
sistency processing at the tree nodes. The exact results are
given in Tables 2 and 3 and are summarized in the schematic
plot of Fig. 13. We see from these results that even though
less arc consistency at the tree nodes results in more nodes
per tree, reduction of the work at each node can more than
make up for the extra nodes incurred and can lead to less
work over the whole tree.

There is a break-even point, however, along this spectrum
of degree of arc consistency attained at the nodes, where
the optimum efficiency is achieved. For the hybrid algo-
rithms studied here, this is at Forward Checking. However,
the spectrum view suggests considering algorithms on either
side of Forward Checking on the spectrum for a possibly
better hybrid (see Fig. 13). This has led us to a new algo-
rithm which preliminary experiments do in fact show to be
the better than all other algorithms considered here. It is
discussed briefly in Sect. 6 and will be reported more fully
in a later paper.

Appendix I further clarifies the algorithms by presenting
more-detailed explanations and traces for them. Appendix
I1 discusses aspects of the Pascal-like programming language
used to present the algorithms. This paper is an extension
of an earlier version (Nadel 1988a). Several algorithms have
been added and the presentation has been significantly
restructured to make the main concepts more transparent.
The earlier version, however, may be useful in providing
a different slant on this material and for some additional
detailed examples. Another useful review article in the same
spirit is Mackworth (1987).

2. Constraint satisfaction problems
Constraint satisfaction problems have three components:

variables, values, and constraints. The goal is to find assign-
ments of the variables to their candidate values such that
all the constraints are satisfied. We will here be concerned
with the version of the problem where aN such assignments
are sought. The well-known n-queens puzzle is often used
to exemplify constraint satisfaction problems. This is the
problem of finding all ways to place n queens on an n x n
chess board so that no two queens attack each other. To
avoid notational conflict, we will henceforth refer to it as

190 COMPUT. INTEL1 . VOL. 5 . 1989

q-queens rather than n-queens, reserving n for the number
of variables in a problem.

It should be kept in mind that q-queens itself is not a con-
straint satisfaction problem, but rather can be naturally for-
mulated as one. There are in fact quite a few natural alter-
native formulations of q-queens as a constraint satisfaction
problem, as discussed in Nadel (1988b). In general, these
have different numbers of variables, and different values
and constraints.

The standard constraint satisfaction formulation of
q-queens is to associate a variable zi with each of the
1 I i 5 q rows of the board. Since there must be exactly
one queen per row if q queens are to be placed on the board
with no two attacking, then we need only know what column
the queen is in for each row. Thus each variable zi can have
a domain of candidate values, d,, = (1 2 ... q] , whose
members denote the corresponding board column, with
assignment zi = j meaning that the queen in row i is in
column j . The condition that no two queens attack each
other can be considered as c = (;) binary constraints,
expressible analytically as (zi # z,) A (li - j (# I zi - z,!),
for 1 I i < j I q, since this ensures that no two queens
are in the same column or diagonal of the board. (That no
two queens are in the same row is already taken care of by
allowing only one value per variable.) In terms of the Pascal-
like programming language we will be using throughout (see
Appendix 11), these constraints can be expressed by the fol-
lowing Boolean function for testing whether value zi for zi
and value zj for zj are compatible.

FUNCTION check (i, zi, j , zj): Boolean;
check - (zi # zj) and (abs(i - j) # abs(zi - zj));
END;

We will make use of 4-queens (and in Appendix I , also
of 5-queens) under the above formulation to exemplify the
working of the hybrid algorithms of Sect. 5 . For the tree
search algorithms of Sect. 3 , however, a more convenient
running example will be confused 4-queens. Confused (or
inverse) q-queens is a new variant of q-queens for which one
seeks all ways to place q queens on a q x q chess board,
one queen per row, so that each pair of queens does attack
each other. A constraint satisfaction formulation is obtained
as for regular g-queens, but with the constraints now being
(z; = z;) V (li - jl = Izi - zit), for 1 I i < j I q. These
are programmable as for check above with the obvious
changes.

Confused q-queens is not really much of a puzzle, since
it is easy to discover the pattern in generating the set of solu-
tions for any q. There are q + 2 solutions, one for each
board column and one for each of the two principal diago-
nals. Each arrangement of the q queens along one of these
q + 2 straight lines generates one of the solutions. The only
exception is for q = 3 , in which case there are nine solu-
tions (four of which do not correspond to the above-
mentioned pattern):

Although not particularly challenging for people, con-
fused q-queen nevertheless provides a convenient, nontrivial
test-bed for the constraint satisfaction algorithms below,

since these cannot take advantage of the pattern in the solu-
tions as can humans. In fact, confused q-queens perhaps
provides a more appropriate test-bed than does the oft-used
q-queens problem, in the sense that the number of solutions
for confused q-queens and for q-queens are respectively
linear and (apparently) exponential in q (see Tables 2 and
3 of Sect. 6). The former is more representative of realistic
problems, since it is unlikely that real problems would
swamp one with solutions as does q-queens.

Related to this, we find that the constraints of q-queens
grow increasingly loose with q, whereas those of confused
q-queens grow tighter. Looser constraints mean more
solutions, and also larger search trees and more complex
searches. The usefulness of tightness parameters in obtaining
precise complexity expressions, and in designing effective
problem-solving heuristics based on those expressions, has
been seen in Nadel (1986, 19886) and Nude1 (1983~).
Specifically, the constraint looseness or the constraint
satisfiability rario, R(zi z,), for a constraint C(zi 2,) was
defined there as the fraction of’the tuples that actually satisfy
the constraint out of all the candidate tuples in the corre-
sponding Cartesian product dzp x d,. For q-queens and
confused q-queens it can be shown that the satisfiability
ratios are given respectively by

and its complement

It should be kept in mind that actually neither of the above
two families of queens problems is particularly representative
of constraint satisfaction problems in general - which is
not surprising, since each family is generated by only a single
parameter q. First, both kinds of queens problems (under
the above formulations) have variables all with the same
domain. Second, the instances are what might be called com-
plete binary constraint satisfaction problems in that (i) each
of their constraints involves only two variables (hence
binary) and (ii) all pairs of problem variables have such a
binary constraint on them (hence complete).

The algorithms below assume complete binary instances
because this considerably simplifies the presentation. Also,
for the same reason, the algorithms all instantiate variables
and (or) check constraints in the natural order. However,
in most cases these order restrictions can be readily over-
come by a slight extension of the algorithms or simply by
a reindexing of the variables and constraints to correspond
to the new orders desired. On the other hand, it is not clear
how one could, or whether one should, generalize algorithms
Backjump and Backmark to allow constraints to be checked
in any but the natural order. The instantiation order though
could quite conceivably be changed for any of the
algorithms.

A more general treatment of constraint satisfaction prob-
lems and some of their algorithms can be found in Nadel
(1986). The algorithms there are written so as to allow
arbitrary instantiation order and constraint-check order. The
problems are allowed to have variables zi each with an
arbitrary domain, of an arbitrary number, mz,, of values
of arbitrary type. And instances are allowed to have an
arbitrary number of constraints C,, each over an arbitrary
subset 2, of the n problem variables z,, with possibly zero,
one, or even more than one constraint on a given subset of

NADEL 191

variables. All our algorithms below assume complete binary
instances on n variables, each with integer domain (1 2 ...
rnz,J, although the domains are not necessarily of the same
size. Our running examples (formulating q-queens and con-
fused q-queens) are all of this form, but with all domains
of the same size, equal to the number of variables, so that
n = q = mz8 for each zi.

3. Tree search algorithms
This section treats three tree search algorithms for solving

constraint satisfaction problems: the traditional Backtrack-
ing algorithm and two algorithms due to Gaschnig, Back-
jumping and Backmarking. The action of these algorithms
is shown graphically in Figs. 1 and 2 (and in more detail
in Appendix I), using confused 4-queens as an example.’
We will see that there are certain inefficiencies in the stan-
dard Backtracking approach. These have been noted by pre-
vious researchers (Gaschnig 1974; Haralick and Elliot 1980;
Mackworth 1977a) and are often grouped under the heading
of thrashing behavior. We will see that Backjumping and
Backmarking are able to avoid some of these inefficiencies.
Backjumping can be seen as achieving what we call “hori-
zontal” savings compared to Backtracking, while
Backmarking’s savings are “vertical.” Note that although
Backtracking is the prototypical tree search algorithm, we
will see later (Sect. 5.2.4) that a modified version involving
loop renesting can be viewed as belonging to the class of
hybrid tree search/arc consistency algorithms dealt with in
Sect. 5.

3.1. Backtracking
Apart from generating all I ly= I mz, possible n-tuples and

checking each against the constraints, the most straightfor-
ward approach to solving constraint satisfaction problems
is via the traditional Backtracking algorithm (Bitner and
Reingold 1975; Golomb and Baumert 1965; Walker 1960).
a version of which is given below. This generates a tree of
all instantiations (assignments) of values to variables, check-
ing each instantiation against all earlier ones along the cor-
responding branch of the tree. Only if no incompatibility
occurs between the current instantiation and a past one does
the branch get extended by instantiating the next variable
to each of the values in its candidate domain. This of course
has a potentially great advantage over the brute-force
generation and tesing of all possible n-tuples in that large
subsets of inconsistent n-tuples may be avoided each time
a branch of the search tree is pruned. The algorithm may
be implemented as follows.

PROCEDURE BT(k, VAR z);
FOR z[k] - 1 TO m[k] DO

BEGIN
Consistent - True;
FOR p - 1 TO k- 1 WHILE consistent DO

IF consistent THEN

END

consistent - check(p, z[p], k, z[k]);

IF k = n THEN output(z) ELSE BT(k + 1 , z)

END;

’We use the confused version of the problem because the dif-
ference between Backtracking and Backjumping already shows up
at confused 4-queens, but does not show up using regular q-queens
till q = 6 . See Table 3.

The initial call to BT(k, z) has k = 1, with the value of z
being arbitrary. Parameter z is an array of integer com-
ponents z[11 to z[n] for storing instantiations respectiveIy
for z , to z,. Note that z is a reference parameter of BT,
since it is preceded by VAR. This is only in order to save
space and is not a logical necessity. The domains dzk = [1
2 ... mZJ for variables zk are represented by array m whose
components m[k] = mZk store the upper-bounds for the
corresponding domains, 1 5 k 5 n.6 This array is avail-
able to BT as a global variable.

A trace of the z1 = 2 subtree for BT solving the con-
fused 4-queens problem is shown in Fig. 1. (This figure also
applies to the Backjumping algorithm discussed below. The
greyed-out parts and the “Backjump!” arrows are for that
algorithm and should be ignored for the time being.) The
rectangles into which the tree is partitioned in the figure
denote nodes. These are labeled A to I in the order of their
generation by BT. (There are of course nodes generated
between A and B, and after I, that are not shown.) Note
that, as for any recursive process, there is more than one
way to partition a search tree, such as that in Fig. 1, into
nodes. We define a node to be the processing done within
the corresponding call of BT, exclusive of any recursive sub-
calls. The number of nodes is the number of calls of BT.
(Similar definitions apply for the other algorithms below.)

Given the above form of BT, at each node we first instan-
tiate the corresponding variable, then check for consistency.
We might have rewritten BT, and correspondingly reparti-
tioned the tree, so that a node involved first checking con-
sistency (of the instantiation made at the parent node) and
then instantiating the next variable.’ This is in fact how the
version of Backtracking in Nadel(l986) works. Section 5.2.4
below introduces yet a third variation. It retains the node
structure used here, but changes the order of processing at
a node. (Analogous differences exist between the alternative
versions of the Forward Checking, Partial Lookahead, and
Full Lookahead algorithms below and in Haralick and Elliot
(1 980) and Nadel (1 986).

For discussion purposes, the following terminology will
be useful. The node corresponding to a call BT(k, z) we call
a level-k node; the root node being at level k = 1. At such
a node, variable zk is called the current variable. It is the
variable that is instantiated at the node. Variables zl to zk-
have already been instantiated, and these we call the past
variables, while variables to Z, are yet to be instan-
tiated and are called thefuture variables. To include the cur-
rent and future variables together, we sometimes use the
term nonpast variables. These naming conventions will apply
also to all subsequent algorithms below.

At the left of Fig. 1 (and Fig. 2) are shown the search tree
level numbers 1 I k 5 n and the current variables zk that
are being instantiated at the corresponding level’s nodes.
(The numbers at the ends of the arcs within the nodes are

6Note that we use k to denote the algorithm variable and k to
denote its generic value. Extending this, we use m or m[k] to denote
the algorithm array variable, m[k] to denote the variable that is
the kth component of m[k], and m[k] to denote the generic value
of the component variable m [k] . Similar notation will be used
throughout to denote simple and compound algorithm variables
and their values.

’In other words, using I for instantiation and C for constraint
checking, the sequence ICICIC ... along a branch of a search tree
could be partitioned either as llClICllCl ... or as 4CIlCqC ...

192 COMPUT. INTELL. VOL. 5 , 1989

of course the values to which the corresponding variable is
instantiated). Also shown on successive rows for a given level
are the constraints C(z,, z k) for 1 5 p s k - 1, in the
order in which they are checked at that level’s nodes. Within
nodes of the figure, we use crosses and check marks respec-
tively to denote whether the corresponding constraint (the
one on that row of the figure) was violated or satisfied when
checked.

Checking of a given instantiation against past instantia-
tions of course stops when the first violation is found, and
the next instantiation is then tried. Thus, for example, the
constraint checks at node E in Fig. 1 are performed in the
order given by their labels a to f which we have added.
Recursion takes place at each point that all applicable checks
have succeeded for a given instantiation. Thus, for exam-
ple, node F is generated after check c at node E. Node F
is then completed before returning to instantiation z3 = 3
and check d at node E. As we will see (in connection with
Fig. 12), our modified BT of Sect. 5.2.4 orders checks and
interleaves recursion quite differently at a node, although
the same checks and nodes occur, and nodes are generated
in the same order.
3.2 Backjumping

There are certain inefficiencies in straight Backtracking.
For example, look at node H of the BT trace in Fig. 1. Each
instantiation of z4 performed there fails against a past
instantiation no deeper than for z2. But BT returned to
level k = 3 from node H and tried different values for z3
in node G. There is no point in doing this since each possi-
ble z4 value has just been found incompatible with instan-
tiations at even shallower levels. Changing the 23 values,
and not those for z1 or z2, will only allow the same incom-
patibilities to reoccur when the z4 instantiations are per-
formed again, as is in fact the case at node I.

To avoid this inefficiency, Backjumping backs up possibly
more than one level. When backing up from a node where
all values of a variable were found to be incompatible with
some past instantiation along that branch, Backjumping
backs up all the way to the level of the deepest such past
incompatible instantiation. Of course, the bigger the number
of levels backjumped over, the greater the savings. For
node H, the deepest past variable whose instantiation is
incompatible with a q value is zz, not z3. We therefore may
avoid irrelevant reinstantiation of z3 and jump back from
node H (fleetingly through node G) to node B to try the next
instantiation there, z2 = 4. This is shown by the rightmost
arrow labeled “Backjump!” in the figure. A similar back-
jump is shown by the leftmost “Backjump!” arrow.

As shown by the greyed-out regions of the BT search tree,
the rightmost backjump avoids two instantiations and three
constraint checks in node G and avoids generating node I
completely, saving four instantiations and five constraint
checks there. The leftmost backjump does not avoid any
node generation (since both remaining z3 instantiations at
node C fail anyway, preventing any more subnodes of C),
but avoids two instantiations and three constraint checks
at node C. These savings are reflected in the counts for BJ
in the table at the right of Fig. 1. For the section of the tree
shown in the trace, BJ beats BT with 32 versus 43 checks
and 8 versus 9 nodes. For the whole problem, due to several
more backjumps, BJ beats BT with a total of 139 versus

160 checks, and 27 versus 29 nodes. Further comparisons
occur in Tables 2 and 3 of Sect. 6.

This multi-level or nonchronological backtracking is
implemented by the BJ algorithm below, which is Gaschnig’s
Backjump (Gaschnig 1978, 1979) modified to find all solu-
tions. (Another variant appears at the end of this section.)
Backjump is closely related to dependency-directed Back-
tracking in truth maintenance systems (Doyle 1979) and
intelligent backtracking in Prolog (Bruynooghe and Pereira
1984; Kumar and Lin 1988).

1 FUNCTION BJ(k, VAR z) : integer;
2 returndepth - 0;
3 FOR z[k] - 1 TO m[k] DO
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

BEGIN
Consistent - True;
For p - 1 TO k- 1 WHILE consistent DO

IF not consistent THEN faildepth - p- 1;

IF consistent THEN

consistent - check(p, z[p], k, z[k]);

(gives p value of last completed FOR cycle.]

IF k = n THEN BEGIN
output(2);
faildepth - n- 1
END

faildepth - BJ(k+ 1, z);
IF faildepth < k THEN

END;
returndepth - max(returndepth, faildepth)
END:

ELSE BEGIN

Return(fai1depth)

22 Return(returndepth)
23 END;

Parameters k and z of BJ are as for BT, with the same
initial values. Again z is a reference parameter in order to
save space, but not because of logical necessity. Figure A1
of appendix I gives a more detailed view of the processing
in Fig. 1 in terms of the returndepth and faildepth variables.

BJ can be rewritten as BJ2 below to make clearer its cor-
respondence with algorithm BM of the next section. Note
that BJ above sets faildepth to p - 1 at line 8 only when an
inconsistency has been found. But BJ2 makes this assign-
ment, to MaxCheckLevel, whether an inconsistency is found
or not. Thus in the case that an inconsistency is not found,
the counterpart variables faildepth and MaxCheckLevel
apparently get different values in the two versions of BJ.
However, a little thought shows that this is not the case’
and the two algorithms are functionally equivalent.

‘See Appendix 11 regarding why p - 1 and not p is used here
and also in algorithm BM below.

91n BJ when an inconsistency is not found, there are two
possibilities: (i) If k = n then faildepth gets the value n - 1 . But
in this case, this is the same value as already given to Max-
CheckLevel at line 8 in 852 (and thus the explicit assignment to
n - 1 at line 13 of BJ is avoided in BJ2). (i i) If k # n then
faildepth gets the value returned by the recursion at line 16 of BJ.
This will generally not be the value of MaxCheckLevel from line
8 of BJ2, but on return from recursion by BJ2 at line 16, Max-
CheckLevel will in any case be overwritten and set correctly to the
same value as faildepth gets.

NADEL 193

The faildepth variable is renamed MaxCheckLevel in the
new version of BJ because for a given instantiation it is set
to the index p (or level) of the deepest past variable z,
whose value is tested against the instantiation. It thus
necessarily corresponds to an actual “fail depth” only when
its value is less than k - 1. If it is equal to k - 1, then a
fail (inconsistency) may or may not have occurred. Note that
BJ2 has been written as a procedure, not a function, in order
to make closer the connection with BM of Sect. 3.3. Further
discussion of BJ/BJ2 in relation to BM appears in that
section.

1 PROCEDURE BJ2(k, VAR z, VAR MaxCheckLevel);
2 returndepth - 0;
3 FOR z[k] - 1 T O m[k] DO
4 BEGIN
5 Consistent - True;
6
7
8 MaxCheckLevel - p - 1;
9
10 IF consistent THEN
11
12 ELSE BEGIN
13
14 IF MaxCheckLevel < k

15 END;
16 returndepth - max(returndepth, MaxCheckLevel)
17 END;
18 MaxCheckLevel - returndepth
19 END:

FOR p - 1 TO k- 1 WHILE consistent DO
consistent - check(p, z[p], k, z[kJ);

{gives p value of last completed FOR cycle.)

IF k = n THEN output(z)

BJ2(k + I , z, MaxCheckLevel);

THEN Return

3.3. Backmarking
There would still seem to be room for improvement in

the Backjumping approach, since many constraint checks
are still repeated. Any such repetitions are of course
wasteful, but the trick is to avoid them without incurring
an inordinate penalty in terms of space required. Note also
that the naive approach of simply keeping a large table stor-
ing the results of past checks requires too much memory in
general. Moreover, it only replaces function calls by faster
table look-ups. Wasteful repetitions of the same table look-
ups still occur, thus reducing the average check time but not
really avoiding check repetitions. Gaschnig’s Backmark
algorithm (Gaschnig 1977) manages to avoid a large number
of repetitive checks in a way that avoids both these pitfalls.

Algorithm BM below is Gaschnig’s Backmark modified
to find all solutions. Another version of the algorithm and
a useful discussion are given by Haralick and Elliot (1980).
Figure 2 shows a trace of BM solving the same zI = 2 sub-
problem as used in Fig. 1 for BT and BJ. The BM algorithm
avoids some of BT’s constraint checks (but not its nodes
or instantiations) in the following two ways:

(a) If, at the most recent node where a given instantia-
tion was checked, the instantiation failed against some past
instantiation that has not yet changed, then it will fail against
it again. Therefore all constraint checks involving it may
as well be avoided and the next instantiation tried.

(b) If, at the most recent node where a given instantia-
tion was checked, the instantiation succeeded against all past
instantiations that have not yet changed, then it will succeed

against them again. Therefore we may as well check the
instantiation only against the more recent past instantiations
which have changed.

As before, the processing avoided compared to BT is
indicated in Fig. 2 by greyed-out regions. Grey circles denote
constraint check savings of type (a) above and grey squares
denote savings of type (b). Note that type (a) savings always
correspond to a column of zero or more circled check marks
under a given instantiation, ending in a circled cross. The
only example of this with more than zero circled check marks
occurs under instantiation z4 = 2 in node I of Fig. 2.
Type (b) savings always correspond to a column of one or
more squared check marks, followed by uncircled check
marks or crosses. No examples of this with more than one
squared check mark occur in the figure.

