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Constraint satisfaction problems are ubiquitous in artificial intelligence and many algorithms have been developed 
for their solution. This paper provides a unified survey of some of these, in terms of three classes: ( i )  tree search, 
( i i )  arc consistency (AC), and (iii) hybrid tree search/arc consistency algorithms. It is shown that several important 
algorithms, when slightly rearranged, are of the latter hybrid form, but with arc consistency components that d o  not 
necessarily achieve full arc consistency at the tree nodes. Accordingly, we define several new partial AC procedures, 
ACYs, AC1/4, ACY3, and AC1/2, analogous to the well-knownfull AC algorithms which Mackworth has called ACI, 
AC2, and AC3. The fractional suffixes on our AC algorithms are roughly proportional to the degree of partial arc 
consistency they achieve. Unlike traditional versions, our AC algorithms (full and partial) are presented in a parameterized 
form to allow them to be embedded efficiently at the nodes of a tree search process. Algorithm complexities are com- 
pared empirically, using the n-queens problem and a new version called confused n-queens. Gaschnig’s Backmarking 
(a tree search algorithm) and Haralick’s Forward Checking (a hybrid algorithm) are found to be the most efficient. 
For the hybrid algorithms, we find that it pays to do little arc consistency processing at the nodes, incurring more 
nodes, but sufficiently reducing the work per node so as to  obtain less work over the whole tree. The unified view 
taken here suggests several new algorithms. Preliminary results show one of these to be the best algorithm so far. 

Key words: constraint satisfaction problem, network consistency algorithms, arc consistency algorithms, tree search 
algorithms, Backtracking, Backjumping, Backmarking, Forward Checking. 

Les problemes de satisfaction des contraintes sont omnipresents dans le domaine de l’intelligence artificielle et bon 
nombre d’algorithmes ont etk Clabores afin de les resoudre. Cet article fait etat d’une etude de ces algorithmes selon 
trois classes : les algorithmes de ( i )  recherche arborescente, de (ii) consistance d’arc (AC) et de (iii) recherche hybride 
arborescente - consistance d’arc. I1 est demontre que plusieurs algorithmes importants, lorsque legkrement modifies, 
font partie de la dernikre classe dite hybride, avec cependant des composantes de  consistance d’arc qui ne permettent 
pas nkessairement d’obtenir une consistance d’arc complete aux nceuds d’arbre. Par consequent, nous avons elabore 
plusieurs nouvelles procedures AC partielles. AC%, ACY4, ACY3 et AC 1/z, qui sont analogues aux algorithmes bien 
connus complets AC que Mackworth a appele ACI, AC2 et AC3. Les suffixes fractionnaux de nos algorithmes AC 
sont plus ou moins proportionnels au degre de consistance d’arc partielle qu’ils obtiennent. Contrairement aux ver- 
sions traditionnelles, nos algorithmes AC (complets et partiels) sont prisentes dans une forme parametree afin de leur 
permettre d’@tre emboites efficacement aux noeuds dans un processus de recherche arborescente. La complexite des 
algorithmes est comparee de facon empirique, A I’aide du problkme n-reines et d’une nouvelle version, dite n-reines 
confuses. Le marquage arriere de Gaschnig (un algorithme de recherche arborescente) et la verification avant de Haralick 
(un algorithme hybride) se sont reveles les plus efficaces. Dans le cas des algorithmes hybrides, nous avons constate 
qu’il etait profitable de peu traiter la consistance d’arc aux nceuds, car, bien que cela entrain: davantage de nceuds, 
le travail par nceud s’en trouve rkduit, au point de donner moins de travail pour l’arbre entier. Le point de vue unifie 
adopt6 ici suggkre plusieurs nouveaux algorithmes. Les resultats preliminaires permettent de classer I’un d’entre eux 
comme le meilleur algorithme jusqu’a present. 

Mots clPs : problkme de satisfaction des contraintes, algorithmes de consistance de reseau, algorithmes de consistance 
d’arc, algorithmes de recherche arborescente, retour-arriere, saut arrikre, marquage arriere, verification avant. 

[Traduit par la revue] 
Cornput. Inrell. 5. 188-224 (1989) 

1. Introduction 
T h e  Constraint Satisfaction Problem (CSP) is ubiquitous 

in artificial i n t e l l i g e n ~ e . ~  It has received intense study from 
many researchers, including Fikes (1970), Waltz (1973,  
Gaschnig (1974, 1977, 1978, 1979), Rosenfeld ef al. (1976), 

‘A preliminary version appeared as “Tree search and arc con- 
sistency in constraint satisfaction algorithms” in Search in Artificial 
Intelligence, edited by L. Kana1 and V. Kumar, Springer-Verlag. 
New York, 1988, pp. 287-342. Portions of this article that are the 
same or similar are reprinted by permission of Springer-Verlag, 
New York. 

’Previously Nudel. 
’We will use CSP to refer to the problem class, and csp to refer 

to an individual problem instance. The word problem will be used 
both for the class and an instance. The meaning should be clear 
from context. 

P r m d  m Canada I Imprimr au Canada 

Montanari  (1974). Mackworth (1977a), McGregor (1979), 
Haralick and Elliot (1980), Haralick and Shapiro (1979, 
1980), Haralick ef al. (1978), Purdom (1982, 1983), Freuder 
(1978, 1982), Nadel(l986, 1988a, b), Nudel (1982, 19830, b), 
Mohr a n d  Henderson (1986), Dechter and Pearl (1988), and 
Dechter a n d  Dechter (1987). Section 2 introduces the CSP 
problem class. The n-queens problem a n d  a new variant, 
confused n-queens, are presented there and provide a con- 
venient test-bed f o r  the example traces and empirical corn- 
parisons that  follow. 

T h e  importance o f  CSP is due to the wide range of prac- 
tical problems it can be  used t o  model. Applications o f  the 
s tandard form of the problem o r  a close relative have 
included such diverse areas as theorem proving (Purdom and 
Brown 1981; Van Hentenryck and Dincbas 1986), belief 
maintenance (Dechter 1 9 8 7 ~ ;  DeKleer 1986; Doyle 1979), 
graph problems (Fowler ef al. 1983; McGregor 1979; Ullman 
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1976), machine vision (Davis and Rosenfeld 198 1 ; 
Mackworth 1977b; Waltz 1975), event scheduling (Rit 1986; 
Tsang 1987), floor-plan design (Eastman 1972), and plan- 
ning genetic experiments (Stefik 1981). 

As might be expected, many algorithms have been devel- 
oped for solving constraint satisfaction problems. This paper 
provides a unified comparison for some of these, in terms 
of three classes: (i) treesearch, (ii) arc consistency, and (i i i)  
hybrid tree search/arc consistency algorithms. Section 3 
presents three tree search algorithms: the classic Backtracking 
algorithm and two algorithms by Gaschnig, Backjumping 
and Backmarking. Backjumping is closely related to 
dependency-directed backtracking in truth-maintenance 
systems (Doyle 1979) and intelligent backtracking in Prolog 
(Bruynooghe and Pereira 1984; Kumar and Lin 1988). 
Backmarking is important in being one of the most efficient 
algorithms considered here. 

Section 4 treats the class of arc consistency (AC) algo- 
rithms (Mackworth 1977a; Mohr and Henderson 1986; 
Waltz 1975). These are simplification algorithms which 
convert the initial problem into a simpler version with the 
same solutions. Path consistency algorithms (Mackworth 
19770; Mohr and Henderson 1986; Montanari 1974) are 
analogous in that they are also a form of simplification algo- 
rithm. Freuder (1978) has generalized these simplification 
approaches with the concept of j-consistency. In his terms, 
arc consistency corresponds to 2-consistency and path con- 
sistency to 3-consistency. We do not consider herej-consis- 
tency algorithms for j 2 3 because past experiments 
(McGregor 1979) show them to be not cost-effective in 
general. In fact we go the other way. Section 4.1 introduces 
a set of partial arc consistency algorithms, which could be 
said to achievej-consistency for 1 < j c 2. These we call 
AC’/s, AC1/4, A C h ,  and AC1/2, where the fractional suf- 
fixes are more or less proportional to the degree of arc con- 
sistency they attain. They are reduced analogs of the classic 
f u f f  0’ = 2) arc consistency algorithms which Mackworth 
(1977a) has called ACI, AC2 and AC3. The latter are treated 
in Sect. 4.2. 

Section 5 considers 13 hybrid algorithms that embed arc 
consistency processing at each node of a tree search. This 
section builds a bridge between the “network consistency 
school of thought” and the “tree search school.” The tree 
search/arc consistency hybrid algorithms are considered 
along a spectrum according to the degree of arc consistency 
they achieve at their search tree nodes. Several new hybrid 
algorithms are presented, which arise naturally to fill gaps 
in this spectrum. Also, several important known algorithms 
- Haralick’s Full and Partial Lookahead and even the 
classic Backtracking algorithm - are seen as having this 
hybrid form when certain rearrangements are made in the 
nesting of their loops. However, the embedded arc con- 
sistency components are not necessarily full arc consistency 
algorithms. Rather, they may be the above-mentioned par- 
tial AC algorithms, AC1/5, AC1/4, AC1/3, and AC’/2, of 
Sect. 4.1. The hybrid algorithms of Sect. 5 are treated in 
two groups: nine that guarantee full arc consistency4 at 
each search tree node (Sect. 5 . 1 )  and four that guarantee 
successively lesser degrees of partial arc consistency at the 
nodes (Sect. 5.2). 

?his does not necessarily mean that they use only full  arc con- 
sistency procedures at the nodes, as will be seen in Sect. 5 .  

In anticipation of their embedding into a tree search shell, 
each of our AC algorithms is parameterized to allow arc con- 
sistency processing to be carried out on appropriate, adjust- 
able subgraphs of the constraint network local to the corre- 
sponding tree node. Figure 8 gives a unified single algorithm 
that subsumes all our 13 hybrids. Table 1 gives a summary 
of the schematic structures of these hybrids. As seen there, 
the structures are all of the form TS + AC, or TS + ACI 
+ AC,, where ACI and AC2 are one of the full or partial 
AC algorithms of Sect. 4 ,  and TS stands for the tree search 
shell in which they are embedded. Rationalized new names 
are suggested for these algorithms which reflect their struc- 
tural relationship. 

Section 6 presents empirical complexity results for the tree 
search algorithms of Sect. 3 and the hybrid algorithms of 
Sect. 5 ,  together with general conclusions. We find that the 
Backmarking tree search algorithm and the hybrid algorithm 
Forward Checking are the (essentially equal) best two of the 
algorithms studied. We also find that of the hybrid algo- 
rithms, partial AC hybrids are more efficient than full AC 
hybrids. In fact, of the partial AC hybrids, the best one, 
Forward Checking, does the second least amount of arc con- 
sistency processing at the tree nodes. The exact results are 
given in Tables 2 and 3 and are summarized in the schematic 
plot of Fig. 13. We see from these results that even though 
less arc consistency at the tree nodes results in more nodes 
per tree, reduction of the work at each node can more than 
make up for the extra nodes incurred and can lead to less 
work over the whole tree. 

There is a break-even point, however, along this spectrum 
of degree of arc consistency attained at the nodes, where 
the optimum efficiency is achieved. For the hybrid algo- 
rithms studied here, this is at Forward Checking. However, 
the spectrum view suggests considering algorithms on either 
side of Forward Checking on the spectrum for a possibly 
better hybrid (see Fig. 13). This has led us to a new algo- 
rithm which preliminary experiments do in fact show to be 
the better than all other algorithms considered here. It is 
discussed briefly in Sect. 6 and will be reported more fully 
in a later paper. 