The savings by BM compared to BT are reflected in the
counts in the table at the right of Fig. 2. In terms of checks,
BM is significantly better than both BT and BJ for the seg-
ment of the trace shown and for the whole problem. More
data appears in Tables 2 and 3, where BM will be seen to
be one of the most efficient of a11 the algorithms studied,
agreeing with the findings of Haralick and Elliot (1980).

PROCEDURE BM(k, VAR z, VAR MaxCheckLevel,

FOR z[k] - T O m[k] DO
VAR MinBackupLevel);

IF MaxCheckLevel[k, z[k]] 2 MinBackupLevel[k]
THEN
BEGIN(Type (a) savings when this block is avoided. 1
Consistent - True;
FOR p - MinBackupLevel[k] TO k - 1

[Type (b) savings if MinBackupLevel[k] > 1 .)
WHILE consistent DO

consistent - check(p, z[p], k, z[k]);

(gives p value of the last completed FOR cycle.)
MaxCheckLevel[k, z[k]] - p - 1;

IF consistent THEN
IF k = n THEN output(z)

ELSE BM(k + 1, z, MaxCheckLevel,
MinBackupLevel)

END;
MinBackupLevel[k] - k - 1;
FOR i - k + l T O n DO

MinBackupLevel[i] - min(MinBackupLevel[i], k - 1)
END;

Parameters k and z of BM are as for BT and BJ, with
array z again being a reference parameter only to save space
but not because of logical necessity. However, arrays
MaxCheckLevel and MinBackupLevel must be reference
parameters. The former is an n x m array, where
m = m a x ~ = , (m ,) , and the latter is a 1 x n array like z.
As for BT and B i , the initial call t o BM inputs k = 1, with
the initial value of array z being irrelevant. Arrays Max-
CheckLevel and MinBackupLevel start with all elements ini-
tialized to 1. Note that since all array formal parameters are
reference parameters, the memory requirements are quite
manageable in general.

MinBackupLevel[k] in BM stores the minimum level to
which backup has occurred since the last level-k node was
completed. MaxCheckLevel in BM is a generalization of that
variable in algorithm BJ2 above. It is used to remember the

194 COMPUT. INTELL. VOL. 5 . 1989 - A

2

1

x # 1 2 3 4

X J X X
X -

1 2 3 4
X J X X

J ‘
P
U. ::

X f

FIG. 1. The z , = 2 subtree when solving confused 4-queens by BT and BJ.
(Greyed-out instantiations, constraint checks, and nodes are avoided by BJ.)

B:

B1

k = l I*
z l r 2 I

2 3 4 1

1 2 3 4
X J X X

X

FIG. 2. The z, = 2 subtree when solving confused 4-queens by BT and BM.
(Greyed-out constraint checks are avoided by BM.)

individual MaxCheckLevel values of BJ2, whereas these are
forgotten in the latter algorithm. This remembering is
achieved by (i) having MaxCheckLevel of BM be an array,
as opposed to an integer variable in BJ2, and storing indi-
vidual MaxCheckLevel values for (k, va/) pairs in
MaxCheckLevel[k, val], and by (ii) having MaxCheckLevel
of BM be a reference parameter so that its data from a given
node is available to chronologically later nodes in the search.
Figure A1 of Appendix I gives a more detailed view of the
processing in Fig. 2, showing values of the
MaxCheckLevel[k, val J and MinBackupLevel[k J variables.

We can think of the BM’s savings compared to BT as
being “vertical” savings, while BJ’s savings are “horizon-

tal.” BM saves checks by possibly doing less checks for a
given instantiation. We call this a vertical savings since the
checks for a given instantiation appear vertically in our
traces. BJ, on the other hand, once it makes a given instan-
tiation, has no way of avoiding any of the checks made by
BT. Rather, by backjumping over multiple levels, BJ may
avoid some instantiations at ancestor nodes, and hence avoid
the checks and possible descendant nodes corresponding to
these avoided instantiations. Avoiding instantiations at a
node is a horizontal savings because successive instantiations
occur horizontally in our traces. Whereas, compared to BT,
BJ may avoid instantiations (and corresponding checks and
nodes), but may not avoid checks for a given instantiation

NADEL 195

once made; BM may avoid checks for a given instantiation,
but may not avoid any instantiations (or nodes). These
effects are perhaps clearer in the more detailed traces of
Fig. A1 in Appendix I.

Something to think about would be a synthesis of BM and
BJ into an algorithm called, say, BMJ (BackMarkJump).
We see in Figs. 1 and 2 that each algorithm avoids some
checks that the other doesn’t. Is it possible to combine both
approaches while retaining all, or most, of the power of
each? Our preliminary attempt at such an algorithm sug-
gests that the answer may be no. This is perhaps why
Gaschnig did not suggest such a synthesized algorithm.
However, more thought on this is warranted.

4. Arc consistency algorithms
An important class of algorithms for (partially) solving

constraint satisfaction problems is what Mackworth (19774
has called arc consistency (AC) algorithms. Their develop-
ment can be traced back to the apparently independent work
of Waltz (1975), Ullman (1973, 1976), and Fikes (1970).
Gaschnig (1974, 1978, 1979) was also one of the first in this
area. Others that have been active in developing (full or par-
tial) arc consistency algorithms are Rosenfeld (1979,
Rosenfeld et al. (1976), McGregor (1979), Mackworth
(1977a), Freuder (1978), Haralick et al. (1978), Haralick and
Shapiro (1979, 1980), Haralick and Elliot (1980), and Mohr
and Henderson (1986).

An arc consistency algorithm can be thought of as a
simplification algorithm which transforms the original prob-
lem into a simpler version that has the same solutions. In
some cases the resulting problem is so simple that the solu-
tions (or lack thereof) become manifest and the original
problem is solved. Often, however, the simplification pro-
cess “dries up” before the solutions are exposed and a non-
trivial problem remains to be solved. More extensive
simplifications are possible. The path consistency algorithms
PCl and PC2 of Montanari (1974) and Mackworth (1977~)
and PC3 of Mohr and Henderson (1986) represent another
level in this simplification approach. Arc and path consis-
tency are further generalized by Freuder’s concept of
j-consistency (Freuder 1978), in terms of which the former
become 2-consistency and 3consistency respectively. A prob-
lem on n variables is always solved when n-consistency is
attained, but this approach is usually grossly inefficient. We
therefore concentrate here on the relatively low-level simpli-
fication achieved by arc consistency algorithms (full and par-
tial) in anticipation of later using these in hybrid tree
searchlarc consistency algorithms which (i) are relatively
efficient and (ii) are guaranteed to find all solutions.

Arc consistency algorithms are best discussed in terms of
the constraint network representation of a consistent label-
ing problem. A constraint network is a labeled graph with
a node for each problem variable and an arc between each
pair of nodes for which there is a constraint between the
corresponding two variables. The nodes and (optionally) the
arcs are labeled respectively with the names of the corre-
sponding variables and constraints. Examples for 3-queens
and 4-queens problems (under the standard CSP formula-
tion) are seen in Fig. 3. Of course, for q-queens problems
the constraint networks involve complete graphs (on q
nodes) because there is a constraint for each pair of
variables. In the above form, the constraint network repre-
sentation is applicable only to problems whose constraints

each involve no more than two variables. If constraints hav-
ing three or more argument variables are involved, a
graphical depiction will require hypergraphs (Montanari and
Rossi 1988) or some other generalization (Freuder 1978).
Since for simplicity we are assuming only binary constraints,
contraint network representations can be used here.

Mackworth (1977~) used G to denote the constraint net-
work on nodes 1 to n. We will instead use GI:, for this,
since we will find it useful below to generalize to arbitrary
subnetwork on variables i t o j , which we denote by G,. By
definition, the latter subnetwork includes all the arcs between
the variables i to j that were in the full constraint network.

Not all the information about a problem instance is cap-
tured in its constraint network. In particular, the latter rep-
resentation does not show the domain values for each
variable, nor the specific nature of the constraints involved.
This can be overcome by use of an expanded constraint net-
work representation, an example of which is seen in Fig. 4
for 3-queens. Such a representation has also been used by
Gaschnig (1974, 1978), Haralick et al. (1978), and Haralick
and Shapiro (1980). Each network node is expanded to
include one subnode for each domain value of the corre-
sponding variable, and each pair of values that is consis-
tent for two constrained variables is joined by its own
(sub)arc. Two variables that have no problem constraint
between them can be thought of as being constrained by an
implicit universal (i.e., all-permitting) constraint. If the con-
sistent value pairs for such universally constrained pairs of
variables are also linked by an arc in the expanded constraint
network, then a solution to an n-variable problem cor-
responds to an n-clique, and the problem of finding all solu-
tions becomes the problem of finding all n-cliques.

A different graphical representation that will be conve-
nient here involves what we call the domain array. Figure 5
shows an example for 4-queens. A domain array has a row
for each problem variable. The rows therefore correspond
to nodes in the constraint network representation. Each row
is labeled by the corresponding variable name (unless some
standard ordering is implicit, such as the natural order z1
to z, running from top to bottom). The ith cell of a row
corresponds to the ith domain value (under some assumed
ordering) for the corresponding variable; array rows will
therefore be of different lengths when variables have dif-
ferent domain sizes. For q-queens problems (regular or con-
fused) this representation is particularly natural, as the
domain array, using the natural order for rows and columns,
is isomorphic to the underlying chess board. (We assume
such a correspondence in the examples below). But, of
course, the domain array representation applies to any csp,
not just those based on chess boards.

In a domain array, a value that has been eliminated from
the domain of a variable (by arc revision, as discussed below)
is denoted by the corresponding domain array cell being
white. A still viable domain value is denoted by a corre-
sponding grey cell in the array. Later in the context of tree
search, we will also use black cells for values that have been
instantiated to the corresponding variable.

m = assigned value
= eliminated value
= still possible value

A domain array per se does not show which variables are
mutually constraining. This information can, however, be

196 COMPUT. INTELL. VOL. S, 1989

5
FIG. 3. Constraint networks for 3-queens and 4-queens.

easily added in the form of lines or bidirectional arrows at
the side of the array, between the corresponding array rows,
as shown in Fig. 5 for the 4-queens case. Later when discuss-
ing arc revision, these lines or bidirectional arrows become
unidirectional arrows to correspond to directed arcs in the
constraint network. The directed arc from node 2; to node
zj will be written as (i j) . Node zi will be referred to as the
source of the directed arc and node zj as the target. We will
sometimes loosely refer to node (variable) zi as simply node
(variable) i.

The detailed constraint information (legal value-pairs)
denoted by the arcs of an expanded constraint network is
not intended to be incorporated into a domain array repre-
sentation. The strength of the representation is in tracking
the process of arc revision by showing which values of which
domains have been eliminated from consideration, which
are still valid candidates and, in the context of tree search,
which have already been instantiated to the corresponding
variable.

Arc revision is the basic simplification process in the arc
consistency algorithms that follow. A domain value for
variable zi for which there is no corresponding domain
value for zj compatible with respect to the constraint C(z;,
z j) between the variables may be removed from considera-
tion. Such a value for z; can never appear in a solution,
since it has no compatible partner value for z,. Removing
aN domain values of zi that do not have at least one com-
patible zj value is known as revising the directed arc (i j) .
The directed arc (i j) is said to then be consistent. Our ver-
sion of Mackworth’s revise(i, j) function for doing this is
given below. An interesting variation is Gaschnig’s revise-
both((j) procedure (Gaschnig 1978, 1979), which revises
both arcs (i j) and (j i) in one call, at no more cost than
the corresponding two calls to revise separately.

PROCEDURE revise& j, VAR d, VAR empty-domain,

change - False;
di - d[i];
FOR vali - each element of di DO

BEGIN
support-found-for-vali - False;
FOR valj - each element of du]

WHILE not support-found-for-vali DO
IF check(i, vali, j , valj) THEN

VAR change);

support-found-for-vali - True;
IF not support-found-for-vali THEN

END;
BEGIN d[i] - d[i] - (vali); change - True END

IF d[i] = empty THEN empty-domain - True
END;

The reference array parameter d contains in d[i] the cur-
rent (possibly filtered) version of the domain dz, for
variable zi, 1 I i s n. Variables empty-domain and

FIG. 4. Expanded constraint network for 3-queens.

1 2 3 4

FIG. 5. Domain array for 4-queens.

change are included as reference parameters to in-drm the
calling routine respectively whether the domain of zi was
totally depleted and whether any deletion occurred at all.
The latter parameter will be useful later only occa-
sionally. In a call where it is not needed we will use an
actual parameter called dummy as a place-holder.

The above version of revise works by deleting values from
the domain in d[i]. However, an “additive” version of revise
is also possible (as implicit in Fig. 3 of McGregor (1979) and
in CheckForward of Haralick and Elliot (1980), but not
in their Look-Future or Partial-Look-Future which
both use the deleting approach above). In the additive ver-
sion, the filtered domain in d[i] is obtained by successively
adding on to an initially empty list, each value that is found
to have support from a value in du], rather than by succes-
sively deleting from the original list d[i] the values found
not to have any support. The additive approach is a little
less concise in our pseudo-language. But it may be easier
to implement efficiently for languages without good list-
processing facilities, because it allows an array to be used
to represent a list d[i] without the need to move up
nondeleted elements to fill the holes of deleted ones.

Revising several arcs of a problem’s constraint network
may be sufficient to solve the problem. An example is shown
in Fig. 6 where we see that for 3-queens, revising only three
arcs is sufficient to eliminate all values of a domain and
hence to show that there are no solutions. For the purposes
of comparison, the figure shows the domain array, the con-
straint network, and the expanded constraint network rep-
resentations of the arc revisions taking place. Filtering a
domain down to zero remaining values we call a domain
wipe-out. In domain arrays, its occurrence is indicated by
a row all of whose cells are white (remember, a white cell
denotes an eliminated domain value), and for emphasis, we
also draw a wavy line through the row as in Fig. 6.

To clarify the details of arc revision processing, we include
the following listing of the specific constraint checks per-
formed in the three arc revisions of Fig. 6 .

(1 2) 1121F 1122F 1123T 1221F 1222F 1223F 1321T
(3 2) 3121F 3122F 3123T 3221F 3222F 3223F 3321T
(3 1) 3111F 3113F 3311F 3313F

Specifically, it will be needed only in defining the full arc con-
sistency algorithms ACI, AC2, AC3 and in defining AC% and
revise in that they are needed for AC 1.

I0

NADEL I97

revise(l.2) revise(3.2) revise(3.1)
(7 checks) (4 checks)

f t Domain array: Z1
z,
5

Constraint network: z'y3 it7" zlv=
Expanded constraint

network

FIG. 6. Revising three directed arcs for 3-queens is sufficient to show there are no solutions.

Following Gaschnig (1979), we use 5-tuples here to denote
constraint checks. The meaning of the 5-tuple ABCDE is
that instantiation zA = B was checked against zc = D,
and that the result was E, where E can be either T for true
or F for false, indicating respectively that the correspond-
ing binary constraint was found to be satisfied or violated
by the pair of instantiations. For example, tuple 3123T
means that 23 = 1 was checked against z2 = 3, and these
were found to be consistent. Successive checks for a given
arc revision appear left to right on a given line above. SUC-
cessive arc revisions appear on successive lines, preceded by
the corresponding arc (A C). Similar conventions are used
in Appendix I where detailed constraint-check-level traces
are given. Note that in revising arc (3 1) above, checks
involving z , = 2 and z3 = 2 are not tried, since these
values have been removed for the corresponding variables
by the first two arc revisions.

Unlike for the above 3-queens example, in general, revis-
ing arcs is not sufficient to solve a constraint satisfaction
problem. (See the related discussion near the start of
Sect. 4.2.) It may not even suffice to achieve any signifi-
cant simplification of the domains. Extreme examples are
the q-queens problems for q 2 4. In each case, one can
revise (at significant total cost) each of the 2(;) directed
arcs of the constraint network and not find a single domain
value that is eliminated. We are thus led to several
possibilities:

1. One may pursue further degrees of simplification, such
as path consistency, along thej-consistency spectrum. But
short of attaining n-consistency, this approach on its own
is still not guaranteed to solve the problem, and if it does,
it is usually not cost-effective.

2. One may apply a simplification process as a prelimi-
nary to a tree search algorithm such as those of Sect. 3.
Again, high-order simplification is usually not cost-effective
in preprocessing, but low-order may be.

3. One may apply a simplification process (again, low-
order appears best) at each node of the tree search algorithm.
We will see that many important algorithms can in fact be
seen to be of this form. Approach 2 above is a special case
of this where simplification is applied only at the root node.

In anticipation of approach 3, the next subsection defines
certain partial arc consistency algorithms for revising various
subsets of the arcs in a constraint network. The subsection
after that defines some importantfull arc consistency algo-

rithms. The sense in which these are full and partial AC algo-
rithms will be discussed later. Section 5 shows how both full
and partial AC procedures may be incorporated into a tree
search process. To allow this, each AC procedure below
(unlike the original ACl , AC2, and AC3 of Mackworth
(1 9 7 7 ~) has a parameter k, to later correspond to the depth
in the search tree, and, like revise itself, has a parameter
d to later store the state of each domain local to a given
search tree node. Also, like revise (but unlike the original
ACI , AC2, and AC3), each of our AC procedures has a
parameter empty-domain for letting its calling routine
know if a domain was filtered to empty. In each of our AC
aigorithms, arc revision ends as soon as a domain is made
empty.

Unlike for the other two classes of algorithms (tree search
and hybrid), the AC algorithms of this section are given
without any accompanying example traces. This is because
the traces of the hybrid algorithms of Sect. 5 can double
as traces for the AC algorithms, since the latter algorithms
are used as components at the nodes of the former. Thus
the reader should refer to the node processing of the hybrid
algorithm traces in Figs. 10-12 of Sect. 5 and also in
Figs. A2-A.7 of Appendix I , for examples of the working
of this section's algorithms.

4. I . Partial arc consistency algorithms
This section introduces several partial arc consistency pro-

cedures for revising various combinations of arcs in the con-
straint network G,:". The particular combinations revised
are motivated by the hybrid algorithms of Sect. 5 , in which
the present AC procedures are used as components. We
name these procedures ACi, for various fractional i. This
is by analogy with the classic full arc consistency algorithms
(discussed in Sect. 4.2) which Mackworth (1977~) has called
ACI , AC2, and AC3. Our fractional suffixes are intended
to denote partial arc consistency, with the fraction being
more or less proportional to the degree of arc consistency
attained .

PROCEDURE ACVs lor CheckBackward f

empty-domain - False;
FOR p - I TO k - 1 WHILE not empty-domain DO

END;

(k , VAR d, VAR empty-domain);

revise(k, p, d, empty-domain, dummy)

198 COMPUT. INTELL. VOL. 5 , 1989

4

2,

5
2.

4
z,

5

z. 2.

23 5

FIG. 7 . Examples of arcs revised by various calls to our parametric partial arc consistency algorithms ACi(k) , i = %, 94, v3, 92.

The above procedure revises the arcs (k, p) , 1 5 p < k,
once each, in lexographical order. It is essentially the
unnamed procedure of McGregor (1979, p. 241). This was
found after it was independently arrived at here for the pur-
pose of reformulating (in Sect. 5.2.4) the Backtracking algo-
rithm of Sect. 3.1 as a tree search/arc consistency hybrid
algorithm. This reformulation corresponds to a loop-nesting
interchange of the original BT. If in AC% one expands out
the call to revise, we see that the nesting of loops is essen-
tially nesting (a) below. BT of Sect. 3.1, on the other hand,
corresponds to the loop nesting shown in (b). We will see
that when ACV5 is used in the context of the reformulated,
revise-based BT, there is in fact only one value in each d[p],
SO the last loop of nesting (a) may be ignored, leaving nesting
(b), but with the order reversed. This will be discussed fur-
ther in Sect. 5.2.4.

(a) FOR p - 1 TO k-1 DO
FOR each valk in d[k] DO

FOR each valp in d[p] DO ...
(b) FOR each valk in d[k] DO

FOR p - 1 TO k-1 DO ...
The following procedure revises the arcs (f, k - l),

k s f I n, once each, in lexographical order. It is essen-
tially the procedure that Haralick and Elliot (1980) called
Check-Forward. However, it also appears earlier,
unnamed, in Fig. 5 of McGregor (1979). It will be useful
later in defining several hybrid algorithms of Sect. 5 .

PROCEDURE ACY4 (or CheckForwardJ

empty-domain - False;
FOR f - k TO n WHILE not empty-domain DO

END;

(k, VAR d, VAR empty-domain);

revise (f, k - 1, d, empty-domain, dummy)

In Sect. 5 when it is used as a component in hybrid algo-
rithms, ACY4 will also use revise in the specialized manner
implied above for ACVs. Due to the instantiations that will
have occurred at ancestor tree nodes, both these procedures
will be used to only revise arcs (i j) whose target nodes j
have exactly one domain value. The other partial and full
arc consistency procedures below, when used in the hybrid
algorithms of Sect. 5 , will, however, use revise in its full
generality with both nodes i and j usually containing more
than one value. It is convenient to introduce the following
subroutine rrevise (note the double r) for making multiple
calls to revise. In particular, rrevise revises the arcs (fl, f 2),
f2-min 5 f 2 I f2_max, f 2 + f 1, once each, in lexo-
graphical order.

PROCEDURE rrevise (fl , f2_min, f2_max, VAR d,
VAR empty-domain,
VAR deletiorloccurred);

deletionoccurred - False;
empty-domain - False;
FOR f2 - f2-min TO f2-max WHILE not

empty-domain DO
IF f2 # f l THEN

BEGIN
revise(f1, f2, d, empty-domain, change);
deletionoccurred - deletionoccurred or change
END

END;
We can use rrevise to write more concisely several useful
arc consistency algorithms. For example, the above ACV5
can now be rewritten simply as

PROCEDURE AC'/5 (or Check-Backward)

rrevise(k, 1, k - 1, d, empty-domain, dummy)
END;

(k, VAR d, VAR empty-domain);

NADEL 199

Note that the deletion-occurred parameter of rrevise
serves the same purpose as the change parameter of revise:
to flag whether any domain value at all was deleted. As with
the change parameter itself, the value of deletiorloccurred
is not usually used by the calling routine, in which case (as
in ACYs above) a corresponding actual parameter dummy
will occur in the call to rrevise.

Unlike ACYs, which varies the target node (the second
parameter of revise) of the arcs being revised, ACV4 varies
the source node (the first parameter of revise) and thus can-
not be rewritten in terms of rrevise. However, rrevise is
helpful in defining the two partial arc consistency procedures
ACY3 and ACY2 below.

PROCEDURE AC!A (or re-nested P a r t i a l L o o k F u t u r e)
(k, VAR d, VAR empty-domain);

empty-domain - False;
FOR f - k TO n - 1 WHILE not empty-domain DO

END;

This procedure revises the arcs (f l , f 2), k I f 1
< f 2 I n, once each, in lexographical order. It is a revise-
based version of the procedure which Haralick has called
P a r t i a l L o o k F u t u r e , used in his Partial Lookahead algo-
rithm (Sect. 5.2.2 below). However, to allow it to be based
on revise we have had to introduce a loop renesting. If in
ACY3 one expands out the call to rrevise and its calls to
revise, we see that the nesting of loops is essentially nesting
(a) below, while Haralick’s version uses nesting (b). ‘ I

rrevise(f, f + 1, n, d , empty-domain, dummy)

(a)FOR f l - k TO n - 1 DO
FOR f2 - f l + 1 TO n DO

FOR each vall in d[fl] DO
FOR each va12 in d[f2] DO ...

(b) F O R f l - k T O n - I D 0
FOR each vall in d[f 1 J DO

FOR f2 - f l + 1 TO n DO
FOR each va12 in d[f2] DO ...

Another partial arc consistency algorithm that will be use-
ful is ACY2 below. It is a more extensive version of ACY3.
It revises the arcs (f l , f2) , k I f 1 # f 2 I n, once each,
in lexographical order, rather than just arcs (f l , f2),
k 5 f l < f 2 I n. Thus AC1/2(k) revises once each
directed arc in the subnetwork Gk,.,,.

PROCEDURE ACV2 (or re-nested Look-Future]
(k, VAR d , VAR e m p t y d o m a i n ,
VAR deletionoccurred);

empty-domain - False;
de le t ionoccurred - False;
FOR f - k T O n WHILE not e m p t y d o m a i n DO

BEGIN
rrevise(f, k, n, d, empty-domain, deletion);
deletion-occurred - deletion-occurred or deletion
END

END;

We will see that ACY2 provides a convenient way to
define the full arc consistency algorithm which Mackworth
has called ACl (Sect. 4.2.1). It is for this purpose only that
ACY2 (unlike ACY3, AC1/4, and ACVs) needs the extra
parameter deletionoccurred, to keep track of whether any
call to rrevise (via any of its calls to revise) caused any
domain to undergo a deletion.

Also, ACY2 is a revise-based version of the procedure
which Haralick has called Look-Future, used in his Full
Lookahead algorithm (Sect. 5.2.1 below). Again however,
this revise-based version introduces a re-nesting of loops.
ACYz uses the loop nesting (a) below, while Haralick’s
Look-Future uses nesting fb). l2

(a) FOR f l - k TO n DO
FOR f2 - k T O n, skipping f l , DO

FOR each vall in d[fl] DO
FOR each va12 in d[f2] DO ...

(b) FOR f l - k TO n DO
FOR each vall in d[fl] DO

FOR f2 - k TO n, skipping f l , DO
FOR each va12 in d[f2] D O ...

The three loop-nesting rearrangements above are concep-
tually important. Through them we convert (Sect. 5.2) the
standard Backtracking algorithm, and Haralick’s Partial
Lookahead and Full Lookahead algorithms, into revise-
based versions. This simplifies their structure and unifies
them with a whole spectrum (Sect. 5) of tree searchlarc con-
sistency hybrid algorithms, which use the partial arc con-
sistency procedures above and the full arc consistency pro-
cedures below, as components.

Figure 7 shows the arcs revised for various example calls
to the above partial arc consistency algorithms, for a
problem with a compIete constraint graph on 4 nodes. Both
the constraint graph representation and the domain array
representation are shown. As will be our convention from
now on, the arcs beside a domain array representation are
drawn left to right in the order that they are revised by the
corresponding algorithm. To emphasize and clarify the
k-parameterization of the algorithms, two different k values
are used for each algorithm so as to vary the arcs that are
revised. For simplicity, only the value of argument k is
shown in the calls.

Note that, as exemplified in Fig. 7 , ACY5(k) applies to
nodes 1 to k , but revises only a subset of the directed arcs
in the corresponding subnetwork ACY4(k) applies to
nodes k - 1 to n, but revises only a subset of the directed
arcs in the corresponding subnetwork Gk- I:n. ACY3(k)
applies to nodes k to n, but revises only a subset of the
directed arcs in the corresponding subnetwork Gk,.,,.
ACY2(k) applies also to nodes k t o n and revises a// the
directed arcs in the corresponding subnetwork Gk,.,,. Thus
all these procedures, except AC1/2(k), revise only a subset
of the directed arcs between the nodes to which they apply.
Moreover, none of these procedures, including ACYz(P),
can guarantee consistency on termination of even those arcs

“Actually, Haralick’s Partial-Look-Future has an outer
loop of FOR f l - k + 1 TO n- 1 DO, instead of FOR f l - k
TO n - 1 DO. However, this is just an artifact of the difference,
mentioned in connection with footnote 7, in what constitutes a node
in our respective approaches.

Actually, Haralick’s Look-Future has f l and f2 loops from
k + 1 to n, rather than from k to n . However, again this is just
an artifact of the difference in what constitutes a node in our respec-
tive approaches, as discussed in connection with footnote 7.

I2

COMPUT. INTELL. VOL. 5 . 1989 2,oo

which they do revise. This is discussed, and remedied, in
the next section. However, we will see later that these
apparent drawbacks are in fact usually advantages in the
context of our hybrid algorithms of Sect. 5 .

4.2. Full arc consistency algorithms
The arc consistency algorithms of the previous section

revise various subsets of the arcs in the constraint network
GI:, on nodes 1 to n . Each time an arc (i j) is revised,
values in node i that have no consistent supporting value
in nodej are deleted. Arc (i j) is said to then be consistent.
A whole constraint (sub)network is said to be arc consis-
tent when all its arcs are consistent. An algorithm that
guarantees arc consistency of the (sub)network on the nodes
to which it applies is said to be a full arc consistency algo-
rithm for that (sub)network. None of the algorithms of the
previous section were full AC algorithms. The algorithms
of this section are all full AC algorithms for the particular
subnetwork Gk:,,.

A full AC algorithm for a given subnetwork must revise
all directed arcs in that subnetwork, since making directed
arc (i j) consistent does not necessarily ensure that directed
arc (j i) is consistent. This can be seen in example (a) below.
(We are using here the expanded constraint network con-
ventions. See Fig. 4). The need to revise each arc in bofh
directions was the motivation behind Gaschnig's reviseboth
procedure (Gaschnig 1978, 1979) mentioned earlier. Even
revising each directed arc once, however, still does not
necessarily achieve arc consistency of a subnetwork. This
is because a consistent arc (ij) may be made inconsistent
again by a subsequent revision of some arc 0' k), as in
example (b) below.

4

The algorithms of the previous section were partial AC
algorithms in that they either did not revise all directed arcs
in the corresponding subnetwork or they did not guarantee
the eventual consistency of these arcs. ACV5, ACV4, and
ACV3 were partial in both these senses. ACV2 was partial
in only the latter sense. This section's algorithms revise all
directed arcs of the subnetwork Gk,.n, and ensure their con-
sistency on termination, later arc revisions involving an arc's
target node notwithstanding.

Note that there are three cases in which a problem is pro-
vably solved by achieving full arc consistency for its con-
straint network: (i) if a domain wipe-out is found to occur
then it is known that no solutions exist, (i i) if all n domains
end up with a single value, then the instantiation of the
variables to their unique corresponding value is clearly a
solution (and the only solution), and (iii) if n - 1 domains
end up with a single value, and the other domain, for
variable zi say, has m > I values, then there are m solu-
tions. These correspond to the different instantiations of zi
to one of its values, each combined with the unique instan-
tiations of the other n - 1 variables. These three cases are
implicit in Mackworth's NC algorithm (Mackworth 19776).
However, often none of the above apply, and we end up
with two or more domains having multiple values. In such
cases, full arc consistency may have achieved a substantial
simplification, but the problem is still not actually solved.

4.2.1. ACI
ACV2(k) revised once each directed arc of Gk:,, but did

not guarantee their eventual arc consistency, because a latter
revision may have undone the consistency of a previously
revised arc. The most straightforward way to ensure arc con-
sistency of subnetwork GkCn is then to simply repeat
ACV2(k) till no change occurs. It is for this reason that we
included the extra deletion-occurred parameter in ACV2
(but did not in ACV3, ACM, and ACV5). Repeating ACV2
until no change occurs is essentially the arc consistency algo-
rithm that Mackworth (1 977a) has called AC 1. Our version
of the algorithm is as follows.

PROCEDURE AC1 (k, VAR d, VAR empty-domain);
1ACV2 repeated till arc consistency of subnetwork Gk..,.)
REPEAT

ACVz(k, d, empty-domain, deletion-occcurred)
UNTIL (not deletion-occurred) or empty-domain
END;

Mackworth's ACl (1 9 7 7 ~) is given essentially by AC1'
below, and the version of Rosenfeld (1975) and Rosenfeld
et al. (1976) (originally called A) is given by ACl".

PROCEDURE AC 1 ' ;
Q - 1 (i j) I (i j) is an arc in GI:, 1;
REPEAT

deletion-occurred - False;
FOR each (i j) in Q DO

BEGIN
revise(i, j, d, dummy, change);
deletion_occurred -
END;

deletion-occurred or change;

UNTIL not deletion-occurred;
END;

PROCEDURE ACl":
Q - [(i j) I (i j) is an arc in GI:, 1;
REPEAT

old-d - d;
deletion-occurred - False;
FOR each (i j) in Q DO

BEGIN
d[i] - revise(& j , d[i], old-dfi], change);
deletion-occurred -
END;

deletion-occurred or change;

UNTIL not deletion-occurred;
END;

ACl" is less efficient than AC1 ' on a regular machine,
but offers the opportunity for a more efficient implemen-
tation on a parallel processor. ACI" does not take advan-
tage of deletions that occurred during a given pass over all
arcs to improve the extent of filtering of other domains dur-
ing the same pass. Instead, all deletions become effective
for filtering other domains only at the next pass. It is because
of this that each domain could, if processors were available,
be filtered in parallel during a given pass. In AC1" the call
to procedure revise(i, j , d, empty-domain, change) of ACl '
has been replaced by a slightly different call to a function
revise(i, j, di, dj, change) which filters domain di of z, with
respect to domain dj of zj and returns the resulting filtered
di as the value of the function; change is a reference para-

NADEL 20 1

meter with the same meaning as before. Note that parallel
approaches to solving constraint satisfaction problems are
currently receiving considerable attention - see, for
example, Freuder and Quinn (1985), McCall et al. (1989,
and Kasif (1986). The latter paper sounds a note of restraint
by showing that Constraint Satisfaction is in a sense an
inherently nonparallizeable problem.

To make explicit the cor respondence between
Mackworth’s ACl and our A C l , we expand out the call
to ACY2 in ACl . Employing Mackworth’s list-of-arcs nota-
tion we obtain the following equivalent version of our
AC%-based ACl .

PROCEDURE ACl(k , VAR d , VAR empty-domain);
REPEAT

empty-domain - False;
deletion-occurred - False;
Q - ((i j) 1 k I i # j 5 n, in lexographical order);

(arcs in GkrnJ
WHILE (Q # empty) and (not empty-domain) DO

BEGIN
(r S) - POP(Q);
revise(r, s, d, empty-domain, change);
deletion-occurred - deletion-occurred or change:
END;

UNTIL (not deletion-occurred) or empty-domain;
END;
The phrase “in lexographical order” means that the pairs

(ij) appear left to right in the list Q w i t h j ranging over all
its values (except j = i) in order before the next i value is
used. This is required so as to reflect the specific ordering
induced by the f l - loop of ACY2 and the f Z l o o p in its
subroutine rrevise. (See the corresponding loop expansion
at the end of Sect. 4.1.) Comparing this version of our
AC’h-based AC1 with Mackworth’s version A C l ’ , we see
that they are in fact equivalent except that

1. ACI is more general than ACl ‘ in that it (like all our
earlier partial arc consistency algorithms) has formal para-
meters k and d so that it can be incorporated at each node
of a search tree (as in Sect. 5 below), rather than just at what
in our context is the root, or the k = 1, node of the search
tree. ACl achieves arc consistency for any subnetwork
Gk:,,, 1 5 k I n, whereas ACl ’ achieves it only for GI:,,.

2. ACl is more specialized than AC1‘ in being for com-
plete binary constraint satisfaction problems (those that are
binary and, moreover, have a binary constraint on each pair
of variables). AC1’ does assume binary problems, but not
necessarily complete binary problems.

3. AC1 is more specialized than ACl in using a specific
order of processing: each cycle processes arcs (ij) in lexo-
graphic order. AC1’ leaves the processing order arbitrary.

4. ACl also differs from ACl ‘ by terminating as soon
as a domain wipe-out occurs. In such a case AC1‘ comes
to a halt the hard way, by filtering every domain till it is
empty.

5 . Mackworth’s AC1 makes an initial call to a node con-
sistency algorithm NC for each variable. All algorithms here
leave out such a call, on the assumption that no unary
predicates are given for the problem or that they have
already been incorporated in establishing the domains dz,
used by the algorithms. For details see Mackworth (1977a).

The same differences will also apply between Mackworth’s
and our versions of AC2 and AC3 below. Note, that the

restrictions mentioned in points 2 and 3 above may be
removed from our ACl , while retaining the added generality
of difference 1, by simply replacing the line that initializes
Q with the new line13 Q - J (i j) I (i j) is an arc in GkJ,
the form used by Mackworth but with GI:, in place of our
G k : n -

4.2.2. AC3
AC1 worked by making successive calls to ACV2 till a

call occurred in which no domain deletion took place. How-
ever, as pointed out by Mackworth (1977a), this is an
unnecessarily wasteful way to achieve arc consistency. The
obvious inefficiency is that any update of an arc (r s) of
Gk:,, on a given pass causes all arcs of Gk:,, to be revised on
the next cycle, when in fact only the arcs (j r) could possibly
be affected.

This insight is embodied in the Mackworth’s AC3 algo-
rithm, a version of which follows. l4 Note that not only are
arcs (j i), i # r, not added to Q when revision of (r s) causes
a deletion in the domain of zf, but neither is arc (s r) . This
is because if arc (s r) wasn’t on Q already then it was con-
sistent - and a consistent arc (s r) cannot become incon-
sistent directly because of the revision of (r s), because any
z, value removed was deleted precisely because it has no
support in the domain of z, and hence no z, value was sup-
ported by it. On the other hand, if (s r) was already on Q
then it also needn’t be added (again).

PROCEDURE AC3(k, VAR d , VAR empty-domain);
empty-domain - False:
Q - [(i j) I k 5 i # j

WHILE (Q # empty) and (not empty-domain) DO

n, in lexographic order];
(arcs in Gk:,,J

BEGIN
(r S) - POP(Q):
revise(r , s, d , empt y-domain, deletionoccurred);
IF ((deletion-occurred) and (not empty-domain))

THEN
BEGIN
Q-extra - (6 r) I k 5 j 5 n, j # r, j # s,

Q - post-union(Q-extra, Q);
END

in lexographic order];

END
END;

By post-unioning of Q-extra onto Q, achieved by the
call post-union (Q-extra, Q), we mean that the arcs in list
Q-extra that are not already in Q are unioned onto Q with
new arcs being appended to the rear of Q, in the order of
their occurrence in Q-extra. Since arcs are added to the
rear and popped from the front, the list Q is therefore main-
tained as a queue - hence the name Q. This, together with
the fact that Q is initialized to the same value in AC3 as
in ACl , means that the first part of the AC3 processing is

Note that at this level of generality, ACI would then differ
from ACI ‘ in the additional respect that it allows the order of arc
processing to vary at each cycle because Q of ACI, but not Q of
ACI ’, is initialized anew on each cycle.

Our ACI, AC2, and AC3 all differ from Mackworth’s ver-
sions, in the ways discussed for ACI in the previous section. In
particular, there is no indeterminacy in the arc revision orders of
our versions.

11

14

202 COMPUT. INTELL. VOL. 5 . 1989

always the same as for the first pass of ACV2 in ACl. This
can be seen, for example, in Fig. 10.

A stuck-bused (rather than queue-based) version of AC3
might just as well have been written. This would use a pro-
cedure pre-union (instead of post-union) to add to thejront
of Q the arcs not already there from Q-extra. Or, any
more-intelligent way of ordering the new arcs in Q could
be used if appropriate heuristics are known. More research
on this ordering issue would be appropriate. It is the analog
for AC3 of the constraint-check order issue that arises for
most, if not all, constraint satisfaction algorithms, and which
was studied for Backtracking and Forward Checking in
Haralick and Elliot (1 980), Nadel(l986), and Nudel (19834.
An analogous list-ordering issue arises in the state space
search algorithm A* where heuristic evaluations are used
to rank entries. A similar approach should be applicable here
using mathematically derived heuristics analogous to those
obtained in Haralick and Elliot (1980), Nadel (1986), and
Nudel (1983~). Whichever version of adding Q-extra to
Q i s used, AC3 (and also AC2 below) usually attains arc
consistency considerably more efficiently than its precursor
ACI . See, for example, the corresponding ACl and AC3
(and AC2) counts in Fig. 10, and in Tables 2 and 3.

4.2.3. AC2
Another full arc consistency algorithm, of historic as well

as practical interest, is that which Mackworth (1977a) called
AC2. It is essentially the version used by Waltz (1975) in
his seminal work on machine vision, in which the blocks
world line-labeling problem is formulated and solved as a
constraint satisfaction problem. The following is a version
of AC2 analogous to our ACI and AC3 above.

PROCEDURE AC2(k, VAR d, VAR empty-domain);
empty-domain - False;
FOR i - k + 1 TO n WHILE (not empty-domain) DO

BEGIN
Q1 - I(i j) I k I j < i, in lexographic order);

(arcs from node i in Gk..i)
4 2 - {(j i) I k I j < i, in lexographic order];

(arcs to node i in Gk,.;)
WHILE (QI # empty) and (not empty-domain) DO

BEGIN
WHILE (Q1 # empty) and (not empty-domain) DO

BEGIN
(r S) - POP(Q~);
revise(r, s, d, empty-domain,

IF ((deletionoccurred) and (not empty-domain))
deletionoccurred);

THEN
BEGIN
Q2-extra - {(j r) I k I j c i, j # r, j # s,

Q2 - post-union(Q2-extra, 42);
END

in lexographic order];

END
Q1 - 42; 4 2 - empty
END

END
END;

In spite of its more complex structure, AC2 above is essen-
tially just the earlier AC3 with another arc-revision order-
ing, so as to achieve arc consistency of GkCn in one pass

through the nodes from zk to z,,. For example, when k = 1
and n = 4 and, for simplicity, when no empty domains
occur and GI:, is already arc consistent so that no deletions
occur, AC2(k) revises arcs in the order

i= 2 i = 3 i= 4
cvcc- 4

(2*1)(1,2) (391)(3,2)(1,3)(2,3) (49 1)(4,2)(4,3)(1,4)(2,4)(3,4)
as in the AC2(1) processing in Fig. 10 (even though that
example does not conform to the present assumption of
initial arc consistency). AC3(1), however, would use the

the same as a single cycle of AC’/2(1) shown in Fig. 10. In
the same case but with k = 2, AC2(k) revises arcs in the
order

order (1,2)(1,3)(1 A)@, 1)(2,3)(2,4)(3,1)(3,2)(3,4)(4,1)(4,2)(4,3),

i = 3 i = 4 - \

(3,2)(2,3) (4,2)(4,3)(2,4)(3,4)

as in the AC2(2) processing in Fig. 10 (even though again
that example does not conform to the present assumption
of initial arc consistency). AC3(2) revises in the order
(2,3)(2,4)(3,2)(3,4)(4,2)(4,3), the same as a single cycle of
AC’/2(2) shown in Fig. 10.

Note that in Nadel(1988u), the outer loop of AC2 starts
with i - k, generalizing Mackworth’s nonparameterized
AC2 (Mackworth 1977a) which starts with i - 1. However,
such lower bounds for i correspond to Q1 and 4 2 lists that
are empty, and hence to a first.cycle which does nothing.
One may as well, therefore, start with i - k -I- 1 as above
(or with i - 2 in Mackworth’s version). Again, note also
that the arcs of Q2-extra might just as well have been
unioned on to the front of Q1, or inserted in any other order,
with the same outcome but with usually different efficiency.
Our examples and experiments below all use the above post-
unioning versions of AC2 and AC3, with initial lexographic
ordering of arc lists as given.