Appendix I further clarifies the algorithms by presenting 
more-detailed explanations and traces for them. Appendix 
I1 discusses aspects of the Pascal-like programming language 
used to present the algorithms. This paper is an extension 
of an earlier version (Nadel 1988a). Several algorithms have 
been added and the presentation has been significantly 
restructured to make the main concepts more transparent. 
The earlier version, however, may be useful in providing 
a different slant on this material and for some additional 
detailed examples. Another useful review article in the same 
spirit is Mackworth (1987). 

2. Constraint satisfaction problems 
Constraint satisfaction problems have three components: 

variables, values, and constraints. The goal is to find assign- 
ments of the variables to their candidate values such that 
all the constraints are satisfied. We will here be concerned 
with the version of the problem where aN such assignments 
are sought. The well-known n-queens puzzle is often used 
to exemplify constraint satisfaction problems. This is the 
problem of finding all ways to place n queens on an n x n 
chess board so that no two queens attack each other. To 
avoid notational conflict, we will henceforth refer to it as 
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q-queens rather than n-queens, reserving n for the number 
of variables in a problem. 

It should be kept in mind that q-queens itself is not a con- 
straint satisfaction problem, but rather can be naturally for- 
mulated as one. There are in fact quite a few natural alter- 
native formulations of q-queens as a constraint satisfaction 
problem, as discussed in Nadel (1988b). In general, these 
have different numbers of variables, and different values 
and constraints. 

The standard constraint satisfaction formulation of 
q-queens is to associate a variable zi with each of the 
1 I i 5 q rows of the board. Since there must be exactly 
one queen per row if q queens are to be placed on the board 
with no two attacking, then we need only know what column 
the queen is in for each row. Thus each variable zi can have 
a domain of candidate values, d,, = ( 1  2 ... q] ,  whose 
members denote the corresponding board column, with 
assignment zi = j meaning that the queen in row i is in 
column j .  The condition that no two queens attack each 
other can be considered as c = (;) binary constraints, 
expressible analytically as (zi # z,) A (li - j (  # I  zi - z,!), 
for 1 I i < j I q, since this ensures that no two queens 
are in the same column or diagonal of the board. (That no 
two queens are in the same row is already taken care of by 
allowing only one value per variable.) In terms of the Pascal- 
like programming language we will be using throughout (see 
Appendix 11), these constraints can be expressed by the fol- 
lowing Boolean function for testing whether value zi for zi 
and value zj for zj are compatible. 

FUNCTION check (i, zi, j ,  zj): Boolean; 
check - (zi # zj) and (abs(i - j) # abs(zi - zj)); 
END; 

We will make use of 4-queens (and in Appendix I ,  also 
of 5-queens) under the above formulation to exemplify the 
working of the hybrid algorithms of Sect. 5 .  For the tree 
search algorithms of Sect. 3 ,  however, a more convenient 
running example will be confused 4-queens. Confused (or 
inverse) q-queens is a new variant of q-queens for which one 
seeks all ways to place q queens on a q x q chess board, 
one queen per row, so that each pair of queens does attack 
each other. A constraint satisfaction formulation is obtained 
as for regular g-queens, but with the constraints now being 
(z; = z;) V (li - jl = Izi - zit), for 1 I i < j I q. These 
are programmable as for check above with the obvious 
changes. 

Confused q-queens is not really much of a puzzle, since 
it is easy to discover the pattern in generating the set of solu- 
tions for any q. There are q + 2 solutions, one for each 
board column and one for each of the two principal diago- 
nals. Each arrangement of the q queens along one of these 
q + 2 straight lines generates one of the solutions. The only 
exception is for q = 3 ,  in which case there are nine solu- 
tions (four of which do not correspond to the above- 
mentioned pattern): 

Although not particularly challenging for people, con- 
fused q-queen nevertheless provides a convenient, nontrivial 
test-bed for the constraint satisfaction algorithms below, 

since these cannot take advantage of the pattern in the solu- 
tions as can humans. In fact, confused q-queens perhaps 
provides a more appropriate test-bed than does the oft-used 
q-queens problem, in the sense that the number of solutions 
for confused q-queens and for q-queens are respectively 
linear and (apparently) exponential in q (see Tables 2 and 
3 of Sect. 6). The former is more representative of realistic 
problems, since it is unlikely that real problems would 
swamp one with solutions as does q-queens. 

Related to this, we find that the constraints of q-queens 
grow increasingly loose with q, whereas those of confused 
q-queens grow tighter. Looser constraints mean more 
solutions, and also larger search trees and more complex 
searches. The usefulness of tightness parameters in obtaining 
precise complexity expressions, and in designing effective 
problem-solving heuristics based on those expressions, has 
been seen in Nadel (1986, 19886) and Nude1 (1983~).  
Specifically, the constraint looseness or the constraint 
satisfiability rario, R(zi z,), for a constraint C(zi 2,) was 
defined there as the fraction of’the tuples that actually satisfy 
the constraint out of all the candidate tuples in the corre- 
sponding Cartesian product dzp x d,. For q-queens and 
confused q-queens it can be shown that the satisfiability 
ratios are given respectively by 

and its complement 

It should be kept in mind that actually neither of the above 
two families of queens problems is particularly representative 
of constraint satisfaction problems in general - which is 
not surprising, since each family is generated by only a single 
parameter q. First, both kinds of queens problems (under 
the above formulations) have variables all with the same 
domain. Second, the instances are what might be called com- 
plete binary constraint satisfaction problems in that ( i )  each 
of their constraints involves only two variables (hence 
binary) and (ii) all pairs of problem variables have such a 
binary constraint on them (hence complete). 

The algorithms below assume complete binary instances 
because this considerably simplifies the presentation. Also, 
for the same reason, the algorithms all instantiate variables 
and (or) check constraints in the natural order. However, 
in most cases these order restrictions can be readily over- 
come by a slight extension of the algorithms or simply by 
a reindexing of the variables and constraints to correspond 
to the new orders desired. On the other hand, it is not clear 
how one could, or whether one should, generalize algorithms 
Backjump and Backmark to  allow constraints to be checked 
in any but the natural order. The instantiation order though 
could quite conceivably be changed for any of the 
algorithms. 

A more general treatment of constraint satisfaction prob- 
lems and some of their algorithms can be found in Nadel 
(1986). The algorithms there are written so as to allow 
arbitrary instantiation order and constraint-check order. The 
problems are allowed to have variables zi each with an 
arbitrary domain, of an arbitrary number, mz,, of values 
of arbitrary type. And instances are allowed to have an 
arbitrary number of constraints C,, each over an arbitrary 
subset 2, of the n problem variables z,, with possibly zero, 
one, or even more than one constraint on a given subset of 
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variables. All our algorithms below assume complete binary 
instances on n variables, each with integer domain (1 2 ... 
rnz,J, although the domains are not necessarily of the same 
size. Our running examples (formulating q-queens and con- 
fused q-queens) are all of this form, but with all domains 
of the same size, equal to the number of variables, so that 
n = q = mz8 for each zi. 

3. Tree search algorithms 
This section treats three tree search algorithms for solving 

constraint satisfaction problems: the traditional Backtrack- 
ing algorithm and two algorithms due to Gaschnig, Back- 
jumping and Backmarking. The action of these algorithms 
is shown graphically in Figs. 1 and 2 (and in more detail 
in Appendix I), using confused 4-queens as an example.’ 
We will see that there are certain inefficiencies in the stan- 
dard Backtracking approach. These have been noted by pre- 
vious researchers (Gaschnig 1974; Haralick and Elliot 1980; 
Mackworth 1977a) and are often grouped under the heading 
of thrashing behavior. We will see that Backjumping and 
Backmarking are able to avoid some of these inefficiencies. 
Backjumping can be seen as achieving what we call “hori- 
zontal” savings compared to  Backtracking, while 
Backmarking’s savings are “vertical.” Note that although 
Backtracking is the prototypical tree search algorithm, we 
will see later (Sect. 5.2.4) that a modified version involving 
loop renesting can be viewed as belonging to the class of 
hybrid tree search/arc consistency algorithms dealt with in 
Sect. 5. 

3.1. Backtracking 
Apart from generating all I ly= I mz, possible n-tuples and 

checking each against the constraints, the most straightfor- 
ward approach to solving constraint satisfaction problems 
is via the traditional Backtracking algorithm (Bitner and 
Reingold 1975; Golomb and Baumert 1965; Walker 1960). 
a version of which is given below. This generates a tree of 
all instantiations (assignments) of values to variables, check- 
ing each instantiation against all earlier ones along the cor- 
responding branch of the tree. Only if no incompatibility 
occurs between the current instantiation and a past one does 
the branch get extended by instantiating the next variable 
to each of the values in its candidate domain. This of course 
has a potentially great advantage over the brute-force 
generation and tesing of all possible n-tuples in that large 
subsets of inconsistent n-tuples may be avoided each time 
a branch of the search tree is pruned. The algorithm may 
be implemented as follows. 

PROCEDURE BT(k, VAR z); 
FOR z[k] - 1 TO m[k] DO 

BEGIN 
Consistent - True; 
FOR p - 1 TO k-  1 WHILE consistent DO 

IF consistent THEN 

END 

consistent - check(p, z[p], k, z[k]); 

IF k = n THEN output(z) ELSE BT(k + 1 ,  z) 

END; 

’We use the confused version of the problem because the dif- 
ference between Backtracking and Backjumping already shows up 
at confused 4-queens, but does not show up using regular q-queens 
till q = 6 .  See Table 3.  

The initial call to BT(k, z) has k = 1, with the value of z 
being arbitrary. Parameter z is an array of integer com- 
ponents z[ 11 to z[n] for storing instantiations respectiveIy 
for z ,  to z,. Note that z is a reference parameter of BT, 
since it is preceded by VAR. This is only in order to save 
space and is not a logical necessity. The domains dzk = [ 1 
2 ... mZJ for variables zk are represented by array m whose 
components m[k] = mZk store the upper-bounds for the 
corresponding domains, 1 5 k 5 n.6 This array is avail- 
able to BT as a global variable. 

A trace of the z1 = 2 subtree for BT solving the con- 
fused 4-queens problem is shown in Fig. 1. (This figure also 
applies to the Backjumping algorithm discussed below. The 
greyed-out parts and the “Backjump!” arrows are for that 
algorithm and should be ignored for the time being.) The 
rectangles into which the tree is partitioned in the figure 
denote nodes. These are labeled A to I in the order of their 
generation by BT. (There are of course nodes generated 
between A and B, and after I, that are not shown.) Note 
that, as for any recursive process, there is more than one 
way to partition a search tree, such as that in Fig. 1, into 
nodes. We define a node to be the processing done within 
the corresponding call of BT, exclusive of any recursive sub- 
calls. The number of nodes is the number of calls of BT. 
(Similar definitions apply for the other algorithms below.) 

Given the above form of BT, at each node we first instan- 
tiate the corresponding variable, then check for consistency. 
We might have rewritten BT, and correspondingly reparti- 
tioned the tree, so that a node involved first checking con- 
sistency (of the instantiation made at the parent node) and 
then instantiating the next variable.’ This is in fact how the 
version of Backtracking in Nadel(l986) works. Section 5.2.4 
below introduces yet a third variation. It retains the node 
structure used here, but changes the order of processing at 
a node. (Analogous differences exist between the alternative 
versions of the Forward Checking, Partial Lookahead, and 
Full Lookahead algorithms below and in Haralick and Elliot 
(1 980) and Nadel (1 986). 

For discussion purposes, the following terminology will 
be useful. The node corresponding to a call BT(k, z) we call 
a level-k node; the root node being at level k = 1. At such 
a node, variable zk is called the current variable. It is the 
variable that is instantiated at the node. Variables zl to zk- 
have already been instantiated, and these we call the past 
variables, while variables to Z, are yet to be instan- 
tiated and are called thefuture variables. To include the cur- 
rent and future variables together, we sometimes use the 
term nonpast variables. These naming conventions will apply 
also to all subsequent algorithms below. 