Actually pre-unioning is more efficient than post-unioning
when considered in isolation, because lists are usually
referenced by pointers to their front, not to their ends, so
that pre-unioning’s updating at the front of a list is quicker.
However (apart from possibly imposing an arc revision order
that is better for the overall process of attaining arc con-
sistency), post-unioning gives an order that is better for
pedagogical purposes because its first-come-first-served
order for arcs is easier to follow in traces and, as mentioned,
allows the initial AC3 processing to be always the same as
the first cycle of ACV2 processing in ACl.

In general, we find AC2 to be better than AC3 (our
specific version), as in the examples of Fig. 10 and in most
cases where AC2 and AC3 are used in the hybrid algorithms
compared in Tables 2 and 3 of Sect. 6. Also, of course, both
AC2 and AC3 are generally better than AC1. There are
examples, however, where AC3 is better than AC2 (Table 2,
RFL2 versus RFL3) and, surprisingly, where even AC1 is
better than AC2 (Table 2, RFLl versus RFL2). This latter
possibility does not seem to have been noted before. It is
further discussed in Sect. 6 and Appendix I. Supposedly
there are also examples where ACI is better than AC3. Note
that other approaches to efficient full arc consistency pro-
cessing also exist. Gaschnig’s DEE (1978, 1979) and Mohr
and Henderson’s AC4 (1986) are of particular interest. All
these full arc consistency algorithms of course achieve the

NADEL 203

same final state for a problem’s constraint graph, except
possibly that a domain wipe-out, if one occurs, may be
discovered by different algorithms to occur at different net
nodes.

5. Hybrid tree search/arc consistency algorithms
In Sects. 3 and 4 we considered respectively tree search

algorithms and arc consistency algorithms. The prototypical
tree search algorithm, Backtracking, was seen to have cer-
tain thrashing inefficiencies, which could be ameliorated by
the more refined tree search algorithms Backjumping and
Backmarking. No doubt certain types of inefficiencies still
remain in these algorithms too. We saw that arc consistency
algorithms could be used to simplify a constraint satisfac-
tion problem, but that often such simplification was insuf-
ficient to actually solve the problem.

It is conceivable that a marriage between tree search and
arc consistency algorithms would be beneficial, each type
overcoming the weaknesses of the other, and building on
the other’s strengths. It is certainly easy to overcome the
above-mentioned “incompleteness” problem of arc con-
sistency algorithms by extending the AC processing into a
tree-structured form, where a simplification phase is fol-
lowed by a decomposition into subproblems by instantiating
an as-yet uninstantiated variable in all ways, with the pro-
cess being recurvisely repeated on each of the subproblems.
Such an extension of arc consistency processing can readily
be designed to ensure the finding of all solutions.

Conversely - although it really amounts to the same
thing - one could embed arc consistency processing at the
nodes of a search tree as a way of reducing thrashing. For
example, in Fig. 1 we saw that Backtracking was wasteful
in trying more instantiations of z3 at node G after failing
at node H, because the reason for failure at H would only
repeat itself (as it did at node I). The problem was that no
value of z4 was compatible with both zl = 2 and z2 = 3 ,
and since these instantiations don’t change in trying alter-
native children of G, then other such children will fail as
did child H. Backjumping was one way around the prob-
lem. However, an alternative would be to revise arcs (4 1)
and (4 2) of the constraint graph after the z2 = 3 instan-
tiation at node B. This would result in all domain values
for 24 being eliminated. Nodes G and H would not even be
generated, let alone node I.

Thus we see that the hybridization of tree search and arc
consistency may very well be a useful approach. It turns out
that quite a few important CSP algorithms (or slight rear-
rangements of them) are in fact of this type. These will be
studied in this section. Hybrids that achieve full arc con-
sistency of the whole constraint network at each search tree
node are treated in Sect. 5 . 1 . Hybrids that achieve partial
arc consistency of the network at the tree nodes are treated
in Sect. 5.2. Note that achieving full (partial) arc consistency
at a tree node is not the same thing as using a full (partial)
arc consistency algorithm at the node. For instance, algo-
rithms RFLi below use as one component the partial AC
algorithm AC1/4, even though they achieve full arc con-
sistency at each node. Similarly, it is possible to achieve only
partial arc consistency at a node when using a full AC algo-
rithm if an inadequate subgraph (of the constraint graph)
is processed at the node.

We can expect that the lower the degree of simplification
attained at the tree nodes, the larger will be the search tree.

However, less simplification per node means less effort per
node and possibly less effort for the whole tree, even though
the tree is larger. The big question is: where is the break
even point? In other words, what is the optimal amount of
simplification to apply at the search tree nodes? It is con-
ceivable that the optimal’ amount of simplification to achieve
is path consistency, or even some higher level of j-consistency
Freuder (1978). However, this has not been found to be the
case for the problem classes studied in previous experiments
McGregor (1979). The results here and in Gaschnig (1978,
1979), Haralick and Elliot (1980), and McGregor (1979) sup-
port this observation by showing that even full arc con-
sistency per node is excessive. Though the break-even point
no doubt depends on the type of problems involved, we will
see that for the problems studied here, the optimum
approach is to use only a very restricted form of arc con-
sistency per node. For pedagogical reasons, it will be con-
venient to present the algorithms in decreasing order of
degree of arc consistency attained per node. (This order,
however, is the opposite of that used in Nadet (1988a).)

Now that we are discussing arc consistency in the context
of tree search, it is important to keep clear the distinction
between nodes of the search tree and nodes of the underly-
ing constraint network. We will therefore distinguish them
as tree nodes and net(work) nodes respectively. When
unqualified, the term node will refer to a tree node.
Remember that network nodes correspond to problem
variables zi and hence to the rows of a domain array
diagram, such as that in Fig. S. Thus when we speak of
variable, variable domain, or domain array row below, these
are essentially just synonyms for net node. In our graphical
traces of the algorithms of this section, domain arrays will
be drawn at the nodes of the search trees, giving a clear
indication of the state of the network nodes in the context
of each of the search tree nodes.

Note that in this section we begin to realize the advan-
tage of parameterizing our arc consistency algorithms with
k , intended to correspond to the search tree level, with d,
intended to store the list of value domains local to a given
tree node, and with empty-domain, to tell us whether a
domain wipe-out occurred during consistency processing.
Such parameters do not appear in the traditional formula-
tions of consistency algorithms (Freuder 1978; Mackworth
1977a; Mohr and Henderson 1986; Montanari 1974). The
purpose of our parameters can be seen from the following
procedure TS, which is the common tree search shell from
which all our hybrid algorithms below are built.

PROCEDURE TS (k, d);
(To expand, add your favorite parametric arc consistency

dk - d[k];
IF not empty-domain THEN

FOR zk - each element of dk DO

procedure(s) here)

BEGIN d(k] - (zk);
IF k = n THEN output(d) ELSE TS(k + 1 , d) END

END;

Parameter d of TS is as described for revise of Sect. 4.1.
At the initial call, we require that k = I and that each com-
ponent d[i] of d contains the original domain d,, of
variable zi, 1 I i 5 n. Note that d may not be a reference
parameter of TS, unlike the corresponding array z in BT,

204 COMPUT. INTELL. VOL. 5 . 1989

PROCEDURE T S V A C (k . d , variant);
I F k > I THEN BEGIN

ca l l l (var iant , k , d. emptydomain) ;
I F not emptydomain THEN cal l2(variant , k , d, emptydomain) ;
END ;

dk + d[kI;
I F not emptydomain THEN

FOR zk + each element of dk DO
BEGIN d[k] + fzk); I F k = n THEN output(d) ELSE T S V A C (k + l , d , variant) END

END ;

PROCEDURE ca l l l (var iant , k , VAR d. VAR empty_domain) ;
CASE variant OF

' B Y : AC1/5(k, d, emptydomain);
'FC', 'PL', 'FL', 'RFLI', 'RFL2'. 'RFL3' : AC1/4(k. d , emptydomain);
'TSACI' : A C I (k-1, d , emptydomain) ;
'TSAC2' : AC2(k-1 , d, emptydomain) ;
'TSAC3' : AC3(k-I, d, emptydomain);
'TSRACI' : A C I (1, d, emptydomain);
'TSRAC2' : AC2(1. d. emptydomain);
'TSRAC3' : AC3(I, d, emptydomain);

END; END;

PROCEDURE cal l2(variant , k , VAR d , VAR emptydomain);
emptydomain t False;
CASE variant OF

'PL' : AC1/3(k, d , emptydomain);
'FL' : AC'/Z(k. d . emptydomain. dummy);
'Rn.1' : AC1(k . d. emptydomain);
'RFI.2' : AC2(k , d , emptydomain);
'RFL3' : AC3(k , d, emptydomain);
' B Y , 'FC', 'TSACI'. 'TSAC2'. 'TSACS', 'TSRACI', 'TSRAC2'. 'TSRAC3' : {do nothing} ;

END; END;

FIG. 8. A combined algorithm TSVAC (Tree Search + Variable Arc Consistency) for BT, FC, PL, FL, and RFLi, TSACi, TSRACi
for 1 5 i I 3.

TABLE 1. Structures of our 13 hybrid tree search/arc consistency algorithms (subsumed by TSVAC of Fig. 8)

Algorithms that achieve full arc consistency of constraint network at each tree node
TSRACi(k) = TS(k) + ACi(1) i = 1, 2, 3
TSACi(k) = TS(k) + ACi(k- 1) i = 1, 2, 3
RFLi(k) = TS(k) + AC'/4(k) + ACi(k) = FC(k) + ACi(k) i = 1, 2, 3
Algorithms that achieve partial arc consistency of constraint network at each tree node
W k) = TS(k) + AC'/4(k) + AC?z(k) = FC(k) + AC1/2(/0
W k) = TS(k) + AC1/4(k) + AC'/3(k) = FC(k) + AC'/3(k)
FC(k) = TS(k) + AC%(k)
BT(k) = TS(k) + AC%(k)

BJ, and BM of Sect. 3, and unlike d in all the arc consistency
algorithms of Sect. 4.

As indicated by the comment in TS, our hybrid algorithms
are built from TS by inserting various arc consistency pro-
cedures immediately after the header line. At each level-k
call TS (k, d), the domains of some of the nonpast variables
zk to z,, will be filtered; which specific domains are filtered,
and using which arc revisions, depends on the choice of arc
consistency procedure(s) incorporated into TS. The resulting
filtered domains are stored in d[i], k 5 i I n. If no domain
wipe-out occurs, the current variable z k is then instantiated
in turn to each of the values still viable in its current domain
d[k], and for each instantiation the process is repeated recur-
sively at the next level k + 1 using the updated array d of

domains. The instantiation for z k is stored in d[k] itself as
a single-member list, replacing the earlier domain list stored
there. (The term (zk) in the statement d[k] - (zk) denotes
this singleton list). Therefore on entry to a level-k node, the
instantiations of the past variables z, to z k - are all avail-
able as the singleton-list components d[l] to d[k - 11 of
d, and d[k] to d[n] contain the lists of still viable values for
the nonpast variables.

Since the various hybrid algorithms below vary only as
to which arc consistency procedure(s) is inserted after the
header in the above tree search shell TS, they are so similar
in structure that it is convenient to consider them here as
special cases of a single combined algorithm, as shown in
Fig. 8. This figure expresses in a unified way the 13 hybrid

NADEL 205

CSP algorithms we describe below. Schematically, this
unified structure may be expressed as TS + ACi or
TS + AC1 i AC2, where TS denotes the basic tree search
skeleton above, and AC, and AC2 denote one of our earlier
full or partial arc consistency algorithms applied at the
search tree nodes. The combined algorithm is thus called
TSVAC, for Tree Search with Variable (i.e., changeable)
Arc Consistency. Selection of the required component algo-
rithm is done by inputting the corresponding value of the
string parameter variant; for example 'BT' to obtain algo-
rithm BT. Table 1 summarizes the structure of the hybrid
algorithms we study in this section.

Note that our combined algorithm in Fig. 8 has a k > 1
test which excludes any arc consistency processing at the root
node (k = 1) in each of the subsumed algorithms. Apart
from the fact that some of the arc consistency calls do not
make sense when k = I (AC1/s(k), AC1/4(k), a n d
ACi(k- I)), this is because arc consistency processing at the
root node is usually not cost-effective. (Remember the
extreme example of q-queens for q 2 4, discussed in Sect. 4,
for which revising every arc filters not a single domain
value). In general, when an arc (i j) is revised at the root,
too many supporting domain values exist in the target net
node j t o allow effective filtering of the values from the
source node i. Moreover, compounding the problem, this
filtering is not only ineffective but also particularly costly
at the root because the relatively large domains there mean
that many values for i must be attempted to be filtered, each
time possibly checking against many values for j . At levels
k > 1, however, instantiation of variables at ancestor nodes
has reduced some domain sizes and removed potential sup-
porting values, which allows the fiftering process to be both
more effective and more efficient. Extensions of this selec-
tive consistency-processing approach are discussed in Sect. 6.

Traces of our hybrid algorithms solving 4-queens and con-
fused 4-queens appear below in Figs. 10-12. They show indi-
vidual nodes, or node subtrees, generated by the algorithms
and the arc revisions, and corresponding numbers of con-
straint checks, performed at each node. A node in a trace
is shown in terms of the contents of array d at that node,
using the domain array representation and shading conven-
tions described near the start of Sect. 4. In particular, black
cells denote an instantiated value, grey cells denote still viable
values, and white cells denote values eliminated from con-
sideration. Unless otherwise stated, the domain array for
a node wilI show the contents of d just after all arc con-
sistency processing (call1 and call2 in Fig. 8) has taken place,
but before any instantiation (d[k] - (zk) in Fig. 8) of the
current variable. In some cases, the domain array for d prior
to any AC processing at the node, and (in Appendix I) at
various intermediate stages, may also be shown.

For simplicity, the traces of this section do not indicate
the individual constraint checks performed for the arc revi-
sions. The reader should be able to hand simulate the pro-
cessing at this level of detail him/herself, coming up with
the same constraint check numbers and final domain arrays
as given at each node in the diagrams. Some traces at this
detailed level of individual constraint checks appear in
Appendix I below and in Nadel (1988a). As pointed out in
connection with the AC algorithms of Sect. 4, the hybrid
algorithm traces in the present section and in Appendix I
also double as traces of the AC algorithms, since the latter

are components of the former so that the AC algorithm pro-
cessing shows up at the nodes of the hybrid algorithm traces.

5.1. Nine full arc consistency hybrids
This section presents nine hybrid tree search/arc con-

sistency algorithms in three families of three algorithms each:
TSRACi, TSACi, and RFLi for 1 I i 5 3. Each of the
algorithms ensures that at each search tree node, full arc
consistency is attained for the whole constraint graph GI:,
corresponding to the set of all n problem variables. Within
a given family of three, the algorithms differ in whether they
use the full arc consistency procedure A C l , AC2, or AC3
(possibly in conjunction with the partial A C procedure
ACV4). The families themselves differ as to what subgraph
of the constraint graph they apply their AC procedures to.
The TSRACi, TSACi, and RFLi families correspond to SUC-
cessively smaller subgraphs and hence are successively more
efficient.

Since each of the nine algorithms achieves the same state
of full arc consistency at corresponding nodes, they all gen-
erate search trees with the same node structure and hence
with the same number of nodes. This will be seen in the
traces below and in the experiments of Sect. 6. The work
done at a given node, and hence the overall work for the
search tree, will of course differ though.

Many algorithms in the literature are of the type discussed
in this section, for example, Gaschnig's CS2 (1974) and
DEEB (Domain Element Elimination with Backtracking)
(1978, 1979), and Mackworth's NC (19776). Similarly,
McGregor (1979) cites Ullman (1976) as having used such
an approach, although application-specific details in
Ullman's implementation obscure this. Since most of the
latter algorithms, however, have not been given in sufficient
detail, it is often not clear whether they correspond to the
TSRACi, TSACi, or FRLi families. As we will see, the effi-
ciency difference can be considerable between and within
these families.

5. I . I . Tree search and redundan t arc consistency:

The calls ACl(k) , AC2(k), and AC3(k) each achieve full
arc consistency of the constraint network Gk,". Thus the
most straightforward way at each node of a search tree to
achieve full arc consistency of the constraint network GI:,
corresponding to all n variables is to call ACl(k), AC2(k),
o r AC3(k) with k = 1. Doing this gives us the variants
TSRACI, TSRAC2, and TSRAC3 of our combined algo-
rithm in Fig. 8. The R in the names stands for redundant;
we will see why shortly. These names reflect the algorithm
structures, which can be written schematically as

TSRACi(k) = TS(k) + ACi(1)

TSRACi(k) = TS(k) + ACi(l),

Column A of Fig. 9 shows the domain array for d at nodes
along a given search tree branch when solving an arbitrary
problem with 4 variables. (The contents of the domains of
nonpast variables zk to z4 at these nodes are irrelevant for
the purposes of Fig. 9.) Column B of the figure shows, for
each node, the set of arcs that are ultimately made consis-
tent by the corresponding ACi(1) call of TSRACi. The
braces around the arcs in column B emphasize that we are
displaying the set of arcs made consistent at a node, rather
than the actual sequence of arc revisions. ACl(l) , AC2(1),

i = 1, 2 , or 3

COMPUT. INTELL. VOL. 5 . 1989

(e)

(0

i = 1,2 or 3
1 Achieved by: I ACi(1)

i = 1.2 or 3

ACX1) TSRAC3(k) = TS(k) + AC3(1)

:.: :.. .:. .:. +yt, t 4 J t 4 t + + J
4 1 1 4 1 1 4 2 3 4 3 2 1 1 1 1 1 TSAC3(k) = TS(k) + AC3(k-l)

L I I I I I I r i I L J J

FIG. 9. Successive simplification of the arcs revised at nodes along a search tree branch. (See text for details.) -3 -t

1

1

Algorithms

TSACl(k) = TS(k) + ACl(k-1)

9 3s 189

9 35 157

Node,
before & after
A~ processing AC processing at the node

I I I l l I

ACa(1) ACln(1) 1 9 42 203
...I
,> .:, :.: ... t + p + t 4 + l f 4 ++14t+t,,ft4 42 171

4 1 1 4 1 1 4 2 3 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1

1 9 2 2 9 s

FIG. 10. Processing at the level k = 2 node 2, = 2, when solving 4-queens by the nine full arc consistency hybrid algorithms
corresponding to columns B, C , and E of Fig. 9.

and AC3(1) all make the same set of arcs consistent, but
they do so in generally different order and with varying
amounts of multiple revisions of some arcs.

This is seen in Fig. 10, which shows the specific arc con-
sistency processing at the single z , = 2 node when solving
the 4-queens problem by each of the nine hybrid algorithms

NADEL 207

of Sect. 5.1. The present three TSRACi algorithms corre-
spond to rows (a), (c), and (e) of the figure. We see there
how the AC processing at the node shown, and the
associated cost in constraint checks, differs with the ACi
component used, even though the same set of arcs (as
opposed to sequence or multiset of arcs) is revised, and the
same final state is achieved at the node.

In Fig. 1 1, the single node of Fig. 10 is placed, as node C,
in the context of the whole left subtree for the 4-queens prob-
lem. The conventions used in Figs. 10-12 are essentially the
same, as follows. To the right of each node is a sequence
of arrows showing the arcs revised and their order of revi-
sion at the node. These are grouped, and labeled, accord-
ing to the AC procedure call to which they correspond. The
number of constraint checks performed for each arc revi-
sion is shown below the corresponding arrow. The tables
at the right in the figures show respectively the number of
nodes in the corresponding example and in the whole tree
for the problem, and the number of constraint checks per-
formed in the example and in the whole tree. The number
of constraint checks in the example is, of course, the sum
of the numbers under the corresponding individual arc revi-
sion arrows shown.

Figure 10 shows the domain array for d both before and
just after the AC processing at the node. To save space, in
the search tree traces of Figs. 11 and 12 we give only the
domain array for d after the AC processing at a node. The
domain array before the AC processing (which equals that
on entry to the node) can, however, be easily inferred in such
tree traces. Given the workings of our algorithm in Fig. 8,
the domain array for d on entry at a level-k node must be
simply the domain array inherited from the node's parent
in the tree diagram, since the latter corresponds to d just
after AC processing at the parent node. However, the cor-
responding instantiation for variable zk- I must be added,
since this instantiation occurred just before exit from the
parent node and just after the state represented by the
domain array shown for the parent. The before node in
Fig. 10 is an example of the above. Figure 3 of Nude1
(1983a) may also be helpful.

Figure 1 la shows the left half of the TSRACl search tree
in solving the 4-queens problem, together with the corre-
sponding statistics, and those for the TSRAC2 and TSRAC3
versions (whose trees are not shown). In the TSRACl tree
that is shown, only one cycle of the ACl(1) subroutine
AC'/2(1) is carried out at node B. This is because a domain
wipe-out is found to occur during that cycle. At node C ,
on the other hand, two cycles of ACI/Z(1) are executed. No
domain wipe-out occurs, but the second cycle is the last since
it causes no change. At nodes D and E only single cycles
of AC'/2(1) occur, since even these first cycles cause no
change.

From the statistics of Fig. 1 l a we see that, as required,
each TSRACi version generates the same number of nodes
due to their all achieving the same state of full arc con-
sistency at corresponding nodes. But in terms of constraint
checks, there is a difference due to the different ACi com-
ponents used. As expected, the i = 2 and i = 3 forms of
TSRACi are more efficient than the i = 1 form, due to the
general superiority of the components AC2 and AC3 over
ACl, which is made explicit in the case of node C, at lines
(a), (c), and (e) of Fig. 10.