At the left of Fig. 1 (and Fig. 2) are shown the search tree 
level numbers 1 I k 5 n and the current variables zk that 
are being instantiated at the corresponding level’s nodes. 
(The numbers at the ends of the arcs within the nodes are 

6Note that we use k to  denote the algorithm variable and k to 
denote its generic value. Extending this, we use m or m[k] to denote 
the algorithm array variable, m[k] to denote the variable that is 
the kth component of m[k], and m[k] to denote the generic value 
of the component variable m [ k ] .  Similar notation will be used 
throughout to denote simple and compound algorithm variables 
and their values. 

’In other words, using I for instantiation and C for constraint 
checking, the sequence ICICIC ... along a branch of a search tree 
could be partitioned either as llClICllCl ... or as 4CIlCqC ... 
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of course the values to which the corresponding variable is 
instantiated). Also shown on successive rows for a given level 
are the constraints C(z,, z k )  for 1 5 p s k -  1, in the 
order in which they are checked at that level’s nodes. Within 
nodes of the figure, we use crosses and check marks respec- 
tively to denote whether the corresponding constraint (the 
one on that row of the figure) was violated or satisfied when 
checked. 

Checking of a given instantiation against past instantia- 
tions of course stops when the first violation is found, and 
the next instantiation is then tried. Thus, for example, the 
constraint checks at node E in Fig. 1 are performed in the 
order given by their labels a to f which we have added. 
Recursion takes place at each point that all applicable checks 
have succeeded for a given instantiation. Thus, for exam- 
ple, node F is generated after check c at node E. Node F 
is then completed before returning to instantiation z3 = 3 
and check d at node E. As we will see (in connection with 
Fig. 12), our modified BT of Sect. 5.2.4 orders checks and 
interleaves recursion quite differently at a node, although 
the same checks and nodes occur, and nodes are generated 
in the same order. 
3.2 Backjumping 

There are certain inefficiencies in straight Backtracking. 
For example, look at node H of the BT trace in Fig. 1. Each 
instantiation of z4 performed there fails against a past 
instantiation no deeper than for z2. But BT returned to 
level k = 3 from node H and tried different values for z3 
in node G. There is no point in doing this since each possi- 
ble z4 value has just been found incompatible with instan- 
tiations at even shallower levels. Changing the 23 values, 
and not those for z1 or z2, will only allow the same incom- 
patibilities to reoccur when the z4 instantiations are per- 
formed again, as is in fact the case at node I. 

To avoid this inefficiency, Backjumping backs up possibly 
more than one level. When backing up from a node where 
all values of a variable were found to  be incompatible with 
some past instantiation along that branch, Backjumping 
backs up all the way to the level of the deepest such past 
incompatible instantiation. Of course, the bigger the number 
of levels backjumped over, the greater the savings. For 
node H, the deepest past variable whose instantiation is 
incompatible with a q value is zz, not z3. We therefore may 
avoid irrelevant reinstantiation of z3 and jump back from 
node H (fleetingly through node G) to node B to try the next 
instantiation there, z2 = 4. This is shown by the rightmost 
arrow labeled “Backjump!” in the figure. A similar back- 
jump is shown by the leftmost “Backjump!” arrow. 

As shown by the greyed-out regions of the BT search tree, 
the rightmost backjump avoids two instantiations and three 
constraint checks in node G and avoids generating node I 
completely, saving four instantiations and five constraint 
checks there. The leftmost backjump does not avoid any 
node generation (since both remaining z3 instantiations at 
node C fail anyway, preventing any more subnodes of C), 
but avoids two instantiations and three constraint checks 
at node C. These savings are reflected in the counts for BJ 
in the table at the right of Fig. 1. For the section of the tree 
shown in the trace, BJ beats BT with 32 versus 43 checks 
and 8 versus 9 nodes. For the whole problem, due to several 
more backjumps, BJ beats BT with a total of 139 versus 

160 checks, and 27 versus 29 nodes. Further comparisons 
occur in Tables 2 and 3 of Sect. 6.  

This multi-level or nonchronological backtracking is 
implemented by the BJ algorithm below, which is Gaschnig’s 
Backjump (Gaschnig 1978, 1979) modified to find all solu- 
tions. (Another variant appears at the end of this section.) 
Backjump is closely related to  dependency-directed Back- 
tracking in truth maintenance systems (Doyle 1979) and 
intelligent backtracking in Prolog (Bruynooghe and Pereira 
1984; Kumar and Lin 1988). 

1 FUNCTION BJ(k, VAR z) : integer; 
2 returndepth - 0; 
3 FOR z[k] - 1 TO m[k] DO 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

BEGIN 
Consistent - True; 
For p - 1 TO k- 1 WHILE consistent DO 

IF not consistent THEN faildepth - p- 1; 

IF consistent THEN 

consistent - check(p, z[p], k, z[k]); 

(gives p value of last completed FOR cycle.] 

IF k = n THEN BEGIN 
output(2); 
faildepth - n-  1 
END 

faildepth - BJ(k+ 1, z); 
IF faildepth < k THEN 

END; 
returndepth - max(returndepth, faildepth) 
END: 

ELSE BEGIN 

Return(fai1depth) 

22 Return(returndepth) 
23 END; 

Parameters k and z of BJ are as for BT, with the same 
initial values. Again z is a reference parameter in order to 
save space, but not because of logical necessity. Figure A1 
of appendix I gives a more detailed view of the processing 
in Fig. 1 in terms of the returndepth and faildepth variables. 

BJ can be rewritten as BJ2 below to make clearer its cor- 
respondence with algorithm BM of the next section. Note 
that BJ above sets faildepth to p - 1 at line 8 only when an 
inconsistency has been found. But BJ2 makes this assign- 
ment, to MaxCheckLevel, whether an inconsistency is found 
or not. Thus in the case that an inconsistency is not found, 
the counterpart variables faildepth and MaxCheckLevel 
apparently get different values in the two versions of BJ. 
However, a little thought shows that this is not the case’ 
and the two algorithms are functionally equivalent. 

‘See Appendix 11 regarding why p - 1 and not p is used here 
and also in algorithm BM below. 

91n BJ when an inconsistency is not found, there are two 
possibilities: (i) If  k = n then faildepth gets the value n - 1 .  But 
in this case, this is the same value as already given to Max- 
CheckLevel at line 8 in 852 (and thus the explicit assignment to 
n - 1 at line 13 of BJ is avoided in BJ2). ( i i )  If k # n then 
faildepth gets the value returned by the recursion at line 16 of BJ. 
This will generally not be the value of MaxCheckLevel from line 
8 of BJ2, but on return from recursion by BJ2 at line 16, Max- 
CheckLevel will in any case be overwritten and set correctly to the 
same value as faildepth gets. 
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The faildepth variable is renamed MaxCheckLevel in the 
new version of BJ because for a given instantiation it is set 
to the index p (or level) of the deepest past variable z, 
whose value is tested against the instantiation. It thus 
necessarily corresponds to an actual “fail depth” only when 
its value is less than k - 1. If it is equal to k - 1, then a 
fail (inconsistency) may or may not have occurred. Note that 
BJ2 has been written as a procedure, not a function, in order 
to make closer the connection with BM of Sect. 3.3. Further 
discussion of BJ/BJ2 in relation to BM appears in that 
section. 

1 PROCEDURE BJ2(k, VAR z, VAR MaxCheckLevel); 
2 returndepth - 0; 
3 FOR z[k] - 1 T O  m[k] DO 
4 BEGIN 
5 Consistent - True; 
6 
7 
8 MaxCheckLevel - p -  1; 
9 
10 IF  consistent THEN 
11 
12 ELSE BEGIN 
13 
14 IF  MaxCheckLevel < k 

15 END; 
16 returndepth - max(returndepth, MaxCheckLevel) 
17 END; 
18 MaxCheckLevel - returndepth 
19 END: 

FOR p - 1 TO k-  1 WHILE consistent DO 
consistent - check(p, z[p], k, z[kJ); 

{gives p value of last completed FOR cycle.) 

IF  k = n THEN output(z) 

BJ2(k + I ,  z, MaxCheckLevel); 

THEN Return 

3.3. Backmarking 
There would still seem to be room for improvement in 

the Backjumping approach, since many constraint checks 
are still repeated. Any such repetitions are of course 
wasteful, but the trick is to avoid them without incurring 
an inordinate penalty in terms of space required. Note also 
that the naive approach of simply keeping a large table stor- 
ing the results of past checks requires too much memory in 
general. Moreover, it only replaces function calls by faster 
table look-ups. Wasteful repetitions of the same table look- 
ups still occur, thus reducing the average check time but not 
really avoiding check repetitions. Gaschnig’s Backmark 
algorithm (Gaschnig 1977) manages to avoid a large number 
of repetitive checks in a way that avoids both these pitfalls. 

Algorithm BM below is Gaschnig’s Backmark modified 
to find all solutions. Another version of the algorithm and 
a useful discussion are given by Haralick and Elliot (1980). 
Figure 2 shows a trace of BM solving the same zI = 2 sub- 
problem as used in Fig. 1 for BT and BJ. The BM algorithm 
avoids some of BT’s constraint checks (but not its nodes 
or instantiations) in the following two ways: 

(a) If, at the most recent node where a given instantia- 
tion was checked, the instantiation failed against some past 
instantiation that has not yet changed, then it will fail against 
it again. Therefore all constraint checks involving it may 
as well be avoided and the next instantiation tried. 

(b) If, at the most recent node where a given instantia- 
tion was checked, the instantiation succeeded against all past 
instantiations that have not yet changed, then it will succeed 

against them again. Therefore we may as well check the 
instantiation only against the more recent past instantiations 
which have changed. 

As before, the processing avoided compared to BT is 
indicated in Fig. 2 by greyed-out regions. Grey circles denote 
constraint check savings of type (a) above and grey squares 
denote savings of type (b). Note that type (a) savings always 
correspond to a column of zero or more circled check marks 
under a given instantiation, ending in a circled cross. The 
only example of this with more than zero circled check marks 
occurs under instantiation z4 = 2 in node I of Fig. 2. 
Type (b) savings always correspond to  a column of one or 
more squared check marks, followed by uncircled check 
marks or  crosses. No examples of this with more than one 
squared check mark occur in the figure. 

The savings by BM compared to BT are reflected in the 
counts in the table at  the right of Fig. 2. In terms of checks, 
BM is significantly better than both BT and BJ for the seg- 
ment of the trace shown and for the whole problem. More 
data appears in Tables 2 and 3, where BM will be seen to 
be one of the most efficient of a11 the algorithms studied, 
agreeing with the findings of Haralick and Elliot (1980). 

PROCEDURE BM(k, VAR z, VAR MaxCheckLevel, 

FOR z[k] - T O  m[k] DO 
VAR MinBackupLevel); 

IF  MaxCheckLevel[k, z[k]] 2 MinBackupLevel[k] 
THEN 
BEGIN(Type (a) savings when this block is avoided. 1 
Consistent - True; 
FOR p - MinBackupLevel[k] TO k - 1 

[Type (b) savings if MinBackupLevel[k] > 1 . )  
WHILE consistent DO 

consistent - check(p, z[p], k, z[k]); 

(gives p value of the last completed FOR cycle.) 
MaxCheckLevel[k, z[k]] - p - 1; 

IF  consistent THEN 
IF k = n THEN output(z) 

ELSE BM(k + 1, z, MaxCheckLevel, 
MinBackupLevel) 

END; 
MinBackupLevel[k] - k - 1; 
FOR i - k + l  T O  n DO 

MinBackupLevel[i] - min(MinBackupLevel[i], k - 1)  
END; 

Parameters k and z of BM are as for BT and BJ, with 
array z again being a reference parameter only to save space 
but not because of logical necessity. However, arrays 
MaxCheckLevel and MinBackupLevel must be reference 
parameters. The former is an n x m array, where 
m = m a x ~ = , ( m , ) ,  and the latter is a 1 x n array like z. 
As for BT and B i ,  the initial call t o  BM inputs k = 1, with 
the initial value of array z being irrelevant. Arrays Max- 
CheckLevel and MinBackupLevel start with all elements ini- 
tialized to  1. Note that since all array formal parameters are 
reference parameters, the memory requirements are quite 
manageable in general. 