5.1.2. Tree search and arc consistency:
TSACi(k) = TS(k) + ACi(k - I)

As implied by the R in the name TSRACi, those algo-
rithms contain some redundant processing. The reason can
be seen by reference to Fig. 9. Under some arcs in column B
are crosses and circles. These are respectively the arcs into
and out of net nodes 1 to k-2. Revision of such arcs at
a level-k tree node is redundant because

(i) the in-arcs have been made consistent at some earlier
level in the tree. Since at that time the target net nodes 1
to k - 2 had only one domain value, due to instantiation,
the arcs into them cannot become inconsistent by subsequent
instantiation of zk- I at level k - 1 and the other arc revi-
sions at level k.

(ii) since, by (i) , the in-arcs are ensured consistent, then
so are the out-arcs. This is again because the network nodes
1 to k - 2 all have only one value, and the out-arc from any
net node with one value is consistent if the reverse in-arc
is consistent.

Removing the redundant crossed and circled arcs in col-
umn B, we get the reduced sets of arcs in column C. Since
we have removed all arcs into and out of net nodes 1 to k- 2
from the network we are left with the arcs in the
subnetwork on nodes k- 1 to n, which is the subnetwork
Gk- l :n . This can be made arc consistent by the call
ACi(k - 1). Thus we can achieve arc consistency of the whole
network GI:, at each level-k tree node by calls ACi(k- l),
rather than the more expensive calls ACi(1) in TSRACi(k)
above. Doing this gives us the variants TSACl, TSAC2, and
TSAC3 of our combined algorithm in Fig. 8. These names
reflect the corresponding algorithm structure

i = 1, 2, or 3 TSACi(k) = TS(k) + ACi(k- l) ,

Figure 116 shows the left half of the TSACl search tree
in solving the 4-queens problem, together with the corre-
sponding statistics and those for the TSAC2 and TSAC3
versions (whose trees are not shown). Again, as required,
each TSACi version generates the same number of nodes,
and the same number as for the three TSRACi above, due
to their all achieving the same state of full arc consistency
at corresponding nodes. But as seen in the statistics of
Figs. l l a and I lb , the number of checks performed by
TSACi is less than TSRACi for a given i, due to the simpler
arc consistency processing at nodes of the TSACi version.
Actually, at corresponding k = 2 nodes the processing is
the same for TSACi and TSRACi for a given i. This is simply
because their respective calls ACi(k- 1) and ACi(1) are the
same when k = 2. It is only at levels k > 2 that the TSACi
processing is actually less at a node than that of the TSRACi
version. These effects can of course be seen in comparing
corresponding k = 2 nodes and corresponding k > 2 nodes
in Figs. 1 l a and 1 lb.

As for TSRACi above, the statistics at the right of
Fig. 1 l b show the i = 2 and i = 3 forms of TSACi to be
better than the i = 1 form because of the general superiority
of the components AC2 and AC3 over ACl. An explicit
comparison of the difference between the action of these
TSACi algorithms at node C can be seen in lines (b), (d),
and (f) of Fig. 10. Actually, since node C is a k = 2 node,
these lines in the figure have the same processing respectively
as for lines (a), (c), and (e).

208 COMPUT. INTELL. VOL. 5 . 1989

h

e5

KEY W = assigned value, 0 = eliminated value, I3 = still possible value

k = l

k = 2

k = 3

k = 4

k = l

k = 2

k = 3

k = 4

k = l

k = 2

k = 3

k = 4

B // C \' -

3 1 1 4 1 3 4 4 4 4 3 1 4 1 1 4 1 1 4 1 3 4 3 3 111111111111

AClR(1) I AC1/20) AC1/2(1)
ACl(1) n - ACI(1) -

111111111111

AClL?(l)
ACl(1)

B // C \\ -

'+14t+t4+ t t 4 *+I4*$+ t tt 4 '+l4t4t4 ttt 4
3 1 1 4 2 3 4 4 4 4 3 1 4 1 1 4 1 1 4 2 3 4 3 1 111111111111

*4 I1

B // C \'

4 4 4 3 2 1 2 0 0 4 4 4 1 1 1 2 3 1 111111

AC1/4(2) AClR(2) I AC1/4(2) AClR(2) AClh(2)
ACW) D c- ACl(2) -

+t + 4
1 1

TSRAC 1

(TSRAC2

(TSRAC3

TSACl

(TSAC2

(TSAC3

RFLl

(-2
(RJ3-3

0 ;

-

5

5

5

5

5

5

5

5
5

$
q

$ a2

9

0:

73

36

-

37

57

30

55

48

51

AC1/4(4)

FIG. 1 1 . Solving 4-queens by the hybrid algorithms.

NADEL 209

K E Y W = assigned value, 0 = eliminated value, = still possible value

k = l
A

B //? C

k = 2
4 4 4 3 2 1 3 0 0 , 4 4 4 1 1 2 1 3 1

AC1/4(2) ACIR(2) I AC1/4(2) AC1/2(2)
D

k = 3

k = 4

k = l

k = 2

k = 3

k = 4

k = l

k = 2

k = 3

k = 4

I AC1/4(3) AClhQ)

AC1/4(4)

A

B //y C

@ 4 4 4 '11 t i t 3 2 3 '+t 4 4 4 1 1 3 I AC1/4(2) AClB(2) I AC1/4(2) ACln(2)

F D

D a+t t
I a 3

't t
1 0

AC1140) ACln(3)
E

AC1/4(4)

AM
B

+t l a -R . 't 1 2 . 't 23 -.

E
AC1/4(3)

H

AC1/4(4) AC1/4(4)

FIG. 1 1 . (Confinued)

210 COMPUT. INTELL. VOL. 5 . 1989

KEY: W = assigned value, 0 = eliminated value, E3 = still possible value

Algorithm

k = l

k = 2

k = 3

k = 4

k = l

k = 2

k = 3

k = 4

B
::::.;: 4

:,.. .:.: .>: ... : :.:.: 4 El3

G

4
4

D I Acu5(z)

t t :...:.. t 4
4 2 ~ 0 2

AC1/5(3) I I E
ACUS(3) ACl/5(3)

H

ACU5(4) AC1/5(4)

FIG. 11. (Concluded)

.... .). .>: @ ! .._:: .:. .:.

............ gj$j t f

/.;\

kEl3 f r @ 4 2 t 4 ..: 4 1

ACUS(3) AC1/5(3)

4 1 e 4 1 e 4 1 0

AC1/5(4) ACU5(4) ACUS(4) AC1/5(4)

(b) revise-based BT at node E (c) standard BT at node E

k = 3 K l k = 3 1-1
z 3 = 1 1 2 3 4 I z3= 1 1 2 3 4 1

FIG. 12. Solving confused 4-queens by revise-based BT. Compare with trace for standard BT in Fig. 1 (and Fig. 2).

5.1.3. Really Full Lookahead: RFLi(k) = TS(k) +
AC'/4(k) + ACi(k) = FC(k) + ACi(k)

The above simplification of the processing at nodes may
be taken even further without sacrificing guaranteed full arc
consistency. As in column B of Fig. 9, some arcs in col-
umn C also have circles under them, denoting still remain-
ing redundant arc revisions. The circled arcs of column C

are the out-arcs from net node k - 1 to net nodes k to n .
The reason their revision is redundant is that for each such
out-arc the corresponding in-arc is also in the set (of col-
umn C) to be made arc consistent. If the in-arc to net node
k - 1 is made consistent, then the out-arc will automatically
be consistent since net node k - 1 has only one value. (This
is the same reason as used in point (ii) of the previous sec-

NADEL 21 1

tion’s argument). Removing the redundant arcs of col-
umn C, we obtain the further-reduced arc sets of column D.

The arcs in Gk- I:n of column C have thus been reduced
in column D to the set of in-arcs to net code k - 1 coming
from net nodes k to n, and the set of arcs on net nodes k
to n, i.e., the arcs in the subnetwork Gk:,. The partition
into these two groups (type A and type B arcs respectively)
is shown explicitly in column E. Note further that each arc
type A need to be revised only once to guarantee its even-
tual consistency. Subsequent revision of another arc of
type A or B cannot undo the arc consistency of a type A
arc, because the latter is an in-arc to a single-value net node
(the argument used above in point (i) of the section on
TSACi). Hence we have removed the set braces around the
type A arcs in column E, denoting that they are each to be
revised only once.

The job of revising each type A arc just once at a level-k
tree node is precisely what is achieved by the call AC’/4(k)
to our earlier partial arc consistency algorithm AC’/4.
Unlike the type A arcs, the type B arcs may possibly need
multiple revisions to achieve the goal of arc consistency for
the corresponding subnetwork Gk:,. This can be achieved
by a call to ACi(k), i = 1, 2, or 3. In conclusion, we can
replace the call ACi(k - 1) of TSACi(k) above by the more
efficient pair of calls AC’/4(k) and ACi(k), and still achieve
arc consistency of the whole network GI:, at all tree nodes
at each level k. Doing this gives us the variants RFLI, RFL2,
and RFL3 of our combined algorithm in Fig. 8. The corre-
sponding algorithm structures are

RFLifk) = TS(k) + AC’/4(k) + ACi(k)

The second equality here is because, as we will see later,
TS(k) + AC’/4(k) is Haralick’s Forward Checking algo-
rithm, FC(k). The names RFLi stand for Really Full
Lookaheadi, since these algorithms are essentially extensions
of Haralick’s Full Lookahead, discussed next. The algo-
rithms’ structures in terms of FC suggests FCACI, FCAC2.
and FCAC3 as alternative systematic names.

Note that the AC’/4(k) call is made before the ACi(k)
call. This is because revisions of type A arcs made by the
former call are more likely to lead to domain wipe-out (and
hence early termination of the corresponding path through
the tree) than are revisions of type B arcs made by the latter
call. This is because the type A arcs are the only ones going
to a guaranteed single-value network node”, viz, network
node k - 1; a single-value target net node offers relatively
little chance of support for values in the source node of their
connecting arc, and hence increases the chance of a revi-
sion that actually removes a domain value in the source
node.

Figure 1 l c shows the left half of the RFLl search tree in
solving the 4-queens problem, together with the correspond-
ing statistics and those for the RFL2 and RFL3 versions
(whose trees are not shown). Note that for completeness,
otherwise scheduled arcs that were not revised due to a
preceding domain wipe-out are included, but with a 0
(denoting no checks performed) below them. Again, as
required, each RFLi version generates the same number of

Hence the comment in Sect. 4.1 that the arc revisions per-
formed by ACl/o(k) in these hybrid algorithms are always of the
specialized type where the target net node has only a single domain
value.

= FC(k) + ACi(k), i = 1, 2, or 3

I5

nodes, and the same number as for the three TSRACi and
the three TSACi above, due to their all achieving the same
state of full arc consistency at corresponding nodes. But as
seen in the statistics of Figs. 1 la-1 lc, there is a successive
improvement in the number of checks in going from
TSRACi to TSACi to RFLi for a given i, due to the suc-
cessive simplification in arc consistency processing at cor-
responding nodes for these algorithms.

As for the TSRACi and TSACi above, the statistics at
the right of Fig. Ilc show the i = 2 and i = 3 forms of
RFLi to be better than the i = 1 form because of the general
superiority of the corresponding components AC2 and AC3
over AC1. (However, see Sect. 6 and Appendix I regarding
the surprising possibility of ACI being better than AC2 and
AC3). An explicit comparison of the difference between the
action of these RFLi algorithms at node C can be seen in
lines (g), (h), and (i) of Fig. 10. Another, more detailed, com-
parison of the processing by RFLl and RFL3 at a node
appears in Figs. AS and A6 in,Appendix I.

5.2.
The nine hybrid algorithms above were all designed to

ensure full arc consistency of the whole constraint network
GI,, at each search tree node. We saw that this can be
achieved with successively less arc revision as we went from
the TSRACi set of algorithms to the TSACi set, then to the
RFLi set. In this section we maintain the above hybrid algo-
rithm structure and continue the process of reducing the
amount of arc consistency attained at the nodes. Four new
algorithms are obtained in this way.

Unlike for the reductions of the previous section, how-
ever, the reductions here are sufficient to lose us guaranteed
full arc consistency of the whole network GI:, at tree
nodes. (Full arc consistency may nevertheless still be
achieved forfuitously at some, or even all, tree nodes,
depending on the problem.) Each algorithm does, however,
still preserve guaranteed full arc consistency of the subnet-
work GI:k at each level-k node. (For brevity, we forgo the
proofs in each case. They are similar to those showing that
GI:, remains fully arc consistent in the algorithms above).
Thus at least at the last level, k = n, these algorithms all
ensure full arc consistency of the whole network GI:,. Since
at k = n nodes, all variables but Z, have already been
instantiated to only a single value, the full arc consistency
of GI:, at such nodes is sufficient to ensure that the solu-
tions output by our tree search shell are indeed all valid solu-
tions. (This corresponds to case (iii) of when full arc con-
sistency is sufficient to solve a problem, discussed near the
start of Sect. 4.2.)

The nine hybrid algorithms above all generated search
trees with the same node structure, since each achieved the
same state of full arc consistency at each node. The trees
of the following algorithms, however, may have a different
node structure due to their achieving only partial arc con-
sistency, of various degrees, at the nodes. In spite of the
differences in node structure of the search trees, we will still
be talking below of corresponding nodes in two trees. By
this we mean simply two nodes which correspond to the same
set of instantiations of their past variables. Corresponding
nodes have the same letter labeling them in the traces of
Fig. 11.

The lower the degree of arc consistency achieved at nodes
by an algorithm, the more nodes we can expect in the algo-
rithm’s tree since less arc consistency processing leaves more

Four partial arc consistency hybrids

212 COMPUT. INTELL. VOL. 5 . 1989

values still viable in net nodes (variable domains), and this
results in extra descendant tree nodes. This need not
necessarily be less efficient, however. Even though there are
more nodes in the tree, the extra nodes are a result of less
arc consistency processing at each node. More nodes, but
with less constraint checks per node, may result in less total
checks for the overall tree. The experiments of Sect. 6 , and
the traces of the present section, will show that further reduc-
tion of arc consistency processing is indeed cost-effective,
but only up to a point.

5.2.1. FUN Lookahead: FL(k) = TS(k) + AC'h(k) +
Our successive simplifications of the previous section,

culminated in three algorithms of structure RFLi(k) =
'TS(k) + AC'/4(k) + ACi(k), i = 1, 2, or 3. Let us con-
centrate on the i = 1 version, which uses ACl, the most
straightforward of the three full arc consistency algorithms
ACl, AC2, and AC3 treated in Sect. 4.2. Remember that
ACl(k) works by simply making multiple calls to the par-
tial arc consistency algorithm AC'/2(k), until no change
occurs for such a call or until a domain wipe-out occurs.
'Thus we might express ACl (k) schematically as having the
structure ACl(k) = ACh(k) + ACh(k) + ..., and hence
express RFLl(k) as having the structure

AC'/z(k) = FC(k) + AC'hfk)

RFLI(k) = TS(k) + AC'/4(k) + AC'/z(k) +
AC'/2(k) + ...

This suggests a simplified algorithm, where only a single
call is made to AC'/2(k), corresponding to column F of
Fig. 9. Accordingly, as already occurred for the AC'/4(k)
arcs in column E, the other arcs in column F have now also
lost the set braces around them. This denotes that we are
simply revising each arc once, rather than necessarily
guaranteeing its eventual consistency (which another arc's
subsequent revision may now undo). This reduction gives
us the variant FL of our combined algorithm in Fig. 8. The
corresponding algorithm structure is

FL(k) = TS(k) + AC'/4(k) + AC'/2(k)

We call this FL because it is essentially Haralick and
Elliot's (1980) Full Lookahead algorithm. Its above struc-
ture in terms of FC suggests the alternative systematic name
FCAC'h. The algorithm first revises the arcs (f, k- l) ,
k I f 5 n (from the nonpast variables to the most recent
past variable) and then the arcs (f 1, f 2), k I f 1 f f 2 I n
(between nonequal, nonpast variables).

Note that our FL above and the Full Lookahead algo-
rithm of Haralick and Elliot do differ in two respects. The
first is the trivial difference of how the algorithms implicitly
partition the search tree into nodes (see footnote 7). The
second is the more substantial difference that the
LookFu tu re subroutine of Haralick and Elliot's Full
Lookahead and the AC92 subroutine of our FL correspond
to different loop nestings, as explained in Sect. 4.1. As a
result, the constraint-check order (but not the final state)
is different at corresponding .tree nodes.

It is this loop-nesting rearrangement that makes it possible
to write FL compactly in terms of revise-based subroutines,
and to thus consider it as one of our family of hybrid tree
search/arc consistency algorithms. The resulting economy

= FC(k) + AC'/z(k)

and unity of code makes the present version FL preferable,
at least for pedagogical purposes. Which version is best in
terms of efficiency is a different question. There is no
obvious efficiency reason to prefer one nesting scheme over
the other, although it would appear that a difference in the
number of constraint checks can occur. Surprisingly, how-
ever, all experiments so far have shown no such difference
for the two versions, both overall and at each correspond-
ing pair of nodes. (The reader may like to try and show that
this must necessarily be the case or to discover counter
examples.)

Fig. 1 Id shows the left half of the FL search tree in solving
the 4-queens problem, together with the corresponding
statistics. The node structure of the FL tree is the same as
that of the common tree for the full arc consistency hybrids
in Figs. 1 la-1 lc. However, this is just because for 4-queens,
the reduced arc consistency processing done by FL is
apparently still sufficient to ensure full arc consistency at
each node. In general, since the subroutine AC'/z(k) of FL
is not guaranteed to achieve full arc consistency of the
subgraph it applies to, there will be more values left in the
domains of variables, and hence more descendants per node
and thus bigger trees for FL. For 5-queens and higher, we
see in Table 3 that the FL tree indeed has more nodes than
those of the full arc consistency hybrids, as expected.

Of course, in our 4-queens example, since the FL tree has
no more nodes than the RFLl tree, but has less or equal
number of constraint checks per node, the total number of
checks is less. This reduction in constraint checks compared
to RFLl is found for other problems, as in Tables 2 and 3,
even when the number of nodes does increase over that for
RFLl and the other full arc consistency hybrids. The general
decreaseI6 in work per node is sufficient to reduce the work
summed over all nodes, in spite of the increase in the number
of nodes. At least for the problems studied here, the extra
work per node of the full arc consistency hybrids is not
cost-effective.

5.2.2. Partial Lookahead: PL(k) = TS(k) +
ACi/4(k) + AC'h(k) = FC(k) + AC'h(k)

Remember from Sect. 4.1 that procedure AC%(k) revises
a subset of the arcs revised by AC'/2(k). We can thus
further reduce the amount of arc consistency achieved at
search tree nodes if we replace the call to AC'/t(k) in FL(k)
by a call to ACv3(k). This corresponds to column G of
Fig. 9 and gives us the variant PL of our combined algo-
rithm in Fig. 8. The corresponding algorithm structure is

PL(k) = TS(k) + AC'/4(k) + ACv3(k)
= FC(k) + AC!4(k)

'6The number of constraint checks at corresponding nodes is
not always less for FL than for RFL1, even though the former
revises only a subset of the arcs revised by the latter at a node.
This is because less arc revisions at an FL node may result in larger
filtered domains being inherited at a descendant node, and hence
possibly more constraint checks being necessary at the lower node.
This is not seen in comparing nodes of our example traces for FL
and RFLI. The same phenomenon is seen, however, in compar-
ing nodes D of PL and FL, and may occur at corresponding nodes
of any two hybrid algorithms where one algorithm revises a subset
of the arcs revised by the other at the nodes. The algorithm revis-
ing the arc subsets will generally have less checks per node, but
not necessarily at all nodes.

NADEL 213

We call this P L because it is essentially Haralick and
Elliot’s (1980) Partial Lookahead algorithm. Its structure
in terms of FC suggests the alternative systematic name
FCAC’h. The algorithm first revises the arcs cf, k - l),
k 5 f 5 n (from the nonpast variables to the most recent
past variable) and then the arcs cf 1, f2) k I f 1 < f 2 I n
(from the nonpast variables to more-future nonpast
variables, rather than, as in FL, from the nonpast variables
to any nonequal, nonpast variable).

Note that our P L differs from Haralick and Elliot’s Par-
tial Lookahead aigorithm in the same two ways that our FL
differed from their Full Lookahead. In particular, the loop-
nesting is different as discussed in connection with ACv3
in Sect. 4.1. Again, however, no complexity difference has
been detected, although it seems that one should sometimes
exist between the two versions of Partial Lookahead.

Figure l l e shows the left half of the P L search tree in
solving our running 4-queens example, together with the cor-
responding statistics. Note that corresponding nodes in the
PL and FL trees (such as node C) do show different states
for the domains after arc consistency processing. AS
expected, due to the lesser degree of arc consistency attained
at nodes of the P L tree, the domains there generally have
more still viable (grey) values than corresponding domains
in the FL tree, and hence there are extra children nodes and
more overall nodes in the PL tree. In spite of the extra nodes
for PL, we see that the lower amount of arc consistency,
and hence the generally lower amount of constraint checks,
per node is sufficient to cause a reduction in the overall
number of constraint checks compared to FL. Note the inter-
esting phenomenon, discussed in footnote 16, of there being
more checks at node D of the P L tree than of the FL tree,
in spite of less arcs being revised.