MinBackupLevel[k] in BM stores the minimum level to 
which backup has occurred since the last level-k node was 
completed. MaxCheckLevel in BM is a generalization of that 
variable in algorithm BJ2 above. It is used to remember the 
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FIG. 1. The z ,  = 2 subtree when solving confused 4-queens by BT and BJ. 
(Greyed-out instantiations, constraint checks, and nodes are avoided by BJ.) 
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FIG. 2. The z, = 2 subtree when solving confused 4-queens by BT and BM. 
(Greyed-out constraint checks are avoided by BM.) 

individual MaxCheckLevel values of BJ2, whereas these are 
forgotten in the latter algorithm. This remembering is 
achieved by ( i )  having MaxCheckLevel of BM be an array, 
as opposed to an integer variable in BJ2, and storing indi- 
vidual MaxCheckLevel values for (k, va/) pairs in 
MaxCheckLevel[k, val], and by (ii) having MaxCheckLevel 
of BM be a reference parameter so that its data from a given 
node is available to chronologically later nodes in the search. 
Figure A1 of Appendix I gives a more detailed view of the 
processing in Fig. 2, showing values of the 
MaxCheckLevel[k, val J and MinBackupLevel[k J variables. 

We can think of the BM’s savings compared to BT as 
being “vertical” savings, while BJ’s savings are “horizon- 

tal.” BM saves checks by possibly doing less checks for a 
given instantiation. We call this a vertical savings since the 
checks for a given instantiation appear vertically in our 
traces. BJ, on the other hand, once it makes a given instan- 
tiation, has no way of avoiding any of the checks made by 
BT. Rather, by backjumping over multiple levels, BJ may 
avoid some instantiations at ancestor nodes, and hence avoid 
the checks and possible descendant nodes corresponding to 
these avoided instantiations. Avoiding instantiations at a 
node is a horizontal savings because successive instantiations 
occur horizontally in our traces. Whereas, compared to BT, 
BJ may avoid instantiations (and corresponding checks and 
nodes), but may not avoid checks for a given instantiation 
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once made; BM may avoid checks for a given instantiation, 
but may not avoid any instantiations (or nodes). These 
effects are perhaps clearer in the more detailed traces of 
Fig. A1 in Appendix I. 

Something to think about would be a synthesis of BM and 
BJ into an algorithm called, say, BMJ (BackMarkJump). 
We see in Figs. 1 and 2 that each algorithm avoids some 
checks that the other doesn’t. Is it possible to combine both 
approaches while retaining all, or most, of the power of 
each? Our preliminary attempt at such an algorithm sug- 
gests that the answer may be no. This is perhaps why 
Gaschnig did not suggest such a synthesized algorithm. 
However, more thought on this is warranted. 

4. Arc consistency algorithms 
An important class of algorithms for (partially) solving 

constraint satisfaction problems is what Mackworth (19774 
has called arc consistency (AC) algorithms. Their develop- 
ment can be traced back to the apparently independent work 
of Waltz (1975), Ullman (1973, 1976), and Fikes (1970). 
Gaschnig (1974, 1978, 1979) was also one of the first in this 
area. Others that have been active in developing (full or par- 
tial) arc consistency algorithms are Rosenfeld (1979, 
Rosenfeld et al. (1976), McGregor (1979), Mackworth 
(1977a), Freuder (1978), Haralick et al. (1978), Haralick and 
Shapiro (1979, 1980), Haralick and Elliot (1980), and Mohr 
and Henderson (1986). 

An arc consistency algorithm can be thought of as a 
simplification algorithm which transforms the original prob- 
lem into a simpler version that has the same solutions. In 
some cases the resulting problem is so simple that the solu- 
tions (or lack thereof) become manifest and the original 
problem is solved. Often, however, the simplification pro- 
cess “dries up” before the solutions are exposed and a non- 
trivial problem remains to be solved. More extensive 
simplifications are possible. The path consistency algorithms 
PCl and PC2 of Montanari (1974) and Mackworth (1977~) 
and PC3 of Mohr and Henderson (1986) represent another 
level in this simplification approach. Arc and path consis- 
tency are further generalized by Freuder’s concept of 
j-consistency (Freuder 1978), in terms of which the former 
become 2-consistency and 3consistency respectively. A prob- 
lem on n variables is always solved when n-consistency is 
attained, but this approach is usually grossly inefficient. We 
therefore concentrate here on the relatively low-level simpli- 
fication achieved by arc consistency algorithms (full and par- 
tial) in anticipation of later using these in hybrid tree 
searchlarc consistency algorithms which (i) are relatively 
efficient and (ii) are guaranteed to find all solutions. 

Arc consistency algorithms are best discussed in terms of 
the constraint network representation of a consistent label- 
ing problem. A constraint network is a labeled graph with 
a node for each problem variable and an arc between each 
pair of nodes for which there is a constraint between the 
corresponding two variables. The nodes and (optionally) the 
arcs are labeled respectively with the names of the corre- 
sponding variables and constraints. Examples for 3-queens 
and 4-queens problems (under the standard CSP formula- 
tion) are seen in Fig. 3.  Of course, for q-queens problems 
the constraint networks involve complete graphs (on q 
nodes) because there is a constraint for each pair of 
variables. In the above form, the constraint network repre- 
sentation is applicable only to problems whose constraints 

each involve no more than two variables. If constraints hav- 
ing three or more argument variables are involved, a 
graphical depiction will require hypergraphs (Montanari and 
Rossi 1988) or some other generalization (Freuder 1978). 
Since for simplicity we are assuming only binary constraints, 
contraint network representations can be used here. 

Mackworth (1977~) used G to denote the constraint net- 
work on nodes 1 to n. We will instead use GI:, for this, 
since we will find it useful below to generalize to arbitrary 
subnetwork on variables i t o j ,  which we denote by G,. By 
definition, the latter subnetwork includes all the arcs between 
the variables i to j that were in the full constraint network. 

Not all the information about a problem instance is cap- 
tured in its constraint network. In particular, the latter rep- 
resentation does not show the domain values for each 
variable, nor the specific nature of the constraints involved. 
This can be overcome by use of an expanded constraint net- 
work representation, an example of which is seen in Fig. 4 
for 3-queens. Such a representation has also been used by 
Gaschnig (1974, 1978), Haralick et al. (1978), and Haralick 
and Shapiro (1980). Each network node is expanded to 
include one subnode for each domain value of the corre- 
sponding variable, and each pair of values that is consis- 
tent for two constrained variables is joined by its own 
(sub)arc. Two variables that have no problem constraint 
between them can be thought of as being constrained by an 
implicit universal (i.e., all-permitting) constraint. If the con- 
sistent value pairs for such universally constrained pairs of 
variables are also linked by an arc in the expanded constraint 
network, then a solution to an n-variable problem cor- 
responds to an n-clique, and the problem of finding all solu- 
tions becomes the problem of finding all n-cliques. 

A different graphical representation that will be conve- 
nient here involves what we call the domain array. Figure 5 
shows an example for 4-queens. A domain array has a row 
for each problem variable. The rows therefore correspond 
to nodes in the constraint network representation. Each row 
is labeled by the corresponding variable name (unless some 
standard ordering is implicit, such as the natural order z1 
to z, running from top to bottom). The ith cell of a row 
corresponds to the ith domain value (under some assumed 
ordering) for the corresponding variable; array rows will 
therefore be of different lengths when variables have dif- 
ferent domain sizes. For q-queens problems (regular or con- 
fused) this representation is particularly natural, as the 
domain array, using the natural order for rows and columns, 
is isomorphic to the underlying chess board. (We assume 
such a correspondence in the examples below). But, of 
course, the domain array representation applies to any csp, 
not just those based on chess boards. 

In a domain array, a value that has been eliminated from 
the domain of a variable (by arc revision, as discussed below) 
is denoted by the corresponding domain array cell being 
white. A still viable domain value is denoted by a corre- 
sponding grey cell in the array. Later in the context of tree 
search, we will also use black cells for values that have been 
instantiated to the corresponding variable. 

m = assigned value 
= eliminated value 
= still possible value 

A domain array per se does not show which variables are 
mutually constraining. This information can, however, be 
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5 
FIG. 3. Constraint networks for 3-queens and 4-queens. 

easily added in the form of lines or bidirectional arrows at 
the side of the array, between the corresponding array rows, 
as shown in Fig. 5 for the 4-queens case. Later when discuss- 
ing arc revision, these lines or bidirectional arrows become 
unidirectional arrows to correspond to  directed arcs in the 
constraint network. The directed arc from node 2; to node 
zj will be written as ( i j ) .  Node zi will be referred to as the 
source of the directed arc and node zj as the target. We will 
sometimes loosely refer to node (variable) zi as simply node 
(variable) i. 

The detailed constraint information (legal value-pairs) 
denoted by the arcs of an expanded constraint network is 
not intended to be incorporated into a domain array repre- 
sentation. The strength of the representation is in tracking 
the process of arc revision by showing which values of which 
domains have been eliminated from consideration, which 
are still valid candidates and, in the context of tree search, 
which have already been instantiated to the corresponding 
variable. 

Arc revision is the basic simplification process in the arc 
consistency algorithms that follow. A domain value for 
variable zi for which there is no  corresponding domain 
value for zj compatible with respect to the constraint C(z;, 
z j )  between the variables may be removed from considera- 
tion. Such a value for z; can never appear in a solution, 
since it has no compatible partner value for z,. Removing 
aN domain values of zi that do not have at least one com- 
patible zj value is known as revising the directed arc ( i j ) .  
The directed arc ( i j )  is said to then be consistent. Our ver- 
sion of Mackworth’s revise(i, j )  function for doing this is 
given below. An interesting variation is Gaschnig’s revise- 
both(( j )  procedure (Gaschnig 1978, 1979), which revises 
both arcs (i j )  and (j i) in one call, at no more cost than 
the corresponding two calls to revise separately. 

PROCEDURE revise& j, VAR d, VAR empty-domain, 

change - False; 
di - d[i]; 
FOR vali - each element of di DO 

BEGIN 
support-found-for-vali - False; 
FOR valj - each element of du] 

WHILE not support-found-for-vali DO 
IF check(i, vali, j ,  valj) THEN 

VAR change); 

support-found-for-vali - True; 
IF not support-found-for-vali THEN 

END; 
BEGIN d[i] - d[i] - (vali); change - True END 

IF d[i] = empty THEN empty-domain - True 
END; 

The reference array parameter d contains in d[i] the cur- 
rent (possibly filtered) version of the domain dz, for 
variable zi, 1 I i s n. Variables empty-domain and 

FIG. 4. Expanded constraint network for 3-queens. 

1 2 3 4  

FIG. 5. Domain array for 4-queens. 

change are included as reference parameters to in-drm the 
calling routine respectively whether the domain of zi was 
totally depleted and whether any deletion occurred at all. 
The latter parameter will be useful later only occa- 
sionally. In a call where it is not needed we will use an 
actual parameter called dummy as a place-holder. 

The above version of revise works by deleting values from 
the domain in d[i]. However, an “additive” version of revise 
is also possible (as implicit in Fig. 3 of McGregor (1979) and 
in CheckForward  of Haralick and Elliot (1980), but not 
in their Look-Future or Partial-Look-Future which 
both use the deleting approach above). In the additive ver- 
sion, the filtered domain in d[i] is obtained by successively 
adding on to an initially empty list, each value that is found 
to  have support from a value in du], rather than by succes- 
sively deleting from the original list d[i] the values found 
not to have any support. The additive approach is a little 
less concise in our pseudo-language. But it may be easier 
to implement efficiently for languages without good list- 
processing facilities, because it allows an array to be used 
to represent a list d[i] without the need to move up 
nondeleted elements to fill the holes of deleted ones. 

Revising several arcs of a problem’s constraint network 
may be sufficient to solve the problem. An example is shown 
in Fig. 6 where we see that for 3-queens, revising only three 
arcs is sufficient to eliminate all values of a domain and 
hence to show that there are no solutions. For the purposes 
of comparison, the figure shows the domain array, the con- 
straint network, and the expanded constraint network rep- 
resentations of the arc revisions taking place. Filtering a 
domain down to zero remaining values we call a domain 
wipe-out. In domain arrays, its occurrence is indicated by 
a row all of whose cells are white (remember, a white cell 
denotes an eliminated domain value), and for emphasis, we 
also draw a wavy line through the row as in Fig. 6. 

To clarify the details of arc revision processing, we include 
the following listing of the specific constraint checks per- 
formed in the three arc revisions of Fig. 6 .  

(1  2) 1121F 1122F 1123T 1221F 1222F 1223F 1321T 
(3 2) 3121F 3122F 3123T 3221F 3222F 3223F 3321T 
(3 1) 3111F 3113F 3311F 3313F 

Specifically, it  will be needed only in defining the full arc con- 
sistency algorithms ACI, AC2, AC3 and in defining AC% and 
revise in that they are needed for AC 1. 

I0 
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revise(l.2) revise(3.2) revise(3.1) 
(7 checks) (4 checks) 

f t Domain array: Z1 
z, 
5 

Constraint network: z'y3 it7" zlv= 
Expanded constraint 

network 

FIG. 6. Revising three directed arcs for 3-queens is sufficient to show there are no solutions. 

Following Gaschnig (1979), we use 5-tuples here to denote 
constraint checks. The meaning of the 5-tuple ABCDE is 
that instantiation zA = B was checked against zc = D, 
and that the result was E, where E can be either T for true 
or  F for false, indicating respectively that the correspond- 
ing binary constraint was found to be satisfied or violated 
by the pair of instantiations. For example, tuple 3123T 
means that 23 = 1 was checked against z2 = 3, and these 
were found to be consistent. Successive checks for a given 
arc revision appear left to right on  a given line above. SUC- 
cessive arc revisions appear on successive lines, preceded by 
the corresponding arc (A C). Similar conventions are used 
in Appendix I where detailed constraint-check-level traces 
are given. Note that in revising arc (3 1) above, checks 
involving z ,  = 2 and  z3 = 2 are not tried, since these 
values have been removed for the corresponding variables 
by the first two arc revisions. 

Unlike for the above 3-queens example, in general, revis- 
ing arcs is not sufficient to solve a constraint satisfaction 
problem. (See the related discussion near the start of 
Sect. 4.2.) It may not even suffice to achieve any signifi- 
cant simplification of the domains. Extreme examples are 
the q-queens problems for q 2 4. In each case, one can 
revise (at significant total cost) each of the 2(;) directed 
arcs of the constraint network and not find a single domain 
value that is eliminated. We are thus led to several 
possibilities: 

1. One may pursue further degrees of simplification, such 
as path consistency, along thej-consistency spectrum. But 
short of attaining n-consistency, this approach on its own 
is still not guaranteed to solve the problem, and if it does, 
it is usually not cost-effective. 

2. One may apply a simplification process as a prelimi- 
nary to a tree search algorithm such as those of Sect. 3. 
Again, high-order simplification is usually not cost-effective 
in preprocessing, but low-order may be. 

3. One may apply a simplification process (again, low- 
order appears best) at  each node of the tree search algorithm. 
We will see that many important algorithms can in fact be 
seen to be of this form. Approach 2 above is a special case 
of this where simplification is applied only at the root node. 

In anticipation of approach 3, the next subsection defines 
certain partial arc consistency algorithms for revising various 
subsets of the arcs in a constraint network. The subsection 
after that defines some importantfull arc consistency algo- 

rithms. The sense in which these are full and partial AC algo- 
rithms will be discussed later. Section 5 shows how both full 
and partial AC procedures may be incorporated into a tree 
search process. To allow this, each AC procedure below 
(unlike the original ACl ,  AC2, and AC3 of Mackworth 
( 1 9 7 7 ~ )  has a parameter k, to later correspond to the depth 
in the search tree, and, like revise itself, has a parameter 
d to later store the state of each domain local to a given 
search tree node. Also, like revise (but unlike the original 
ACI ,  AC2, and AC3), each of our AC procedures has a 
parameter empty-domain for letting its calling routine 
know if a domain was filtered to empty. In each of our AC 
aigorithms, arc revision ends as soon as a domain is made 
empty. 

Unlike for the other two classes of algorithms (tree search 
and  hybrid), the AC algorithms of this section are given 
without any accompanying example traces. This is because 
the traces of the hybrid algorithms of Sect. 5 can double 
as traces for the AC algorithms, since the latter algorithms 
are used as components at  the nodes of the former. Thus 
the reader should refer to the node processing of the hybrid 
algorithm traces in Figs. 10-12 of Sect. 5 and also in 
Figs. A2-A.7 of Appendix I ,  for examples of the working 
of this section's algorithms. 

4. I .  Partial arc consistency algorithms 
This section introduces several partial arc consistency pro- 

cedures for revising various combinations of arcs in the con- 
straint network G,:". The particular combinations revised 
are motivated by the hybrid algorithms of Sect. 5 ,  in which 
the present AC procedures are used as components. We 
name these procedures ACi, for various fractional i. This 
is by analogy with the classic full arc consistency algorithms 
(discussed in Sect. 4.2) which Mackworth (1977~)  has called 
ACI ,  AC2, and AC3. Our fractional suffixes are intended 
to denote partial arc consistency, with the fraction being 
more or less proportional to the degree of arc consistency 
attained . 

PROCEDURE ACVs lor CheckBackward f  

empty-domain - False; 
FOR p - I TO k -  1 WHILE not empty-domain DO 

END; 

(k ,  VAR d, VAR empty-domain); 

revise(k, p, d, empty-domain, dummy) 
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FIG. 7 .  Examples of arcs revised by various calls to our parametric partial arc consistency algorithms ACi(k) ,  i = %, 94, v3, 92. 

The above procedure revises the arcs (k, p ) ,  1 5 p < k, 
once each, in lexographical order. It is essentially the 
unnamed procedure of McGregor (1979, p. 241). This was 
found after it was independently arrived at here for the pur- 
pose of reformulating (in Sect. 5.2.4) the Backtracking algo- 
rithm of Sect. 3.1 as a tree search/arc consistency hybrid 
algorithm. This reformulation corresponds to a loop-nesting 
interchange of the original BT. If in AC% one expands out 
the call to  revise, we see that the nesting of loops is essen- 
tially nesting (a) below. BT of Sect. 3.1, on the other hand, 
corresponds to the loop nesting shown in (b). We will see 
that when ACV5 is used in the context of the reformulated, 
revise-based BT, there is in fact only one value in each d[p], 
SO the last loop of nesting (a) may be ignored, leaving nesting 
(b), but with the order reversed. This will be discussed fur- 
ther in Sect. 5.2.4. 

(a) FOR p - 1 TO k-1 DO 
FOR each valk in d[k] DO 

FOR each valp in d[p] DO ... 
(b) FOR each valk in d[k] DO 

FOR p - 1 TO k-1 DO ... 
The following procedure revises the arcs (f, k - l), 

k s f I n, once each, in lexographical order. It is essen- 
tially the procedure that Haralick and Elliot (1980) called 
Check-Forward. However, it also appears earlier, 
unnamed, in Fig. 5 of McGregor (1979). It will be useful 
later in defining several hybrid algorithms of Sect. 5 .  

PROCEDURE ACY4 (or CheckForwardJ 

empty-domain - False; 
FOR f - k TO n WHILE not empty-domain DO 

END; 

(k, VAR d, VAR empty-domain); 

revise (f, k - 1, d, empty-domain, dummy) 

In Sect. 5 when it is used as a component in hybrid algo- 
rithms, ACY4 will also use revise in the specialized manner 
implied above for ACVs. Due to the instantiations that will 
have occurred at ancestor tree nodes, both these procedures 
will be used to only revise arcs ( i  j )  whose target nodes j 
have exactly one domain value. The other partial and full 
arc consistency procedures below, when used in the hybrid 
algorithms of Sect. 5 ,  will, however, use revise in its full 
generality with both nodes i and j usually containing more 
than one value. It is convenient to introduce the following 
subroutine rrevise (note the double r) for making multiple 
calls to revise. In particular, rrevise revises the arcs (fl, f 2), 
f2-min 5 f 2 I f2_max, f 2 + f 1, once each, in lexo- 
graphical order. 

PROCEDURE rrevise (fl ,  f2_min, f2_max, VAR d, 
VAR empty-domain, 
VAR deletiorloccurred); 

deletionoccurred - False; 
empty-domain - False; 
FOR f2 - f2-min TO f2-max WHILE not 

empty-domain DO 
IF f2 # f l  THEN 

BEGIN 
revise(f1, f2, d, empty-domain, change); 
deletionoccurred - deletionoccurred or change 
END 

END; 
We can use rrevise to write more concisely several useful 
arc consistency algorithms. For example, the above ACV5 
can now be rewritten simply as 

PROCEDURE AC'/5 (or Check-Backward) 

rrevise(k, 1, k -  1, d, empty-domain, dummy) 
END; 

(k, VAR d, VAR empty-domain); 
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Note that the deletion-occurred parameter of rrevise 
serves the same purpose as the change parameter of revise: 
to flag whether any domain value at all was deleted. As with 
the change parameter itself, the value of deletiorloccurred 
is not usually used by the calling routine, in which case (as 
in ACYs above) a corresponding actual parameter dummy 
will occur in the call to rrevise. 

Unlike ACYs, which varies the target node (the second 
parameter of revise) of the arcs being revised, ACV4 varies 
the source node (the first parameter of revise) and thus can- 
not be rewritten in terms of rrevise. However, rrevise is 
helpful in defining the two partial arc consistency procedures 
ACY3 and ACY2 below. 

PROCEDURE AC!A (or re-nested P a r t i a l L o o k F u t u r e )  
(k, VAR d, VAR empty-domain); 

empty-domain - False; 
FOR f - k TO n -  1 WHILE not empty-domain DO 

END; 

This procedure revises the arcs ( f l ,  f 2), k I f 1 
< f 2 I n, once each, in lexographical order. It is a revise- 
based version of the procedure which Haralick has called 
P a r t i a l L o o k F u t u r e ,  used in his Partial Lookahead algo- 
rithm (Sect. 5.2.2 below). However, to allow it to be based 
on revise we have had to  introduce a loop renesting. If in 
ACY3 one expands out the call to rrevise and its calls to 
revise, we see that the nesting of loops is essentially nesting 
(a) below, while Haralick’s version uses nesting (b). ‘ I  

rrevise(f, f +  1, n, d ,  empty-domain, dummy) 

(a )FOR f l  - k TO n - 1  DO 
FOR f2 - f l  + 1 TO n DO 

FOR each vall in d[fl]  DO 
FOR each va12 in d[f2] DO ... 