5.2.3. Forward Checking: FC(k) = TS(k) + AC’/4(k)
Continuing the trend above, we can still further reduce

the amount of arc consistency achieved at search tree nodes
by retaining only the AC1/4(k) component of PL. This cor-
responds to column H of Fig. 9 and gives us the variant FC
of our combined algorithm in Fig. 8. The corresponding
algorithm structure is

FC(k) = TS(k) + ACl/o(k)

We call this FC because it is essentially Haralick and Elliot’s
Forward Checking algorithm, also studied by McCregor
(1979). Its structure suggests the alternative systematic name
TSACV4. Since it retains only ACv4(k), FC revises only the
arcs cf, k - l), k I f 5 n, from nonpast variables to the
most-recent past variable k - 1, avoiding the revision of arcs
between pairs of nonpast variables done by FL and PL.

As with FL and P L above, our FC differs from Haralick
and Elliot’s version in how the tree is partitioned into nodes.
But unlike with FL and PL, there is no difference in loop
nesting between our FC and Haralick and Elliot’s version.
Figure 1 lfshows the left half of the FC search tree in solv-
ing our running 4-queens example, together with the corre-
sponding statistics. We see that the same trend as before is
still continuing: the total number of checks is still dropping,
due to the reduced number of checks per node, even though
the number of nodes increases. This trend of improved effi-
ciency as a result of less AC processing at the nodes is finally
reversed with our next algorithm. It takes us full circle, being
a version of Backtracking, the first algorithm treated above.

5.2.4. Revise-based Backtraking: BT(k) =

Somewhat surprisingly, even the standard Backtracking
algorithm, when slightly rearranged, can be formulated as
a tree search/arc consistency hybrid. The new form, though
arrived at independently here, was subsequently found to
have been developed by McGregor (1979, p. 241). McGregor
did not, however, identify his hybrid algorithm as being a
form of plain backtracking. We first note that our original
version of BT from Sect. 3.1 may be rewritten as follows,
by interchanging the nesting of its two FOR-loops.

TS(k) -+ AC’/s(k)

PROCEDURE BT(k, VAR z);
dk - (1 2 ... m[k]); (initialize domain for variable zk.)
FOR p - 1 TO k - 1 WHILE dk # empty DO

BEGIN
dk-copy - dk
FOR z[k] - each element of dk-copy DO

END

FOR z[k] - each element of dk DO

IF not check(k, z[k], p, z[p]) THEN dk - dk - z[k];

IF dk # empty THEN

I F k = n THEN output(z) ELSE BT(k+ I , z)
END;

The first statement here denotes an assignment to variable
dk of the list of integers 1 to m[k], being the domain of prob-
lem variable z k . (m[k] = m,, the domain size of variable
z k , as for the algorithms of S‘ect. 3.) At a level-k node, the
original BT checked an instantiation for the current variable
z k against the instantiations for each past variable z I to
z k - ,, and then (in general, after returning from a recursive
child generation) repeated such checks for a different instan-
tiation of zk. The new version of BT, on the other hand,
checks all domain values of z k against the single instantia-
tion for zI, then all surviving domain values for z k against
the instantiation for z2, repeating till it has checked all sur-
viving values for z k against the instantiation for z k - I .

This change of ordering means that no instantiations are
made nor children nodes generated until all surviving z k

values have been determined. Thus it is not a truly depth-
first formulation as was that of Sect. 3.1, but is rather what
Horowitz and Sahni (1978, chap. 7) have called D-first
(D-search actually). Nodes are still generated in the same
order but the order of processing at a given node is changed,
and if only one solution is sought then the new formulation
may waste some effort in unnecessarily finding more than
one viable value for z k . However, this will only be the case
for the n nodes actually on the search-tree branch leading
to the first solution found and will thus usually not be sig-
nificant. In any case, when all solutions are of interest, as
we are assuming throughout, then the two formulations are
equivalent in all respects except the order in which checks
are done, and in which recursion is interleaved, at a node.

The above loop-interchange has allowed us to factor the
processing at a node into a constraint-checking part followed
by an instantiation and child-generation part (rather than
interleaving the two). The constraint-checking part can be
seen as a succession of calls to the revise procedure of
Sect. 4.1, embedded in our earlier tree search shell TS(k).
In particular, arcs (k, p) for 1 5 p < k are successively
revised. That is, arcs from the current variable to all past
variables are revised, corresponding to column I of Fig. 9.
This is precisely what is achieved by a call AC’/s(k) to

COMPUT. INTELL. VOL. 5 . 1989

TABLE 2. Number of constraint checks (and nodes, in parentheses) for solving confused q-queens

9 3 4 5 6 7 8 9 10

Algorithm solutions 9 6 7 8 9 10 11 12
No. of

214

our

BT (TSACh)
BJ
BM

FC (TSACV4)
PL (FCAC%)
FL (FCAC~Z)

RFLl (FCACl)
RFL2 (FCAC2)
RFL3 (FCAC3)

TSACl
TSCA2
TSAC3

TSRACI
TSRAC2
TSRAC3

41(11)
41(11)
29(1 1)

29(1 1)
37(1 1)
43(11)

43(1 I)
43(11)
43(1 1)

96(11)
56(1 1)
68(I 1)

136(11)
88(1 1)

102(11)

160(29)
139(27)
90(29)

90(23)
117(17)
146(17)

162(17)
158(17)
146(17)

367(17)
194(11)
260(17)

509(17)
300(17)
372(17)

332(47)
288(44)
192(47)

188(35)
270(27)
345(27)

393(27)
392(27)
347(27)

853(27)
466(27)
654127)

1 195(27)
760(27)
958(27)

590(69)
509(65)
346(69)

334(49)
525(39)
688(39)

792(39)
806(39)
696(39)

1681(39)
938(39)

1 358(39)

2 399(39)
1 596(39)
2 030(39)

949(95)
8 16(90)
563(95)

537(65)
9 1 5 (5 3)

1 222(53)

1 412(53)
1 439(53)
1241(53)

2 954(53)
1 645(53)
2 468(53)

4 308(53)
2 927(53)
3 768(53)

1 428(125)
1225(119)

856(125)

808 (83)
1 482 (69)
2 014 (69)

2 326 (69)
2 422 (69)
2 052 (69)

4 825 (69)
2 732 (69)
4 145 (69)

7 175 (69)
4 998 (69)
6 433 (69)

2 042(159)
1 747(152)
1 234(159)

1 154(103)
2 266 (87)
3 125 (87)

3 601 (87)
3,746 (87)
3 190 (87)

7 427 (87)
4 180 (87)
.6 514 (87)

11 249 (87)
7 906 (87)

10 266 (87)

2 810(197)
2 399(189)
1 710(197)

1 586(125)
3 316(107)
4,638(107)

5 326(107)
5 622(107)
4 742(107)

I0 950(107)
6 218(107)
9 774(107)

16 852(107)
12 012(107)
15 598(107)

partial arc consistency procedure AC’h (or required, the trees in Figs. 1 and 12 are essentially the same,
CheckBackward) of Sect. 4.1. Thus our rearranged BT
can be expressed as a hybrid tree search/arc consistency algo-
rithm with structure

BT(k) = TS(k) + ACYs(k)

corresponding to variant BT of the combined algorithm in
Fig. 8. The structure suggests the alternative systematic name
of TSACh for this revise-based version of BT. As with
AC’/4(k) in all earlier hybrid algorithms, note the special-
ized use of revise by AC’/5(k) here. Due to the instantia-
tion of variables at ancestor tree nodes, all the arcs revised
by AC%(k) or AC’/4(k) have target net nodes with only
one domain value. This was also noted in Sect. 4.1 where
the AC procedures were first introduced.

A trace of our revise-based BT solving our running
4-queens example appears in Fig. 1 lg. We see that though
the above trend of successively more nodes (or no less nodes)
is continuing, the trend of successively less constraint checks
has been reversed. Thus with the previous algorithm FC we
had reached the limit of the usefulness of reducing the degree
of arc consistency attained at tree nodes.

Actually, it is not really obvious that BT achieves a lower
degree of arc consistency at a node than the earlier algo-
rithms, since unlike for our previous succession of algo-
rithms, the arcs revised by BT at a given node are not simply
a subset of those revised by the earlier algorithms. (This is
seen clearest in Fig. 9.) However, as seen in Tables 2 and 3 ,
we find empirically that BT does generate more (or the same
number of) nodes than even FC, and we take this as indicat-
ing that BT in effect is attaining the lowest degree of arc
consistency of all our hybrid algorithms.

Besides comparing traces of revise-based BT with those
of the other hybrid algorithms as in Fig. 11, it is instructive
to similarly compare the two forms of BT. Since regular BT
was traced on confused 4-queens in Fig. 1 (for the reason
given in footnote 4), we include in Fig. 12 a trace of revise-
based BT on the confused version of the problem. As

with the same number of nodes and constraint checks. How-
ever, the constraint check order at a node differs in general.
For example, the two arrows beside node E in Fig. 120
indicate that arc (3 1) is first revised then arc (3 2). This cor-
responds to constraint checks in the order a, b, d , e (the
revision of arc (3 1)) then c, f (the revision of arc (3 2)),
as shown in Fig. 12b. Regular BT, however, checks in the
order a, 6, c, d, e, f, as shown in Fig. 12c.

Schematically, we can Say that regular BT does checking
at a node in column-wise order or “vertically” and revise-
based BT does it in row-wise order or “horizontally.” (The
same kind of difference exists between our revise-based ver-
sions of FL and PL above and those of Haralick and Elliot
(1 980), due to the analogous loop-nesting interchanges
involved.) In terms of interleaving recursion, we have in our
Fig. 12 example that regular BT generates node F after
check c and before check d, whereas (as with all hybrid algo-
rithms above) revise-based BT completes all checks at the
node before recursing to generate subnodes. (Unlike the
check-order difference above, this interleaving difference
does not also exist between Haralick and Elliot’s and our
version of FL or PL.)

6. Empirical comparison and discussion
We have now completed our presentation of 15 algorithms

for solving constraint satisfaction problems. Some of these
(Sect. 3) were what we called tree search algorithms and
some (Sect. 5) were hybrids of a tree search shell with various
parameterized arc consistency procedures (Sect. 4) applied
at the search tree nodes. The parameterization of our arc
consistency procedures is in contrast to the usual practice
in presenting consistency algorithms (Mackworth 1977a;
Montanari 1974; Freuder 1978; Mohr and Henderson 1986).
Without parameterization the implication, whether intended
or not, is either that consistency algorithms are adequate
in themselves to solve a csp or, if not, that they be used only
for preprocessing before applying some tree search algo-

NADEL 215

A

0 BJ

0 BM

TABLE 3. Number of constraint checks (and nodes, in parentheses) for solving regular q-queens

3 4 5 6 7 8 9 10 4
No. of

Algorithm solutions 0 2 10 4 40 92 352 724

BT (TSAC'/5) 17(6) 84(15) 405(44) 2 016(149) 9 297(512) 46 752(1965) 243 009(8042) 1 297 558(34815)
BJ 17(6) 84(15) 405(44) 1 864(147) 8 309(489) 41 862(1869) 219 997(7742) 1 131 942(33000)
BM 17(6) 76(15) 276(44) 944(149) 3 236(512) 12 308(1965) 50 866(8042) 220 052(34815)

FC (TSACV4) 17(6) 76(15) 282(44) 964(127) 3 338(424) 13 024(1633) 5 5 326(6680) 242 174(27109)
PL (FCACVi) 17(4) 97(11) 485(40) 1 703 (79) 6 511(284) 25 882 (977) 112 327(4014) 496 455(15005)
FL (FCACh) 17(4) 99 (9) 598(40) 2 095 (51) 8 942(248) 35 323 (777) 153 455(3144) 661 017(10737)

RFLl (FCAC1) 17(4) 111 (9)' 915(38) 2 744 (41) 12 009(232) 42 923 (677) 185 030(2786) 815 599 (9085)
RFL2 (FCAC2) 17(4) 95 (9) 595(38) 1 957 (41) 8 781(232) 33 765 (677) 148 893(2786) 637 448 (9085)
RFW (FCAC3) 17(4) 103 (9) 636(38) 2 101 (41) 9 320(232) 35 999 (677) 157 222(2786) 677 213 (9085)

TSAC 1
TSAC2
TSAC3

29(4) 171 (9) 1 359(38) 3 622 (41) 18 405(232) 69 179 (677) 309 346(2786) 1 321 662 (9085)
19(4) 113 (9) 677(38) 2 093 (41) 9 521(232) 35 967 (677) 157 801(2786) 668 108 (9085)
29(4) 157 (9) 901(38) 2 850 (41) 13 285(232) 51 188 (677) 224 812(2786) 960 552 (9085)

TSRACl 29(4) 203 (9) 1 913(38) 4 624 (41) 29 829(232) 121 881 (677) 613 796(2786) 2 692 076 (9085)
TSRAC2 19(4) 145 (9) 1 131(38) 2 883 (41) 17 799(232) 72 171 (677) 362 421(2786) 1 558 494 (9085)
TSRAC3 29(4) 189 (9) 1 387(38) 3 704 (41) 22 143(232) 90 924 (677) 449 484(2786) 1 949 272 (9085)

Degree of
consistency
achieved at
tree nodes

i
Less work per tree node More work per tree node

More tree nodes Less tree nodes

FIG. 13. Schematic plot of the complexities of our 15 CSP algorithms.

rithm. With parameterization, consistency algorithms may
be hybridized with a tree search shell to allow arc consistency
processing on the subproblem corresponding to each indi-
vidual search tree node.

A combined algorithm for our hybrid algorithms appeared
in Fig. 8. The structure of each hybrid was given schematic-
ally in Table 1 in the form TS + ACil or TS + ACil +
ACi,. The ACI are either one of the full arc consistency
algorithms that Mackworth (1977~) has called ACl, AC2,
and AC3, or one of the partial arc consistency algorithms
AC'/s, AC1/4, AC73, and AC1/2 introduced above, being

essentially subroutines due to McGregor (1979) and Haralick
and Elliot (1980). (Note that there are other full arc con-
sistency algorithms of interest, such as AC4 (Mohr and
Henderson 1986) and DEE (Gaschnig 1978, 1979), but we
have not used these in making hybrids.)

We saw that the tree search/arc consistency hybrid struc-
ture applied even to the prototypical tree search algorithm,
Backtracking, when the order of its two nested loops is
switched. Similarly, by rearranging the loop nesting in two
of Haralick and Elliot's algorithms, Partial Lookahead and
Full Lookahead, they also were able to be expressed in this

216 COMPUT. INTELL. VOL. 5 , 1989

common hybrid form. In this section we compare the above
algorithms (tree search and hybrid) empirically and discuss
the implications for future work.

We use for our experiments the q-queens problems and
the confused q-queens problems (Sect. 2) for 3 I q I 10.
Tables 2 and 3 show the results for these two problem types.
(Table 3 overlaps somewhat with Table 1 in Haralick and
Elliot (1980).) Note that in all hybrid algorithms that use
AC2 and AC3 as a component (algorithms RFLi, TSACi,
and TSRACi, i = 2, 3), we are using the queue-based ver-
sion of AC2 and AC3 whose code appears above, rather
than the stack-based, or any other, version. The general rela-
tionship between the algorithms' efficiencies for a given
problem instance (that is, for a given column of Table 2 or
Table 3) is summarized schematically in Fig. 13. It will be
useful to keep this figure in mind in reading the following,
which is a discussion of our experimental results and of
possible flirections for future research.

1. Our results show that the nine full arc consistency
hybrids (RFLi, TSACi, and TSRACi, i = 1, 2, 3) always
generate the same number of nodes for a given csp. This
is as required, because all these algorithms achieve the same
state of full arc consistency at each tree node and hence gen-
erate search trees with the same node structure.

2. The other algorithms all generate more nodes than the
full arc consistency hybrids. In the case of the other hybrid
algorithms, this is because, due to the incomplete degree of
arc consistency achieved, more domain values are left sur-
viving for the variables (net nodes) at a tree node and this
gives rise to more children nodes. As the degree of arc con-
sistency at the tree nodes decreases, the total number of
nodes in the tree increases. Actually, even a partial arc con-
sistency algorithm may fortuitously achieve full arc con-
sistency for some, or even all, nodes of a tree. This is why,
in Table 2, FL and even PL achieve the same minimal
number of nodes as do the full arc consistency hybrids. This,
however, is of course not guaranteed to occur, as seen in
Table 3. As required, BM always has the same number of
nodes as BT, while BJ has less (or at teast no more).

3. Amongst the nine full arc consistency hybrids, for a
given i, the RFLi form is better than the TSACi form, which
is better than the TSRACi form. This is expected from the
successive removal of redundant arc revisions, without
sacrifice of guaranteed full arc consistency at the nodes, in
going from TSRACi to TSACi to RFLi (as discussed in con-
nection with Fig. 9).

4. Within a given triple (the i = 1, 2 or 3 forms) of these
nine algorithms, the i = 2 and i = 3 forms are generally
better than the i = 1 form, as expected from the way AC2
and AC3 refine the brute-force approach to arc consistency
taken by ACl. Surprisingly however, this is not always the
case. This is seen in the RFLi rows of Table 2 for q 2 6.
There we see that RFLl is better than RFL2, and hence that
ACl is better than AC2 at some tree nodes. Presumably in
other cases, ACl may be better than AC3 also. These
possibilities have apparently not previously been noted in
the literature. Appendix I discusses this in more detail.

5 . Comparing corresponding i = 2 and i = 3 amongst
the nine full arc consistency algorithms, we see that generally
the i = 2 form is better, indicating that AC2 is better than
AC3. Sometimes, however, AC3 may be better, as seen in
comparing the RFL2 and RFL3 data of Table 2. Of course,
our data is for the specific arc revision orderings assumed

by our versions of AC2 and AC3 above (initial lexographic
order of arcs, with lists maintained as queues during pro-
cessing). Other orderings may change the relative ranks of
AC2 and AC3, and hence of corresponding i = 2 and i = 3
form algorithms. Arc-revision ordering is a potential source
of significant efficiency improvement and deserves more
study.

6 . In our hybrid algorithms, less arc consistency per tree
node means more tree nodes, but may also mean less con-
straint checks over the whole tree. This is because even
though there are more nodes, there are less checks per node
and hence possibly less checks per tree. (Number of checks,
not nodes, is the more meaningful measure of complexity,
since for our problems each node besides the root corre-
sponds to at least one check.) This overall reduction of
checks per tree does indeed occur as we decrease the degree
of arc consistency. Both Tables 2 and 3, and the schematic
plot of Fig. 13, show that the break-even point amongst our
hybrid algorithms occurs for algorithm FC, after which the
number of checks rises again for BT. FC is in fact the best
algorithm in Table 2, and very nearly the best in Table 3,
being beaten slightly by BM.

Thus in hybrid algorithms it does not necessarily pay to
pursue much arc consistency at the tree nodes. And this is
a strengthening of the observation by other researchers that
it does not in general pay to pursue degrees of j-consistency
(Freuder 1978) higher thanj = 2 at the tree nodes (remember
that 2-consistency is arc consistency, 3-consistency is path
consistency). Figure 13 also indicates this deterioration of
efficiency in pursuing higher degrees of j-consistency for
j > 2.

7. There are of course algorithms conceivable with degrees
of arc consistency between BT and FC or between FC and
PL. The true minimum complexity (maximum efficiency)
may very well occur for 'one of these. This has in fact led
us to the discovery of a new hybrid algorithm better than
FC, corresponding to Algorithm Y in Fig. 13. It revises at
a tree node only those arcs (i j) whose target net node j has
only a single domain value left. Note that most of our hybrid
algorithms above call AC'/4(k) at a level-k node, and all
arcs revised by this call are of this singleton-target-node type.

Revision of arcs (i j) which have target nodes j with only
one value has a triple advantage: (i) filtering of source node
i is more likely to occur, (ii) arc (i j) once revised need not
be revised again, and (iii) arc (j i) is implicitly revised when
(i j) is revised. The arc processing at a tree node in our new
algorithm is orchestrated as for AC3, but modified to only
consider singleton-target-node arcs. The modified AC3 also
differs in that it remembers which arcs have been revised
along a branch of the tree, so as not to revise again an arc
already revised, explicitly or implicitly, at an ancestor tree
node. Each branch through the search tree thus corresponds
to one directed-arc revision for each undirected arc in the
overall constraint graph, (3 arc revisions in the case of
complete graphs on n nodes. We tentatively call this algo-
rithm TSSTAC3 for Tree Search + Singleton Target Node
AC3. More details will be given in a future paper.

8. It is interesting to note that in Table 3 the trends seem
to indicate that every algorithm in the table (even the grossly
inefficient TSACl and TSRACl) is better than traditional
BT for large enough q, In the examples of Table 2, however,
BT seems to be holding its own except against BJ, BM, and
FC. This variation with q, and the different effects in the

NADEL 217

two tables, is no doubt due at least in part t o the change
in constraint looseness that occurs with q, and the different
way it changes for the two problem classes. We saw in
Sect. 2 that looseness increases with q for regular q-queens
problems, but decreases with q for confused q-queens prob-
lems. How exactly this affects the relative ranking of our
algorithms as a function of q is far from obvious, however.
Only mathematical analyses can really clarify such issues (see
below).

9. The above point generalizes to the observation that the
ranking of CSP algorithms depends on the problem instance
being solved. And even more generally, any empirical study
such as that here, or those in Gaschnig (1978, 19791,
Haralick and Elliot (1980), McGregor (1979), and Nadel
(1986), must always be taken with a grain of salt because
of the inevitably limited nature of the problem set used. In
our case, remember that both the q-queens and the confused
q-queens problems used here are complete, binory CSP
instances, for which, moreover, each domain size m, and
the number of variables n are all equal t o the same v a h e q
(see Sect. 2). Moreover, specific instantiation orders,
constraint-check orders, and arc-revision orders were used
by the algorithms. Only mathematically derived complexity
expressions can serve as a truly general basis for comparing
these algorithms for arbitrary problem instances and pro-
cessing orders. Mathematical results of the form in Haralick
and Elliot (1980), Mackworth and Freuder (1985), Nadel
(19861, and Nudel (1983~1, 6) would thus be desirable for
the wider range of algorithms considered here. The notion
of instonce-specificity or precision of such analytic results,
so that they capture the variation of complexity as a func-
tion of individual problem instance, is discussed in Nadel
(1986, 19886, c) and Nudel (1983a).