( b ) F O R f l - k T O n - I D 0  
FOR each vall in d[f 1 J DO 

FOR f2 - f l  + 1 TO n DO 
FOR each va12 in d[f2] DO ... 

Another partial arc consistency algorithm that will be use- 
ful is ACY2 below. It is a more extensive version of ACY3. 
It revises the arcs ( f l , f2 ) ,  k I f 1 # f 2 I n, once each, 
in lexographical order, rather than just arcs ( f l ,  f2), 
k 5 f l  < f 2  I n. Thus AC1/2(k) revises once each 
directed arc in the subnetwork Gk,.,,. 

PROCEDURE ACV2 (or re-nested Look-Future] 
(k, VAR d ,  VAR e m p t y d o m a i n ,  
VAR deletionoccurred);  

empty-domain - False; 
de le t ionoccurred  - False; 
FOR f - k T O  n WHILE not e m p t y d o m a i n  DO 

BEGIN 
rrevise(f, k, n,  d, empty-domain, deletion); 
deletion-occurred - deletion-occurred or  deletion 
END 

END; 

We will see that ACY2 provides a convenient way to 
define the full arc consistency algorithm which Mackworth 
has called ACl (Sect. 4.2.1). It is for this purpose only that 
ACY2 (unlike ACY3, AC1/4, and ACVs) needs the extra 
parameter deletionoccurred, to keep track of whether any 
call to rrevise (via any of its calls to revise) caused any 
domain to  undergo a deletion. 

Also, ACY2 is a revise-based version of the procedure 
which Haralick has called Look-Future, used in his Full 
Lookahead algorithm (Sect. 5.2.1 below). Again however, 
this revise-based version introduces a re-nesting of loops. 
ACYz uses the loop nesting (a) below, while Haralick’s 
Look-Future uses nesting fb). l2 

(a) FOR f l  - k TO n DO 
FOR f2 - k T O  n, skipping f l ,  DO 

FOR each vall in d[fl] DO 
FOR each va12 in d[f2] DO ... 

(b) FOR f l  - k TO n DO 
FOR each vall in d[fl]  DO 

FOR f2 - k TO n, skipping f l ,  DO 
FOR each va12 in d[f2] D O  ... 

The three loop-nesting rearrangements above are concep- 
tually important. Through them we convert (Sect. 5.2) the 
standard Backtracking algorithm, and Haralick’s Partial 
Lookahead and Full Lookahead algorithms, into revise- 
based versions. This simplifies their structure and unifies 
them with a whole spectrum (Sect. 5 )  of tree searchlarc con- 
sistency hybrid algorithms, which use the partial arc con- 
sistency procedures above and the full arc consistency pro- 
cedures below, as components. 

Figure 7 shows the arcs revised for various example calls 
to the above partial arc consistency algorithms, for a 
problem with a compIete constraint graph on 4 nodes. Both 
the constraint graph representation and the domain array 
representation are shown. As will be our convention from 
now on, the arcs beside a domain array representation are 
drawn left to right in the order that they are revised by the 
corresponding algorithm. To emphasize and clarify the 
k-parameterization of the algorithms, two different k values 
are used for each algorithm so as to vary the arcs that are 
revised. For simplicity, only the value of argument k is 
shown in the calls. 

Note that, as exemplified in Fig. 7 ,  ACY5(k) applies to 
nodes 1 to k ,  but revises only a subset of the directed arcs 
in the corresponding subnetwork ACY4(k) applies to 
nodes k - 1 to n, but revises only a subset of the directed 
arcs in the corresponding subnetwork Gk- I:n. ACY3(k) 
applies to nodes k to n, but revises only a subset of the 
directed arcs in the corresponding subnetwork Gk,.,,. 
ACY2(k) applies also to nodes k t o  n and revises a//  the 
directed arcs in the corresponding subnetwork Gk,.,,. Thus 
all these procedures, except AC1/2(k), revise only a subset 
of the directed arcs between the nodes to  which they apply. 
Moreover, none of these procedures, including ACYz(P), 
can guarantee consistency on termination of even those arcs 

“Actually, Haralick’s Partial-Look-Future has an outer 
loop of FOR f l  - k +  1 TO n- 1 DO, instead of FOR f l  - k 
TO n - 1 DO. However, this is just an artifact of the difference, 
mentioned in connection with footnote 7, in what constitutes a node 
in our respective approaches. 

Actually, Haralick’s Look-Future has f l  and f2 loops from 
k + 1 to n,  rather than from k to n .  However, again this is just 
an artifact of the difference in what constitutes a node in our respec- 
tive approaches, as discussed in connection with footnote 7. 

I2 
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which they do revise. This is discussed, and remedied, in 
the next section. However, we will see later that these 
apparent drawbacks are in fact usually advantages in the 
context of our hybrid algorithms of Sect. 5 .  

4.2. Full arc consistency algorithms 
The arc consistency algorithms of the previous section 

revise various subsets of the arcs in the constraint network 
GI:, on nodes 1 to n .  Each time an arc ( i j )  is revised, 
values in node i that have no consistent supporting value 
in nodej  are deleted. Arc (i j )  is said to then be consistent. 
A whole constraint (sub)network is said to be arc consis- 
tent when all its arcs are consistent. An algorithm that 
guarantees arc consistency of the (sub)network on the nodes 
to which it applies is said to be a full arc consistency algo- 
rithm for that (sub)network. None of the algorithms of the 
previous section were full AC algorithms. The algorithms 
of this section are all full AC algorithms for the particular 
subnetwork Gk:,,. 

A full AC algorithm for a given subnetwork must revise 
all directed arcs in that subnetwork, since making directed 
arc ( i j )  consistent does not necessarily ensure that directed 
arc (j i) is consistent. This can be seen in example (a) below. 
(We are using here the expanded constraint network con- 
ventions. See Fig. 4). The need to revise each arc in bofh 
directions was the motivation behind Gaschnig's reviseboth 
procedure (Gaschnig 1978, 1979) mentioned earlier. Even 
revising each directed arc once, however, still does not 
necessarily achieve arc consistency of a subnetwork. This 
is because a consistent arc (ij) may be made inconsistent 
again by a subsequent revision of some arc 0' k), as in 
example (b) below. 

4 

The algorithms of the previous section were partial AC 
algorithms in that they either did not revise all directed arcs 
in the corresponding subnetwork or they did not guarantee 
the eventual consistency of these arcs. ACV5, ACV4, and 
ACV3 were partial in both these senses. ACV2 was partial 
in only the latter sense. This section's algorithms revise all 
directed arcs of the subnetwork Gk,.n, and ensure their con- 
sistency on termination, later arc revisions involving an arc's 
target node notwithstanding. 

Note that there are three cases in which a problem is pro- 
vably solved by achieving full arc consistency for its con- 
straint network: ( i )  if a domain wipe-out is found to occur 
then it is known that no solutions exist, (i i)  if all n domains 
end up with a single value, then the instantiation of the 
variables to their unique corresponding value is clearly a 
solution (and the only solution), and (iii) if n - 1 domains 
end up with a single value, and the other domain, for 
variable zi say, has m > I values, then there are m solu- 
tions. These correspond to the different instantiations of zi 
to one of its values, each combined with the unique instan- 
tiations of the other n - 1 variables. These three cases are 
implicit in Mackworth's NC algorithm (Mackworth 19776). 
However, often none of the above apply, and we end up 
with two or more domains having multiple values. In such 
cases, full arc consistency may have achieved a substantial 
simplification, but the problem is still not actually solved. 

4.2.1. ACI 
ACV2(k) revised once each directed arc of Gk:,, but did 

not guarantee their eventual arc consistency, because a latter 
revision may have undone the consistency of a previously 
revised arc. The most straightforward way to ensure arc con- 
sistency of subnetwork GkCn is then to simply repeat 
ACV2(k) till no change occurs. It is for this reason that we 
included the extra deletion-occurred parameter in ACV2 
(but did not in ACV3, ACM, and ACV5). Repeating ACV2 
until no change occurs is essentially the arc consistency algo- 
rithm that Mackworth ( 1  977a) has called AC 1. Our version 
of the algorithm is as follows. 

PROCEDURE AC1 (k, VAR d, VAR empty-domain); 
1ACV2 repeated till arc consistency of subnetwork Gk..,.) 
REPEAT 

ACVz(k, d,  empty-domain, deletion-occcurred) 
UNTIL (not deletion-occurred) or empty-domain 
END; 

Mackworth's ACl ( 1 9 7 7 ~ )  is given essentially by AC1' 
below, and the version of Rosenfeld (1975) and Rosenfeld 
et al. (1976) (originally called A) is given by ACl". 

PROCEDURE AC 1 ' ; 
Q - 1 (i j) I (i j) is an arc in GI:, 1; 
REPEAT 

deletion-occurred - False; 
FOR each (i j) in Q DO 

BEGIN 
revise(i, j, d, dummy, change); 
deletion_occurred - 
END; 

deletion-occurred or change; 

UNTIL not deletion-occurred; 
END; 

PROCEDURE ACl": 
Q - [ (i j) I (i j) is an arc in GI:, 1; 
REPEAT 

old-d - d; 
deletion-occurred - False; 
FOR each (i j) in Q DO 

BEGIN 
d[i] - revise(& j ,  d[i], old-dfi], change); 
deletion-occurred - 
END; 

deletion-occurred or change; 

UNTIL not deletion-occurred; 
END; 

ACl" is less efficient than AC1 ' on a regular machine, 
but offers the opportunity for a more efficient implemen- 
tation on a parallel processor. ACI" does not take advan- 
tage of deletions that occurred during a given pass over all 
arcs to improve the extent of filtering of other domains dur- 
ing the same pass. Instead, all deletions become effective 
for filtering other domains only at the next pass. It is because 
of this that each domain could, if processors were available, 
be filtered in parallel during a given pass. In AC1" the call 
to procedure revise(i, j ,  d, empty-domain, change) of ACl ' 
has been replaced by a slightly different call to a function 
revise(i, j, di, dj, change) which filters domain di of z, with 
respect to domain dj of zj and returns the resulting filtered 
di as the value of the function; change is a reference para- 
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meter with the same meaning as before. Note that parallel 
approaches to solving constraint satisfaction problems are 
currently receiving considerable attention - see, for 
example, Freuder and Quinn (1985), McCall et al. (1989, 
and Kasif (1986). The latter paper sounds a note of restraint 
by showing that Constraint Satisfaction is in a sense an  
inherently nonparallizeable problem. 

To make  explicit the cor respondence  between 
Mackworth’s ACl  and our A C l ,  we expand out the call 
to ACY2 in ACl .  Employing Mackworth’s list-of-arcs nota- 
tion we obtain the following equivalent version of our 
AC%-based ACl .  

PROCEDURE ACl(k ,  VAR d ,  VAR empty-domain); 
REPEAT 

empty-domain - False; 
deletion-occurred - False; 
Q - ((i j) 1 k I i # j 5 n, in lexographical order); 

(arcs in GkrnJ 
WHILE (Q # empty) and (not empty-domain) DO 

BEGIN 
(r S) - POP(Q); 
revise(r, s, d, empty-domain, change); 
deletion-occurred - deletion-occurred or change: 
END; 

UNTIL (not deletion-occurred) or empty-domain; 
END; 
The phrase “in lexographical order” means that the pairs 

(ij) appear left to right in the list Q w i t h j  ranging over all 
its values (except j = i) in order before the next i value is 
used. This is required so as to  reflect the specific ordering 
induced by the f l - loop  of ACY2 and the f Z l o o p  in its 
subroutine rrevise. (See the corresponding loop expansion 
at the end of Sect. 4.1.) Comparing this version of our 
AC’h-based AC1 with Mackworth’s version A C l ’ ,  we see 
that they are in fact equivalent except that 

1. ACI is more general than ACl  ‘ in that it (like all our 
earlier partial arc consistency algorithms) has formal para- 
meters k and d so that it can be incorporated at each node 
of a search tree (as in Sect. 5 below), rather than just at  what 
in our  context is the root, or the k = 1, node of the search 
tree. ACl  achieves arc consistency for any subnetwork 
Gk:,,, 1 5 k I n,  whereas ACl ’  achieves it only for GI:,,. 

2. ACl  is more specialized than AC1‘ in being for com- 
plete binary constraint satisfaction problems (those that are 
binary and, moreover, have a binary constraint on each pair 
of variables). AC1’ does assume binary problems, but not 
necessarily complete binary problems. 

3. AC1 is more specialized than ACl  in using a specific 
order of processing: each cycle processes arcs (ij) in lexo- 
graphic order. AC1’ leaves the processing order arbitrary. 

4. ACl  also differs from ACl  ‘ by terminating as soon 
as a domain wipe-out occurs. In such a case AC1‘ comes 
to a halt the hard way, by filtering every domain till it is 
empty. 

5 .  Mackworth’s AC1 makes an  initial call to a node con- 
sistency algorithm NC for each variable. All algorithms here 
leave out such a call, on the assumption that no unary 
predicates are given for the problem or that they have 
already been incorporated in establishing the domains dz, 
used by the algorithms. For details see Mackworth (1977a). 

The same differences will also apply between Mackworth’s 
and our versions of AC2 and AC3 below. Note, that the 

restrictions mentioned in points 2 and 3 above may be 
removed from our ACl , while retaining the added generality 
of difference 1, by simply replacing the line that initializes 
Q with the new line13 Q - J (i j) I (i j )  is an arc in GkJ, 
the form used by Mackworth but with GI:, in place of our 
G k : n -  

4.2.2. AC3 
AC1 worked by making successive calls to ACV2 till a 

call occurred in which no domain deletion took place. How- 
ever, as pointed out by Mackworth (1977a), this is an  
unnecessarily wasteful way to achieve arc consistency. The 
obvious inefficiency is that any update of an arc (r s) of 
Gk:,, on a given pass causes all arcs of Gk:,, to be revised on 
the next cycle, when in fact only the arcs (j r )  could possibly 
be affected. 

This insight is embodied in the Mackworth’s AC3 algo- 
rithm, a version of which follows. l4 Note that not only are 
arcs (j i), i # r, not added to Q when revision of ( r s )  causes 
a deletion in the domain of zf, but neither is arc (s r ) .  This 
is because if arc (s r )  wasn’t on  Q already then it was con- 
sistent - and a consistent arc (s r )  cannot become incon- 
sistent directly because of the revision of ( r  s), because any 
z, value removed was deleted precisely because it has no 
support in the domain of z, and hence no z, value was sup- 
ported by it. On the other hand, if (s r )  was already on Q 
then it also needn’t be added (again). 

PROCEDURE AC3(k, VAR d ,  VAR empty-domain); 
empty-domain - False: 
Q - [(i j) I k 5 i # j 

WHILE (Q # empty) and (not empty-domain) DO 

n, in lexographic order]; 
(arcs in Gk:,,J 

BEGIN 
(r S )  - POP(Q): 
revise(r , s, d ,  empt y-domain, deletionoccurred);  
IF ((deletion-occurred) and (not empty-domain)) 

THEN 
BEGIN 
Q-extra - (6 r) I k 5 j 5 n, j # r,  j # s, 

Q - post-union(Q-extra, Q); 
END 

in lexographic order]; 

END 
END; 

By post-unioning of Q-extra onto Q, achieved by the 
call post-union (Q-extra, Q), we mean that the arcs in list 
Q-extra that are not already in Q are unioned onto Q with 
new arcs being appended to the rear of Q, in the order of 
their occurrence in Q-extra. Since arcs are added to the 
rear and popped from the front, the list Q is therefore main- 
tained as a queue - hence the name Q. This, together with 
the fact that Q is initialized to  the same value in AC3 as 
in ACl ,  means that the first part of the AC3 processing is 

Note that at this level of generality, ACI would then differ 
from ACI ‘ in the additional respect that it allows the order of arc 
processing to vary at each cycle because Q of ACI, but not Q of 
ACI ’, is initialized anew on each cycle. 

Our ACI, AC2, and AC3 all differ from Mackworth’s ver- 
sions, in the ways discussed for ACI in the previous section. In 
particular, there is no indeterminacy in the arc revision orders of 
our versions. 

11 

14 
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always the same as for the first pass of ACV2 in ACl. This 
can be seen, for example, in Fig. 10. 

A stuck-bused (rather than queue-based) version of AC3 
might just as well have been written. This would use a pro- 
cedure pre-union (instead of post-union) to add to thejront 
of Q the arcs not already there from Q-extra. Or, any 
more-intelligent way of ordering the new arcs in Q could 
be used if appropriate heuristics are known. More research 
on this ordering issue would be appropriate. It is the analog 
for AC3 of the constraint-check order issue that arises for 
most, if not all, constraint satisfaction algorithms, and which 
was studied for Backtracking and Forward Checking in 
Haralick and Elliot (1 980), Nadel(l986), and Nudel (19834. 
An analogous list-ordering issue arises in the state space 
search algorithm A* where heuristic evaluations are used 
to rank entries. A similar approach should be applicable here 
using mathematically derived heuristics analogous to those 
obtained in Haralick and Elliot (1980), Nadel (1986), and 
Nudel (1983~). Whichever version of adding Q-extra to 
Q i s  used, AC3 (and also AC2 below) usually attains arc 
consistency considerably more efficiently than its precursor 
ACI . See, for example, the corresponding ACl and AC3 
(and AC2) counts in Fig. 10, and in Tables 2 and 3. 

4.2.3. AC2 
Another full arc consistency algorithm, of historic as well 

as practical interest, is that which Mackworth (1977a) called 
AC2. It is essentially the version used by Waltz (1975) in 
his seminal work on machine vision, in which the blocks 
world line-labeling problem is formulated and solved as a 
constraint satisfaction problem. The following is a version 
of AC2 analogous to our ACI and AC3 above. 

PROCEDURE AC2(k, VAR d, VAR empty-domain); 
empty-domain - False; 
FOR i - k + 1 TO n WHILE (not empty-domain) DO 

BEGIN 
Q1 - I(i j) I k I j < i, in lexographic order); 

(arcs from node i in Gk..i) 
4 2  - {(j i) I k I j < i, in lexographic order]; 

(arcs to node i in Gk,.;) 
WHILE (QI # empty) and (not empty-domain) DO 

BEGIN 
WHILE (Q1 # empty) and (not empty-domain) DO 

BEGIN 
(r S )  - POP(Q~); 
revise(r, s, d, empty-domain, 

IF ((deletionoccurred) and (not empty-domain)) 
deletionoccurred); 

THEN 
BEGIN 
Q2-extra - {(j r) I k I j c i, j # r, j # s, 

Q2 - post-union(Q2-extra, 42); 
END 

in lexographic order]; 

END 
Q1 - 42;  4 2  - empty 
END 

END 
END; 

In spite of its more complex structure, AC2 above is essen- 
tially just the earlier AC3 with another arc-revision order- 
ing, so as to achieve arc consistency of GkCn in one pass 

through the nodes from zk to z,,. For example, when k = 1 
and n = 4 and, for simplicity, when no empty domains 
occur and GI:, is already arc consistent so that no deletions 
occur, AC2(k) revises arcs in the order 

i= 2 i = 3  i= 4 
cvcc- 4 

(2*1)(1,2) (391)(3,2)(1,3)(2,3) (49 1)(4,2)(4,3)(1,4)(2,4)(3,4) 
as in the AC2(1) processing in Fig. 10 (even though that 
example does not conform to the present assumption of 
initial arc consistency). AC3(1), however, would use the 

the same as a single cycle of AC’/2(1) shown in Fig. 10. In 
the same case but with k = 2, AC2(k) revises arcs in the 
order 

order (1,2)(1,3)(1 A)@, 1)(2,3)(2,4)(3,1)(3,2)(3,4)(4,1)(4,2)(4,3), 

i = 3  i = 4  - \ 

(3,2)(2,3) (4,2)(4,3)(2,4)(3,4) 

as in the AC2(2) processing in Fig. 10 (even though again 
that example does not conform to the present assumption 
of initial arc consistency). AC3(2) revises in the order 
(2,3)(2,4)(3,2)(3,4)(4,2)(4,3), the same as a single cycle of 
AC’/2(2) shown in Fig. 10. 

Note that in Nadel(1988u), the outer loop of AC2 starts 
with i - k, generalizing Mackworth’s nonparameterized 
AC2 (Mackworth 1977a) which starts with i - 1. However, 
such lower bounds for i correspond to Q1 and 4 2  lists that 
are empty, and hence to a first.cycle which does nothing. 
One may as well, therefore, start with i - k -I- 1 as above 
(or with i - 2 in Mackworth’s version). Again, note also 
that the arcs of Q2-extra might just as well have been 
unioned on to the front of Q1, or inserted in any other order, 
with the same outcome but with usually different efficiency. 
Our examples and experiments below all use the above post- 
unioning versions of AC2 and AC3, with initial lexographic 
ordering of arc lists as given. 

Actually pre-unioning is more efficient than post-unioning 
when considered in isolation, because lists are usually 
referenced by pointers to their front, not to their ends, so 
that pre-unioning’s updating at the front of a list is quicker. 
However (apart from possibly imposing an arc revision order 
that is better for the overall process of attaining arc con- 
sistency), post-unioning gives an order that is better for 
pedagogical purposes because its first-come-first-served 
order for arcs is easier to follow in traces and, as mentioned, 
allows the initial AC3 processing to be always the same as 
the first cycle of ACV2 processing in ACl. 

In general, we find AC2 to be better than AC3 (our 
specific version), as in the examples of Fig. 10 and in most 
cases where AC2 and AC3 are used in the hybrid algorithms 
compared in Tables 2 and 3 of Sect. 6.  Also, of course, both 
AC2 and AC3 are generally better than AC1. There are 
examples, however, where AC3 is better than AC2 (Table 2, 
RFL2 versus RFL3) and, surprisingly, where even AC1 is 
better than AC2 (Table 2, RFLl versus RFL2). This latter 
possibility does not seem to have been noted before. It is 
further discussed in Sect. 6 and Appendix I. Supposedly 
there are also examples where ACI is better than AC3. Note 
that other approaches to efficient full arc consistency pro- 
cessing also exist. Gaschnig’s DEE (1978, 1979) and Mohr 
and Henderson’s AC4 (1986) are of particular interest. All 
these full arc consistency algorithms of course achieve the 
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same final state for a problem’s constraint graph, except 
possibly that a domain wipe-out, if one occurs, may be 
discovered by different algorithms to occur at different net 
nodes. 

5. Hybrid tree search/arc consistency algorithms 
In Sects. 3 and 4 we considered respectively tree search 

algorithms and arc consistency algorithms. The prototypical 
tree search algorithm, Backtracking, was seen to have cer- 
tain thrashing inefficiencies, which could be ameliorated by 
the more refined tree search algorithms Backjumping and 
Backmarking. No doubt certain types of inefficiencies still 
remain in these algorithms too. We saw that arc consistency 
algorithms could be used to simplify a constraint satisfac- 
tion problem, but that often such simplification was insuf- 
ficient to actually solve the problem. 