10. The hybrid algorithms above were all subsumed by
the meta-algorithm of Fig. 8. Actually, this meta-algorithm
could be further generalized to subsume the whole spectrum
of full and partial arc consistency hybrid algorithms, which
achieve j-consistency for 1 I j i 2 at the tree nodes. An
analysis of the resulting algorithm would serve as a simul-
taneous analysis of all its subsumed algorithms, including
those here. The same holds for the next level of generaliza-
tion of the meta-algorithm to allow j-consistency for
1 I j I n at the tree nodes. Whatever the range of j
allowed, an analysis of such a “continuous-j” meta-
algorithm provides a convenient theoretical basis for choos-
ing the best j-consistency/tree search hybrid from a con-
tinuum of possiblej values. This would be done by finding
the j value that minimized the complexity of the meta-
algorithm as a function of j , for the problem of interest.

Such a theory-based and instance-specific approach to
decision-making has already been used in deciding on the
best search order (Nadel 1986; Nudel 1983~) and on the best
representation (Nadel 19886) in solving constraint satisfac-
tion problems. It has also been used (Nudel 19830, b) in
deciding on the best from a small number of algorithms.
It has not yet been used, as proposed here, in deciding on
the best from a parameterized continuum of algorithms.

1 I . The hybrid algorithms we have studied, or proposed
above, apply the samej-consistency procedure(s) at all nodes
of the search tree. I f efficiency can benefit from a good
choice for a common degree of j-consistency at all the nodes
of the tree, then all the more so if this optimization is allowed
separately for each level or even for each individual node

(assuming that the extra decision-making cost does not out-
weigh the extra cost saved).

Actually, we already have a special case of this in our
above algorithms’ avoidance of any arc consistency process-
ing at the root node. Such processing is not generally cost-
effective, as discussed near the start of Sect. 5 . Gaschnig’s
DEELEV(1) algorithm (1979) extends this notion, avoiding
arc consistency processing till level i. However, the switch-
on level, i, must still be decided by the user. Algorithms that
dynamically decide (level-wise or node-wise) what degree of
j-consistency processing to d o where deserve more considera-
tion. A mathematical analysis should be useful in guiding
this kind of decision-making. Basically, the decision should
depend on the chances of attaining useful filtering. This in
turn depends on what set of constraints a re involved, their
tightness, and how large are the current domains of the
variables to be filtered (source net nodes) and of the variables
they are to be filtered against (target net nodes).

12. The hybrid algorithms .studied above all combined
j-consistency processing (f o r j = 2) with the simple search
tree mechanism of Backtracking. Combining j-consistency
with Backjump or Backmark should also be possible, as sug-
gested by Gaschnig (1979, p. 172). And Backmark and Back-
jump may themselves perhaps be combined, as suggested
in Sect. 3.3 above. Such algorithms deserve attention.

The above CSP algorithms, and suggested improvements,
far from exhaust all possibilities. Seidel (1981) has devel-
oped an algorithm that is apparently of a totally new type.
Other important new directions have also been taken by
Dechter and Pearl (1987, 1988), Dechter and Dechter (1987),
and Dechter (1986, 19870, 6). And parallel approaches to
solving constraint satisfaction problems are opening up new
possibilities (Freuder and Quinn 1985; McCall el al. 1985;
Kasif 1986). Besides improving algorithms, considerable
attention has also been given to formulating and solving
alternative versions of the problem. Fuzzy, probabilistic,
inexact, and weighted versions of CSP have been studied
(Shapiro and Haralick 1981; Faugeras and Berthod 1981;
Rosenfeld et al. 1976). The latter work is particularly rele-
vant for machine vision because the image being analyzed
usually is noisy to some extent. Thus with (i) finding new
applications, (ii) understanding existing algorithms better,
both empirically and theoretically, (iii) developing new algo-
rithms, and (iv) generalizing the problem and its algorithms,
research on the Constraint Satisfaction Problem will no
doubt remain a central endeavor in artificial intelligence for
considerable time to come.

Acknowledgements
Many thanks to Alan Mackworth and Robert Haralick

for helpful discussions concerning some of the above algo-
rithms, and also to the reviewers for suggesting useful
improvements.

BITNER, J .R., and REINGOLD, E. 1985. Backtrack programming
techniques. Communications of the ACM, 18: 651-656.

BRUYNOOGHE, M., and PEXEIRA, L.M. 1984. Deduction revision
by intelligent backtracking. I n Implementations of Prolog.
Edifed by J.A. Campbell. Ellis Horwood, Chichester, England.

DAVIS L.S., and ROSENFELD, A. 1981. Cooperating processes for
low-level vision: a survey. Artificial Intelligence (Special Issue
on Computer Vision), 17: 245-263.

pp. 194-215.

218 COMPUT. INTELL. VOL. 5 , 1989

DECHTER, A., and DECHTER, R. 1987. Removing redundancies in
constraint graphs. Proceedings of the 6th National Conference
on Artificial Intelligence, Seattle, WA, pp. 105-109.

DECHYER, R. 1986. Learning while searching in constraint
satisfaction problems. Proceedings of the Fifth National Con-
ference on Artificial Intelligence, Philadelphia, PA, pp. 178-1 83.

-19870. A constraint-network approach t o truth-
maintenance. Technical Report R-870009, Cognitive Systems
Laboratory, Computer Science Department, University of
California at Los Angeles, Los Angeles, CA.

1987b. An integrated strategy for improved backtrack.
“Technical Report R-77, Computer Science Department, Univer-
sity of California at Los Angeles, Los Angeles, CA.

DECHTER, R., and PEARL, J. 1987. The cycle-cutset method for
improving search performance in A1 applications. Proceedings
of the Third IEEE Conference on A1 Applications, Orlando, FL.

-_ 1988. Network-based heuristics for constraint-satisfaction
problems. Artificial Intelligence, 34(1): 1-38. Also in Search in
artificial intelligence. Edited by L. Kanal and V. Kumar.
Springer-Verlag, New York, NY. 1988.

DEKLEER, J. 1986. An assumption-based TMS. Artificial
Intelligence, 28: 127-162.

DOYLE, J. 1979. A truth maintenance system. Artificial
Intelligence, 12: 231-272.

EASTMAN, C. 1972. Preliminary report .on a system for general
space planning. Communications of the ACM, 15: 76-87.

FAUGERAS, O.D., and BERTHOD, M. 1981. Improving consistency
and reducing ambiguity in stochastic labeling: an optimization
approach. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-3(4): 412-424.

FIKES, R.E. 1970. REF-ARF: a system for solving problems stated
as procedures. Artificial Intelligence, 1: 27-120.

FOWLER, G., HARALICK, R., GRAY, F.G., FEUSTEL, C., and
GRINSTEAD, C. 1983. Efficient graph automorphism by vertex
partitioning. Artificial Intelligence (Special Issue on Search and
Heuristics), 21(1 and 2): 245-269. Also in Search and heuristics,
North-Holland, Amsterdam, The Netherlands.

FRIIUDER, E.C. 1978. Synthesizing constraint expressions. Com-
munications of the ACM, 21: 958-966.

1982. A sufficient condition for backtrack-free search.
Journal of the ACM, 29(1): 24-32.

FREUDER, E.C., and QUINN, M.J. 1985. Parallelism in an algo-
rithm that takes advantage of stable sets of variables to solve
constraint satisfaction problems. Technical Report 85-21, Depart-
ment of Computer Science, University of New Hampshire.
Durham, NH.

GASCHNIG, J. 1974. A constraint satisfaction method for inference
making. Proceedings of the 12th Annual Allerton Conference
on Circuit System Theory, University of Illinois, Chicago, IL,

-- 1977. A general Backtracking algorithm that eliminates
most redundant tests. Proceedings of the 5th International Joint
Conference on Artificial Intelligence, Massachusetts Institute of
Technology, Cambridge, MA, p. 457.
-- 1978. Experimental case studies of Backtrack vs. Waltz-type

vs. new algorithms for satisficing assignment problems. Pro-
ceedings of the 2nd Biennial Conference of the Canadian Society
for Computational Study of Intelligence, Toronto, Ont.,

-- 1979. Performance measurement and analysis of certain
search algorithms. Ph.D. dissertation, Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, PA.

GOLOMB, S.W., and BAUMERT, L.D. 1965. Backtrack program-
ming. Journal of the ACM, 12: 516-524.

HARALICK, R.M., and ELLIOT, G.L. 1980. Increasing tree search
efficiency for constraint satisfaction problems. Artificial
Intelligence, 14: 263-313.

HARALICK, R.M., and SHAPIRO, L.G. 1979. The consistent label-
ing problem: part I. IEEE Transactions on Pattern Analysis and

pp. 866-874.

pp. 268-277.

Machine Intelligence, PAMI-l(2): 173-184.
1980. The consistent labeling problem: part 11. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence,

HARALICK, R.M., DAVIS, L.S., and ROSENFELD, A. 1978. Reduc-
tion operations for constraint satisfaction. Information Sciences,

HOROWITZ, E., and SAHNI, S. 1978. Fundamentals of computer
algorithms, Computer Science Press, Inc., Rockville, MD.

KASIF, S. 1986. On the parallel complexity of some constraint
satisfaction problems. Proceedings of the Fifth National Con-
ference on Artificial Intelligence, Philadelphia, PA, pp. 349-353.

KUMAR, V., and LIN, Y. 1988. A data-dependency-based intelli-
gent backtracking for Prolog. Journal of Logic Programming,

MACKWORTH, A.K. 19770. Consistency in networks of relations.
Artificial Intelligence, 8: 99-1 18.

1977b. On reading sketch maps. Proceedings of the
5th International Joint Conference on Artificial Intelligence,
Massachusetts Institute of Technology, Cambridge, MA,

1987. Constraint satisfaction. In Encyclopedia of artificial
intelligence. Edited by S.C. Shapiro. Wiley, New York, NY.

MACKWORTH, A.K. and FREUDER, E.C. 1985. The complexity of
some polynomial network consistency algorithms for constraint
satisfaction problems. Artificial Intelligence, 25: 65-74.

MCCALL, J.T., TRONT, J.G., GRAY, F.G., HARALICK, R.M., and
MCCORMICK, W.M. 1985. Parallel computer architectures and
problem solving strategies for the consistent labeling problem.
IEEE Transactions on Computers, C-34(1 1): 973-980.

MCGREGOR, J. 1979. Relational consistency algorithms and their
application in finding subgraph and graph isomorphisms. Infor-
mation Sciences, 19: 229-250.

MOHR, R., and HENDERSON, T.C. 1986. Arc and path consistency
revisited. Artificial Intelligence, 28: 225-233.

MONTANARI, U. 1974. Networks of constraints: fundamental
properties and applications to picture processing. Information
Sciences, 7: 95-132.

MONTANARI, U., and ROSSI, F. 1988. Fundamental properties of
networks of constraints: a new formulation. In Search in artificial
intelligence. Edited by L. Kanal and V. Kumar. Springer-Verlag,
New York, NY. pp. 426-449.

NADEL, B.A 1986. The consistent labeling problem and its algo-
rithms: towards exact-case complexities and theory-based
heurestics. Ph.D. dissertation. Computer Science Department,
Rutgers University, New Brunswick, N.J.

19880. Tree search and arc consistency in constraint satisfac-
tion algorithms. In Search in artificial intelligence. Edited by
L. Kanal and V. Kumar. Springer-Verlag, New York, NY.

19886. Representation selection for constraint satisfaction
problems: a case study using n-queens. Technical Report
CSC-88-006, Department of Computer Science, Wayne State
University, Detroit, MI; IEEE Expert, S(3). June 1990.
To appear.

1988~. Precision complexity analysis: a case study using
insertion sort. Technical Report CSC-88-008, Department of
Computer Science, Wayne State University, Detroit, MI.

NUDEL, B.A. 1982. Consistent-labeling problems and their algo-
rithms. Proceedings of the National Conference on Artificial
Intelligence, Pittsburgh, PA, pp. 128-132.

1983~. Consistent-labeling problems and their algorithms:
expected-complexities and theory-based heuristics. Artificial
Intelligence (Special Issue on Search and Heuristics), 21(1 and 2):
135-178. Also in Search and heuristics. North-Holland,
Amsterdam, The Netherlands.

19836. Solving the general consistent labeling (or constraint
satisfaction) problem: two algorithms and their expected com-
plexities. Proceedings of the National Conference on Artificial

PAMli-2(3): 193-203.

14: 199-219.

pp. 165-181.

pp. 598-606.

pp. 287-342.

NADEL 219

Intelligence, Washington, DC, pp. 292-296.
PURDOM, P.W., Jr. 1982. Evaluating search methods analytically.

Proceedings of the National Conference on Artificial Intelli-,
gence, Pittsburgh, PA, pp. 124-127.

1983. Search rearrangement backtracking and polynomial
average time. Artificial Intelligence (Special Issue on Search and
Heuristics), 21(1 and 2): 117-133.

PURDOM, P.W., Jr., and BROWN, C. 1981. An average time anal-
ysis of backtracking. SIAM Journal on Computing, lO(3):

RIT, J. 1986. Propagating temporal constraints for scheduling.
Proceedings of the Fifth National Conference on Artificial
Intelligence, Philadelphia, PA, pp. 383-388.

ROSENFELD, A. 1975. Networks of automata: some applications.
IEEE Transactions on Systems, Man and Cybernetics, SMC-5(5):

ROSENFELD, A., HUMMEL, R.A., and ZUCKER, S.W. 1976. Scene
labeling by relaxation operations. IEEE Transactions on Sys-
tems, Man and Cybernetics, SMC-6(6): 420-433.

SEIDEL, R. 1981. A new method for solving constraint satisfac-
tion problems. Proceedings of the 7th International Joint Con-
ference on Artificial Intelligence, Vancouver, B.C., pp. 338-342.

SHAPIRO, L.G., and HARALICK, R.M. 1981. Structural descrip-
tions and inexact matching. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, PAMI-3(5): 504-5 19.

STEFIK. M. 1981. Planning with constraints (MOLGEN: Part I).
Artificial Intelligence, 16: 11 1-140.

TSANG, P. 1987. The consistent labeling problem in temporal
reasoning. Proceedings of the Sixth National Conference on
Artificial Intelligence, Seattle, WA, pp. 25 1-255.

ULLMAN, J.R. 1973. Pattern recognition techniques. Crane
Russak, New York, NY. p. 198.

1976. An algorithm for subgraph isomorphism. Journal of
the ACM, 23: 31-42.

VAN HENTENRYCK, P., and DINCBAS, M. 1986. Domains in logic
programming. Proceedings of the Fifth National Conference on
Artificial Intelligence, Philadelphia, PA, pp. 759-765.

WALKER R.L. 1960. An enumerative technique for a class of com-
binatorial problems. Combinatorial Analysis (Proceedings of the
Symposium on Applied Mathematics, Vol. X), American
Mathematical Society, Providence, RI, pp. 91-94.

WALTZ, D. 1975. Understanding line drawings of scenes with
shadows. In The Psychology of computer vision. Edifed by
P.H. Winston. McGraw-Hill, New York, NY. Originally in
Technical Report AI-TR-271, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA. 1972.

583-593.

380-383.

Appendix I. More-detailed examples
To avoid losing sight of the forest for the trees, our hybrid

algorithm traces above (Figs. 10-12) did not show the actual
constraint checks that were performed. The tree search algo-
rithm traces (Figs. 1 and 2) did show the constraint checks,
but not their order nor the values of important variables
which controlled the search. (The only exceptions were in
connection with the E nodes in Figs. 1 and 12, where the
constraint check sequencing was explicitly given, as it was
also in connection with Fig. 6.)

This avoidance of detail allowed the main features of our
algorithms to be more clearly exposed, but at the cost of
conveying a possibly incomplete understanding of what was
really going on. In this appendix we fill in these details.
Earlier traces, and some new ones, are given, showing the
sequencing of individual constraint checks. For the tree
search algorithms BJ and BM, the effect of their control
variables (faildepth, returndepth, MaxCheckLevel, Min-
BackupLevel) is also discussed in more detail, and their
values are shown in the corresponding traces.

In all figures below, individual constraint checks are
denoted by 5-tuples as described in Sect. 4 in connection with
Fig. 6. Specifically, the 5-tuple ABCDE denotes that instan-
tiation zA = B was checked against zc = D, and that the
result was E, where E can be either T for true or F for false,
indicating respectively that the corresponding binary con-
straint was found to be satisfied or violated by the pair of
instantiations. This convention, and most others for the BT,
BJ, and BM traces below, are from Gaschnig (1979).

Tree search algorithms
Figure A1 gives traces for BT, BJ, and BM solving con-

fused 4-queens. These are more-detailed versions of the
graphical traces which appeared above in Figs. 1 and 2. For
ease of comparison, the block of processing at a node is
labeled before with “L start” and after with “L end,” where
L is the same letter as used for that node in Figs. 1 and 2.
Corresponding node starts and ends are aligned in the three
traces here. The resulting gaps left in the BJ trace emphasize
the instantiation and node savings of this algorithm com-
pared to BT. The lack of such gaps in the BM trace
emphasize that BM carries out all instantiations, and gen-
erates all nodes, that BT does. Remember, BJ avoids checks
by avoiding instantiations, but cannot save checks once a
given instantiation is made. BM cannot avoid instantiations,
but may save checks by avoiding them at the instantiations
it does make. In Sect. 3.3 these were distinguished as “hor-
izontal” versus “vertical” savings respectively.

In Fig. A l , the constraint checks ABCDE corresponding
to a given instantiation zA = B are placed on a single line
in their order of execution, preceded by the pair AB. Thus
the line 34 3412T 3421F occurring for algorithm BT means
that after setting z3 = 4, this instantiation was checked
against past instantiation z1 = 2 and found to satisfy the
corresponding constraint, then it was checked against
22 = 1 and found to violate the constraint. Note that all
the check 5-tuples in such a line start with the same AB as
precedes the line, and that the third component increases
from 1 by 1 in successive 5-tuples, since the three algorithms
check against past variables in the order zl, z2, z3,

Lines of our traces here are indented right in proportion
to the level of their node in the tree. The traces thus corre-
spond to trees “lying on their side” with the root to the left.
Top-to-bottom traversal in Figs. 1 and 2 corresponds to left-
to-right traversal in Fig. A l . And left-to-right traversal in
the former traces corresponds to top-to-bottom traversal in
the latter.

For the purpose of comparison, at the beginning and end
of the traces in Fig. A l , two complexity measures are given
in the form (x:y). x is the cumulative number of constraint
checks performed to the end of the corresponding line’s
checks. y is the number of nodes that have been generated
(started, though not necessarily completed) by the algorithm
to that stage.

Backtracking
The BT trace of Fig. A1 makes explicit the depth-first

order in which BT traverses the search tree shown graphically
in Fig. 1. In particular, note that the order of constraint
checking at node E, and the interleaving of subnode genera-
tion, is as discussed in Sect. 3.1. In the trace of Fig. A7
below, we contrast this order with that of revise-based BT.

220

I 32 3212T 3222T
F start
41 4112F

COMPUT. INTELL. VOL. 5 , 1989

r BT

12 (37:7)
B start
21 21 12T

c Start
31 3112F
32 3212T 3221T

D sttut
41 4112F
42 4212T 4221F
43 43 12F
444412F
D end

33 3312F
34 3412T 3421F

C a d
22 2212T

start
31 3112F

424212T4222T4232T
Solution = 2222
43 4 3 1 s
44 4 4 1 s

343412T3422F

323212T3223T
H start
41 4112F
42 4212T 4223F
43 4312F
444412F
H end

33 3 3 1 s
343412T3423T

start
1 4 1 1 s

42 4212T 4223F
434312F
444412F
I end

G en6
2412F

B end

Nodes, here 9
Nodes, whole tree 29
Checks, here 43
Checks, whole tree 160

BJ

12 131 (37:7)
B stan
21 (01 2112T

CStm
31 [0]3112F[l]
32 [l] 3212T 3221T

D stert
41 [0]4112F[l]
42 (11 4212T 4221F [2]
43 121 4312F [l]
44 [21 4412F [11 Backjump!
D end

31 [OI 3112F Ill
32 [i j 3 2 1 2 ~ 3 2 2 2 ~

Fstart

42 [l] 4212T 4222T 4232T [3]
Solution = 2222
43 [3] 4312F 111

41 ro1

31 [O] 3112F[1]
32 [I] 3212T 3223T
H start
41 [0]4112F[l]
42 [11 4212T 4223F [2]

44[2]4412F[l]Backjump!
H end

43 [2]4312F[l]

G end
24 [3] 2412F [l]
B end

(69: 14)

8
27
32

139

12 [l:l]Y [O] (235')
B stan
21 [1:1]Y 2112T[IJ

c S t a n

31 [2:11~ 3 i i 2 ~ r i i - .
32 [l:ljY 3212T 3221T [2]

D start
41 [2l]Y 4112F [l]
42 [l:l]Y 4212T4221F [2]
43 [l:l]Y 4312F[1]
44 [3:1lY 4412F[1]

111 -> 1113 Dmd
2:llY 3312F [l]

34 [l:l]Y 3412T 3421F [2]
1122 C end
2212T [11

31 [1:2]N aF
32 [2:2]Y bT 3222T [2]
P Start
41 [1:2]N aF
42 [22]Y bT 4222T 4232T [3]
Solution = 2222
43 [1:2]N aF
44ll:21N aF
1122-i l l23 Fend

33 ll:21N aF
34 [22jY bT 3422F [2]
1123 -> 1122 E end

23 [l:l]Y 2312T [l]
G start
31 [1:2]N aF
32 [22]Y bT 3223T [2]

H: stm
41 11:21N aF
42 i3:2jY bT 4223F [2]
43 [1:2)N aF
44[1:2]N aF
1122 -> 1123 Hend

33 [1:2]N aF
34 [22]Y bT 3423T [2]

I start
41 [1:3]N aF
42 [2:3]N aT aF
43 [1:3m aF
44[1:3]N aF

9
29
22
90

FIG. Al. Detailed traces of BT, BJ, and BM solving confused 4-queens, for the same subtrees as shown graphically in Figs. 1 and 2.

Backjumping
The BJ trace in Fig. A1 is similar to that for BT. How-

ever, lines of the BJ trace include an additional one or two
numbers in square brackets. The first is the value of the local
returndepth variable before, and just after, the correspond-
ing instan!iation took place. The second number in square
brackets occurs only on lines where the constraint checking
turned up an inconsistency, or on a line just before a solu-
tion is found. I t is the value assigned to faildepth after that

line's constraint checking. This value equals the number of
checks appearing on the corresponding line of the trace. As
required by BJ, the first of these two values (returndepth)
on a line is the running maximum over the second of these
values (faildepth) on previous lines - previous instantia-
tions - for the same node, and over values returned by
earlier recursive calls to BJ from that node, if there were any.

Consider node D of the BJ trace, for example, where z4
is being instantiated. The local value of returndepth at that

NADEL 22 I

node starts with value 0, and then successively takes on
values 1, 2, 2, 2 after the four assignments of faildepth to
1, 2 , 1, and 1, corresponding to failures of the z4 values
against the instantiations for past variables 21, z2, 21, and
z1 respectively. (The assignment of returndepth to its final
value at a node is not recorded in the trace. Its value is easily
determined though, as the maximum of the returndepth and
faildepth values appearing on the line for the last instantia-
tion at that node.)

On exiting node D, returndepth has value 2. On return
to the parent k = 3 node C, faildepth is set to this value
of 2, and the test faildepth < k succeeds. Node C i s therefore
immediately exited, avoiding the constraint checks corre-
sponding to instantiations z3 = 3 and z3 = 4. Node C
returns to set faildepth to 2 at its parent k = 2 node B. At
this latter node, the test faildepth < k fails; the backjump-
ing thus stops and the next value, z2 = 2, is tried at
node B. A similar process occurs on return from node H ,
but note the avoidance then not onIy of instantiations and
their checks in the parent node G but also the avoidance
of the whole node I (as seen graphically in Fig. 1.)

Backmarking
As discussed in Sect. 3.3, constraint checks done by BT

are avoided by BM in two ways, which we called type (a)
and type (b) savings. Both types of savings are achieved by
use of BM’s two array variables MinBackupLevel and Max-
CheckLevel. In terms of these variables, the reasoning
behind these savings is as follows:

(a) MaxCheckLevel[k, v] < MinBackupLevel[k] means
that since the last node at which BM checked zk = v
against instantiations of the past variables z I , z2, ..., BM
has not yet backed up to the levelp = MaxCheckLeveRk, v]
of the deepest past variable zp reached during that check-
ing. It also means that the check of z k = v failed then
against the value of z,. This is because it is always true that
MinBackupLevel[k] < k, and this together with MaxCheck-
Level[k, v] < MinBackupLevel[k] implies t ha t
MaxCheckLevel[k, v] < k - 1. This means that zk = v
failed when it was last tested, as discussed for the analogous
integer variable MaxCheckLevel of algorithm BJ2 in
Sect. 3.2. Since the last time it was tested, Zk = v failed
against the value of z, and we have not yet backed up to
level p to change the value of z,, then z k = v will again fail
against the unchanged value of z, i f tested. Thus
MaxCheckLevel[k, v] < MinBackupLevel[k] means that we
can avoid all checks of Zk = v against past variables and
go on to the next instantiation of z k . This saves the p
checks that BT would otherwise have performed.

(b) MaxCheckLevel[k, v] 2 MinBackupLevel[k] means
that since the last node at which BM checked zk = v
against instantiations of the past variables z I , z2, ..., BM
has backed up to a level q = MinBackupLevel[k] which is
equal to, or shallower than, the level p = MaxCheck-
Level[k, v] of the deepest past variable z, reached during
that checking. The check of z k = v against the value of i,
may or may not have succeeded, but the checks against the
instantiations of zI to zp- must have succeeded, else the
checking of zk = v could not have reached zp. Thus checks
now against the past instantiations of zI to zq- will again
succeed because we have since backed up only to level q I. p
so that these past instantiations are still unchanged. The
check of z k = v against z , and deeper variables may fail,

however, because they have since changed their values during
backup. Thus MaxCheckLevel[k, v] I MinBackupLevel[kl
means that we may avoid the q - 1 checks of z k = v
against zlr zz, ..., 2,- I , which are guaranteed to succeed,
and need only check zk = v against the instantiations of 2,
to 2 k - l (stopping of course at the first failure, i f one
occurs).

In the BM trace of Fig. A l , constraint-check savings of
type (a) are indicated by aT and aF symbols, the T and F
indicating respectively that the corresponding check was one
that would have succeeded or failed. (The aT and aF symbols
correspond respectively to the grey circled check marks and
the grey circled crosses in Fig. 2.) Type (b) check savings
are indicated by bT symbols in the trace, the T denoting that
these checks were each destined to succeed. (The bT symbols
correspond to the grey squared check marks in Fig. 2.)

The BM trace also includes MaxCheckLevel and Min-
BackupLevel values to clarify the use of these arrays. A line
of the trace corresponding to an instantiation zA = B, after
giving the initial juxtaposed pair AB as in the other traces,
also includes a pair [X:Y] where X and Y are respectively
the values MaxCheckLevel[A, B] and MinBackupLevel[Al
before the constraint checking for that instantiation. For
example, in node F of the BM trace, the [1:2] in the line 43
[1:2]N aF indicates that initially MaxCheckLevel[4, 31 = 1
and that MinBackupLevel[4] = 2 (both of which can be seen
to be correct from a look at the preceding part of the trace).
The [X:Y] pair is followed by a (redundant) Y or N, indicat-
ing respectively whether the BEGIN-END block of BM was
actually entered or not. An N corresponds to type (a) sav-
ings. A Y may correspond to type (b) savings, or to no
savings.

For lines with a Y, a final number in square brackets
appears giving the value assigned to MaxCheckLevelIA, B]
after the constraint checking for that instantiation. These
values are the same as the corresponding faildepth value in
the BJ trace, where one is shown. For both algorithms, this
value is the number of checks appearing in the corresponding
line of output of the trace (including possibly type (b)
avoided checks in the case of BM).

Just before completing any node, BM updates the Min:
BackupLevel array to reflect the backup that is about to
occur. The trace shows this update in the form ABCD - >
EFGH, where ABCD and EFGH are the array values before
and after update respectively. The updates are shown on a
separate line following the last instantiation at each node.

Hybrid tree searchlare consistency algorithms
This section shows the detailed traces for most of our

hybrid algorithms of Sect. 5. For all but the revise-based
BT algorithm, the traces show the processing at a single node
of the search tree for 5-queens: the level k = 2 node having
past instantiation zI = 2. This is the 5-queens analog of the
4-queens node which was treated above in Fig. 10, and which
was extended to the whole half-tree in Fig. 11. Revise-based
BT is also traced, but using confused 4-queens as the exam-
ple. In each case, the trace is at the detailed level of individ-
ual constraint checks performed.

Algorithms FC, PL, FL, RFLI, RFLZ, and RFL3
Figures A2-A6 give the traces respectively for algorithms

FC, PL, FL, RFLI, and RFL3 at the zI = 2 node for solv-
ing 5-queens. Each trace shows the domain array (as con-
tained in array parameter d of the corresponding algorithms)

222

AC1/4(2) -
2112F2212F2312F 2412T2512T

41 12T 421 2F 4312T 4412T 4512F
5112T5212F 5312T5412T 5512T

311 2T 321 2F 3312T 341 2F 351 2T (78'1 1)

FIG. A2. The z1 = 2 node when solving 5-queens by FC(k) = TS(k) + AC'/4(k).

& N P
N O P

AC1/4(2) - ACl/3(2) -
2431T2531T
2441T2541T (1 37:lO) 20 checks as in Fig. A2 2451F 2453T 2551T
3141F 3143T 33411 3541T
3151F 3153F 31WT 3351F 3353F 3354T 3%1T
4151F 4153T 4351T 4451T

e OlPP
VlNO

FIG. A3. The z , = 2 node when solving 5-queens by PL(k) = TS(k) + AC%(k) + AC'/3(k).

5131F5133F 5331F5333F5431T5531T
Q = ((5 4)). past-union an 0-extra I ((2 5)(4 5)). New Q = ((5 4)(2 5x4 5)).
5441T 5541 T
2454F2455T2554T
4154T4354F4355T4454F4455F

AC1/2 (2) in F , ~ . A 5 Q = 0. post-unlan an Q-eylra = ((2 4)(3 4)). New Q = ((2 4K3 4)).
2441T 2541T
3141F3143T3341T

13 checks replacing the 65 in the 2nd
and 3rd passes t

FIG. A6. The zI = 2 node when solving 5-queens by RFL3(k) = TS(k) + AC'/4(k) + AC3(k).

AC114(2) - AC1/2(2)
2431T2531T

2451F2453T 2551T
3124T3324F3325T3524F3525F
3141 F 31 43T 3341T

2441T 2541T (193'10)
x) checks as in Figs. A 2 and A 3

o n a a
zyz00

X X G l v ,
VI p -
WWP%
2r5.a
g $ $3
$ 3
5 -

(D m

3151F3153F1154T3351F3353F3354T
41 24T 4324T 4424F 4425T
4131 F 4133T 4331T 4431T
4151F 4153T 4351T 4451T
5124F5125TSJ24T5424F5425T5524T
5131 F 51 33F 5331 F 5333F 5431 T 5531T
5441T 5541T

FIG. A4. The z , = 2 node when solving 5-queens by FL(k) = TS(/O + AC'/4(k) + AC'/2(k).

I ! I I

-AC1/4(2) - ACl(2)
-AC1/2(2) - -AC1/2(2) - -AC1/2(2) -

20 checks as in 47 checks 2431T 2531T 2431T 2531T
2441T 25411 244iT 2541T
2454F2455T2554T 2450F 2455T 2554T Figs. A2, A3, A 4

31 24T 3324F 33251 3124T3324F3325T

as in Fig. A 4

3141F 3143T3341T 3141F 3143T3341T (315:10)
31541 33541 31MT 3354T
4124T4324T4424F4425T 4124T d24T
4131F 4133T43311 4431T 4131F 4133T4331T
4154T 4354F 4355T 4454F 4455F 4154T 4354F 4355T
5424F5425T5524T 5424F 5425T 5524T
5431T 5531T 5431T 5531T
5441T 5541T 5441T 5541T

FIG. AS. The zI = 2 node when solving 5-queens by RFLl(k) = TS(k) + AC%(k) + ACl(k).

-AC1/4(2) - AC3(2)

20 checks 0s in
Figs. A 2 - A 5

a = ((2 3)(2 4)(2 5)(3 4x3 5x4 2x4 3x4 5x5 2 ~ 5 3x5 4))
2431T2531T (215:lO)
2441T 2541T
2451F 2453T 2551T
3124T3324F3325T3524F3525F
0 = ((3 4)(3 5)(4 2)(4 3)(4 5x5 2x5 3K5 4)). post-unlan an 0-extra = ((4 3)(5 3)). 1 New Q ((3 4)13 5x4 21l4 3x4 915 2M5 3115 4)) 3141 31;i3T 3341.T I . ,

3151F3153F 3154T3351F 3353F 3354T
4124T 43241 4424F 4425T
4131 F 41331 43312 4431T
4151 F 4153T 4351T 4451T
5124F5125T5324T5424F5425T5524T

47 checks as far AC1/2(21 in Fig. A 4
ond first A/C1/2{21 passin Fig. AS

NADEL 223

TABLE Al. Statistics for solving 5-queens by RFLi, i = 1, 2, and 3

Nodes Checks for z , = 2 node Checks Algorithm
RFLi = TS + ACY4 + ACi AC% ACi for problem for problem

RFLl = TS + AC% + ACI 20 112 915 38
RFLZ = TS + AC% + AC2 20 49 595 38
RFL3 = TS + AC94 + AC3 20 60 636 38

TABLE A2. Statistics for solving confused 6-queens by RFLI‘, i = I , 2, and 3

Checks Nodes Checks for z , = 2 node Algorithm
RFLi = TS + ACj/4 + ACi AC% ACi for problem for problem

RFLl = TS + AC% + ACl 30 52 792 39
RFLZ = TS + AC94 + AC2 30 67 806 39
RFL3 = TS + AC% + AC3 30 35 696 39

are listed left to right in the order of their performance. The
(x:y) pair shown at the end of each node’s processing gives
the number of checks performed, and the number of nodes
generated, to that stage.

Note that extra information is added to the RFL3 trace
of Fig. A6. Following each arc revision by AC3 in which
a domain-value deletion actually occurred, the figure gives
the current value of the arc-list Q, the value of the incremen-
tal arc-list Q-extra to be post-unioned onto Q due to the
deletion, and the resulting new value of the list Q.

From the traces and associated statistics shown, we see
again the ineffectiveness of increasing the amount of arc con-
sistency processing at a node. (Or in terms of the order of
presentation used in the body of the paper, we see the effec-
tiveness of reducing the amount of processing at a node.)
PL removes no more domain values at our node than does
FC. FL removes three more than PL. RFLl and RFL3
remove one more value than FL. But large amounts of extra
constraint checks are expended at the node by the successive
algorithms to achieve these small gains. Over the whole tree,
the extra filtering at nodes does result in some small decreases
in the total number of nodes in the tree. The total number
of checks, however, certainly does not drop, but increases
significantly. Despite having the most nodes, we see again
that FC, with the least amount of processing per node of
the algorithms in Figs. A2-A6, has the least checks for the
whole tree.

Owing to space restrictions we d o not present a trace of
RFLZ analogous to those for RFLl and RFL3. However,
the corresponding statistics for the z , = 2 node and for the
whole tree are given in Table A l , where they are compared
with the statistics seen above for RFLl and RFL3.

We see that for our 5-queens node, AC2 is more efficient
than AC3, which is more efficient than A C l , with corre-
sponding order for RFL2, RFL3, and RFLl over the whole
tree. Of course, as will always be the case for any problem,
the three algorithms generate the same number of nodes
because, at each corresponding node, they all achieve the
same state of full arc consistency. (Note the same final
domain array in Figs. A5 and A6).

Though AC2 is preferable to AC3 for the above example
and for q-queens more generally, as seen in Table 3, this
is certainly not always the case, as seen in Table 2 for con-
fused q-queens. Table 2 in fact shows that not only AC3

but even ACl can be preferable to AC2 - a possibility
apparently not previously noted in the literature. A specific
example where we see this is the z1 = 2 node for confused
6-queens. For that node and problem, the analog of
Table A1 is given in Table A2.

Revise-based B T
The action of revise-based BT (Sect. 5.2.4) on the above

5-queens node is straightforward and is therefore not given
here. Instead, we give in Fig. A7 the trace of revise-based
BT solving confused 4-queens. In particular, the figure is
a more-detailed view of the processing given graphically in
Fig. 12. The detailed trace here also provides the counter-
part t o the trace given in Fig. A1 for regular BT. As in
Fig. A1 for ease of comparison, the block of processing at
a node is labeled before with “L start” and after with
“L end,” where L is the same letter as used for that node
in Fig. 12 (and Figs. 1 and 2).

In Fig. A7, constraint checks for a given node all appear
on the same line in their order of execution. Vertical lines
are used to separate the checks corresponding to successive
arc revisions at a node. The sequence of arc revisions, and
associated number of checks, is of course that shown in
simplified form using arrows, and associated numbers, at
the corresponding nodes of Fig. 12.

Note that as required, the trace here has exactly the same
43 checks as shown for regular BT in Fig. A l , but that the
order is in general different at corresponding nodes. In par-
ticular, the order of checks at a node in Fig. A7 is that
obtained from a column-wise ordering of the checks at the
corresponding node in Fig. A l . This is the same “horizon-
tal” versus “vertical” difference in ordering of constraint
checks as noted earlier for the individual node E in com-
paring regular and revise-based BT in parts (b) and (c) of
Fig. 12.

Note also that as required, the same 8 nodes are gener-
ated, in the same order, by the two versions of BT. As seen
in the figure, revised-based BT proceeds in D-first manner
(Horowitz and Sahni 1978) and does not interleave subnode
generation till all constraint checking is completed at a parent
node. On the other hand, in Fig. A1 we saw that regular
BT proceeds in true depth-first manner, interleaving sub-
node generation between constraint checking at a parent
node. This difference in interleaving is why we could place

224 COMPUT. INTELL. VOL. 5 . 1989

... (37: 7)
B start 2112T 2212T 2312T 2412F B end (41 : 8)

C start 3112F 3212T 3312F 3412T I 3221T 3421F C end

E start 3112F 3212T 3312F 3412T I 32221 3422F E end

G start 3112F 3212T 3312F 3412T I 3223T 3423T G end

D start 4112F 4212T 4312F 4412F I 4221F D end

F s t a r t 4112F 4212T 4312F 4412F I 4222T I 4232T Solut ion = 2222 F end

H start 4112F 4212T 4312F 4412F I 4223F H end
I start 4112F 4212T 4312F 4412F I 4223F I end (80:15)

FIG. A7. Trace of subtree for solving confused 4-queens by revise-based BT(k) = TS(k) + AC%(k).

all checks for a given node on a single line in the trace of
Fig. A7, whereas in Fig. A1 only checks for a given instan-
tiation at a node could appear on the same line.

Appendix 11. Programming conventions
Our algorithms above are written in a pseudocode

modeled essentially on Pascal. Using pseudocode has the
advantage of brevity but the disadvantage of potentially
introducing ambiguities. The following points are intended
to clarify the programming conventions used.

Due to their expressive power, we have made extensive
use of FOR-WHILE loops of the form

FOR v : = lower TO upper WHILE condition DO body

This kind of loop does not exist in Pascal, but is modeled
on those in Algol and Sail (Stanford Artificial Intelligence
Language). We are assuming that such a loop works by first
initializing the loop variable v to the integer value “lower.”
i f (i) this value does not exceed “upper” and (ii) the Boolean
“condition” expression evaluates to true, then the body of
the loop is executed. On each subsequent cycle the loop
variable is incremented by one, after which the same two
tests must be passed before performing the loop body again.
The loop variable is assumed to retain its most recent value
after termination of the loop. Thus it terminates with a value
(possibly even upper + 1) one greater than during the last
completed loop cycle. This is the reason for having to sub-
tract 1 from p in algorithms BJ and BM to obtain the value
at the last completed FOR cycle.

As in Pascal, reference parameters are preceded in a
formal parameter list by the word VAR. For clarity, each
formal parameter that needs it gets its own preceding VAR
qualifier, rather than covering several reference parameters
with one VAR as allowed in Pascal. Care has been taken
to include a formal reference parameter for each variable
that is modified and passed back by a subroutine, rather
than allowing updates as side effects. This makes for clearer
code and also allows our subroutines to be used in a lex-
ically scoped language such as Pascal or Common Lisp,
without the need to physically include their definition in
every (sub)program that uses them.

For brevity, a Return(x) or Return statement is some-
times used respectively in a function or procedure (see the
two versions of BJ in Sect. 3.2), although these are not avail-
able in standard Pascal. If such explicit returns are not used
in a function, the normal Pascal mode of return applies
where the returned value of the function is that which is last
assigned to the function name before exit (as in function
check of Sect. 2).

As in Pascal, semicolons are used to divide between suc-
cessive statements, but need not appear just to terminate
a statement when there is not an immediate successor
statement.

Comments are delimited by brace symbols {,), and com-
ments are allowed anywhere, including in the header line
of a subroutine declaration.

For brevity of code, type declarations for variables (but
not functions) are left implicit or, if necessary, are described
in the text. Also for brevity, the BEGIN that precedes the
body of a subroutine in Pascal is left out.

We have assumed the language does its own garbage
collection. (Pascals usually don’t. Lisps usually do.) All arc
consistency procedures of Sect. 4 and all the hybrid algo-
rithms of Sect. 5 which use them are based ultimately on
the revise procedure which stores the domain lists in an
array d such that d[i] contains the current version of domain
dz, of variable zi. However, as mentioned in Sect. 4, since
only deletions are performed on the domain lists, an additive
version of revise is possible for which it suffices to use an
array to implement the domain list d[i]. Using this approach,
garbage collection becomes unnecessary for domain filter-
ing. However, besides simple deletion of values from domain
lists, arc consistency procedures AC2 and AC3 also require
more complicated manipulations on their arc lists Q,
Q-extra, Ql ,Q2, and Q2-extra. Thus for AC2 and AC3
and the algorithms which use them, true dynamically allo-
cated lists will be convenient for the arc lists. In that case
in a language such as Pascal, algorithms AC2 and AC3 and
their utilities (e.g., pop) will need to be augmented to include
explicit disposal of unneeded nodes. Don’t forget on exit
of AC2 and AC3 to dispose of lists Q, Q1, and 42 , since
they can be non-nil at that point if early termination has
occurred due to an empty-domain = True condition.