It is conceivable that a marriage between tree search and 
arc consistency algorithms would be beneficial, each type 
overcoming the weaknesses of the other, and building on 
the other’s strengths. It is certainly easy to overcome the 
above-mentioned “incompleteness” problem of arc con- 
sistency algorithms by extending the AC processing into a 
tree-structured form, where a simplification phase is fol- 
lowed by a decomposition into subproblems by instantiating 
an as-yet uninstantiated variable in all ways, with the pro- 
cess being recurvisely repeated on each of the subproblems. 
Such an extension of arc consistency processing can readily 
be designed to ensure the finding of all solutions. 

Conversely - although it really amounts to the same 
thing - one could embed arc consistency processing at the 
nodes of a search tree as a way of reducing thrashing. For 
example, in Fig. 1 we saw that Backtracking was wasteful 
in trying more instantiations of z3 at node G after failing 
at node H, because the reason for failure at H would only 
repeat itself (as it did at node I). The problem was that no 
value of z4 was compatible with both zl = 2 and z2 = 3 ,  
and since these instantiations don’t change in trying alter- 
native children of G, then other such children will fail as 
did child H. Backjumping was one way around the prob- 
lem. However, an alternative would be to revise arcs (4 1) 
and (4 2 )  of the constraint graph after the z2 = 3 instan- 
tiation at node B. This would result in all domain values 
for 24 being eliminated. Nodes G and H would not even be 
generated, let alone node I. 

Thus we see that the hybridization of tree search and arc 
consistency may very well be a useful approach. It turns out 
that quite a few important CSP algorithms (or slight rear- 
rangements of them) are in fact of this type. These will be 
studied in this section. Hybrids that achieve full arc con- 
sistency of the whole constraint network at each search tree 
node are treated in Sect. 5 . 1 .  Hybrids that achieve partial 
arc consistency of the network at the tree nodes are treated 
in Sect. 5.2. Note that achieving full (partial) arc consistency 
at a tree node is not the same thing as using a full (partial) 
arc consistency algorithm at the node. For instance, algo- 
rithms RFLi below use as one component the partial AC 
algorithm AC1/4, even though they achieve full arc con- 
sistency at each node. Similarly, it is possible to achieve only 
partial arc consistency at a node when using a full AC algo- 
rithm if an inadequate subgraph (of the constraint graph) 
is processed at the node. 

We can expect that the lower the degree of simplification 
attained at the tree nodes, the larger will be the search tree. 

However, less simplification per node means less effort per 
node and possibly less effort for the whole tree, even though 
the tree is larger. The big question is: where is the break 
even point? In other words, what is the optimal amount of 
simplification to apply at the search tree nodes? It is con- 
ceivable that the optimal’ amount of simplification to achieve 
is path consistency, or even some higher level of j-consistency 
Freuder (1978). However, this has not been found to be the 
case for the problem classes studied in previous experiments 
McGregor (1979). The results here and in Gaschnig (1978, 
1979), Haralick and Elliot (1980), and McGregor (1979) sup- 
port this observation by showing that even full arc con- 
sistency per node is excessive. Though the break-even point 
no doubt depends on the type of problems involved, we will 
see that for the problems studied here, the optimum 
approach is to use only a very restricted form of arc con- 
sistency per node. For pedagogical reasons, it will be con- 
venient to present the algorithms in decreasing order of 
degree of arc consistency attained per node. (This order, 
however, is the opposite of that used in Nadet (1988a).) 

Now that we are discussing arc consistency in the context 
of tree search, it is important to keep clear the distinction 
between nodes of the search tree and nodes of the underly- 
ing constraint network. We will therefore distinguish them 
as tree nodes and net(work) nodes respectively. When 
unqualified, the term node will refer to a tree node. 
Remember that network nodes correspond to problem 
variables zi and hence to the rows of a domain array 
diagram, such as that in Fig. S. Thus when we speak of 
variable, variable domain, or domain array row below, these 
are essentially just synonyms for net node. In our graphical 
traces of the algorithms of this section, domain arrays will 
be drawn at the nodes of the search trees, giving a clear 
indication of the state of the network nodes in the context 
of each of the search tree nodes. 

Note that in this section we begin to realize the advan- 
tage of parameterizing our arc consistency algorithms with 
k ,  intended to correspond to the search tree level, with d, 
intended to store the list of value domains local to a given 
tree node, and with empty-domain, to tell us whether a 
domain wipe-out occurred during consistency processing. 
Such parameters do not appear in the traditional formula- 
tions of consistency algorithms (Freuder 1978; Mackworth 
1977a; Mohr and Henderson 1986; Montanari 1974). The 
purpose of our parameters can be seen from the following 
procedure TS, which is the common tree search shell from 
which all our hybrid algorithms below are built. 

PROCEDURE TS (k, d); 
(To expand, add your favorite parametric arc consistency 

dk - d[k]; 
IF not empty-domain THEN 

FOR zk - each element of dk DO 

procedure(s) here) 

BEGIN d(k] - (zk); 
IF k = n THEN output(d) ELSE TS(k + 1 ,  d) END 

END; 

Parameter d of TS is as described for revise of Sect. 4.1. 
At the initial call, we require that k = I and that each com- 
ponent d[i] of d contains the original domain d,, of 
variable zi, 1 I i 5 n. Note that d may not be a reference 
parameter of TS, unlike the corresponding array z in BT, 
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PROCEDURE T S V A C ( k .  d ,  variant); 
I F  k > I THEN BEGIN 

ca l l l (var iant ,  k ,  d.  emptydomain) ; 
I F  not emptydomain THEN cal l2(variant ,  k ,  d, emptydomain) ; 
END ; 

dk + d[kI; 
I F  not emptydomain THEN 

FOR zk + each element of dk DO 
BEGIN d[k] + fzk);  I F  k = n THEN output(d) ELSE T S V A C ( k + l ,  d ,  variant) END 

END ; 

PROCEDURE ca l l l (var iant ,  k ,  VAR d.  VAR empty_domain) ; 
CASE variant OF 

' B Y  : AC1/5(k, d, emptydomain); 
'FC', 'PL', 'FL', 'RFLI', 'RFL2'. 'RFL3' : AC1/4(k. d ,  emptydomain); 
'TSACI' : A C I (  k-1, d ,  emptydomain) ; 
'TSAC2' : AC2(  k-1 , d,  emptydomain) ; 
'TSAC3' : AC3(  k-I,  d, emptydomain); 
'TSRACI' : A C I (  1, d,  emptydomain); 
'TSRAC2' : AC2(  1. d.  emptydomain); 
'TSRAC3' : AC3(  I, d,  emptydomain); 

END; END; 

PROCEDURE cal l2(variant ,  k ,  VAR d ,  VAR emptydomain); 
emptydomain t False; 
CASE variant OF 

'PL' : AC1/3(k, d ,  emptydomain); 
'FL' : AC'/Z(k. d .  emptydomain. dummy); 
'Rn.1' : AC1(  k .  d. emptydomain); 
'RFI.2' : AC2( k ,  d ,  emptydomain); 
'RFL3' : AC3(  k ,  d, emptydomain); 
' B Y ,  'FC', 'TSACI'. 'TSAC2'. 'TSACS', 'TSRACI', 'TSRAC2'. 'TSRAC3' : {do nothing} ; 

END; END; 

FIG. 8. A combined algorithm TSVAC (Tree Search + Variable Arc Consistency) for BT, FC, PL, FL, and RFLi, TSACi, TSRACi 
for 1 5 i I 3. 

TABLE 1. Structures of our 13 hybrid tree search/arc consistency algorithms (subsumed by TSVAC of Fig. 8) 

Algorithms that achieve full arc consistency of constraint network at each tree node 
TSRACi(k) = TS(k)  + ACi(1) i = 1, 2, 3 
TSACi(k) = TS(k) + ACi(k- 1) i = 1, 2, 3 
RFLi(k) = TS(k) + AC'/4(k) + ACi(k) = FC(k) + ACi(k) i = 1, 2, 3 
Algorithms that achieve partial arc consistency of constraint network at each tree node 
W k )  = TS(k) + AC'/4(k) + AC?z(k) = FC(k) + AC1/2(/0 
W k )  = TS(k) + AC1/4(k) + AC'/3(k) = FC(k) + AC'/3(k) 
FC(k) = TS(k) + AC%(k) 
BT(k) = TS(k) + AC%(k) 

BJ, and BM of Sect. 3, and unlike d in all the arc consistency 
algorithms of Sect. 4. 

As indicated by the comment in TS, our hybrid algorithms 
are built from TS by inserting various arc consistency pro- 
cedures immediately after the header line. At each level-k 
call TS (k, d), the domains of some of the nonpast variables 
zk to z,, will be filtered; which specific domains are filtered, 
and using which arc revisions, depends on  the choice of arc 
consistency procedure(s) incorporated into TS. The resulting 
filtered domains are stored in d[i], k 5 i I n. If no  domain 
wipe-out occurs, the current variable z k  is then instantiated 
in turn to each of the values still viable in its current domain 
d[k], and for each instantiation the process is repeated recur- 
sively at the next level k + 1 using the updated array d of 

domains. The instantiation for z k  is stored in d[k] itself as 
a single-member list, replacing the earlier domain list stored 
there. (The term (zk) in the statement d[k] - (zk) denotes 
this singleton list). Therefore on entry to  a level-k node, the 
instantiations of the past variables z,  to z k -  are all avail- 
able as the singleton-list components d[ l ]  to d[k - 11 of 
d, and d[k] to d[n] contain the lists of still viable values for 
the nonpast variables. 

Since the various hybrid algorithms below vary only as 
to which arc consistency procedure(s) is inserted after the 
header in the above tree search shell TS, they are so similar 
in structure that it is convenient to consider them here as 
special cases of a single combined algorithm, as shown in 
Fig. 8. This figure expresses in a unified way the 13 hybrid 
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CSP algorithms we describe below. Schematically, this 
unified structure may be expressed as TS + ACi or 
TS + AC1 i AC2, where TS denotes the basic tree search 
skeleton above, and AC, and AC2 denote one of our earlier 
full or partial arc consistency algorithms applied at the 
search tree nodes. The combined algorithm is thus called 
TSVAC, for Tree Search with Variable (i.e., changeable) 
Arc Consistency. Selection of the required component algo- 
rithm is done by inputting the corresponding value of the 
string parameter variant; for example 'BT' to obtain algo- 
rithm BT. Table 1 summarizes the structure of the hybrid 
algorithms we study in this section. 

Note that our combined algorithm in Fig. 8 has a k > 1 
test which excludes any arc consistency processing at the root 
node (k = 1) in each of the subsumed algorithms. Apart 
from the fact that some of the arc consistency calls do  not 
make  sense when k = I (AC1/s(k), AC1/4(k), a n d  
ACi(k- I)), this is because arc consistency processing at the 
root node is usually not cost-effective. (Remember the 
extreme example of q-queens for q 2 4, discussed in Sect. 4,  
for which revising every arc filters not a single domain 
value). In general, when an  arc ( i j )  is revised at the root, 
too many supporting domain values exist in the target net 
node j t o  allow effective filtering of the values from the 
source node i. Moreover, compounding the problem, this 
filtering is not only ineffective but also particularly costly 
at  the root because the relatively large domains there mean 
that many values for i must be attempted to be filtered, each 
time possibly checking against many values for j .  At levels 
k > 1, however, instantiation of variables at ancestor nodes 
has reduced some domain sizes and removed potential sup- 
porting values, which allows the fiftering process to be both 
more effective and more efficient. Extensions of this selec- 
tive consistency-processing approach are discussed in Sect. 6. 

Traces of our hybrid algorithms solving 4-queens and con- 
fused 4-queens appear below in Figs. 10-12. They show indi- 
vidual nodes, or node subtrees, generated by the algorithms 
and the arc revisions, and corresponding numbers of con- 
straint checks, performed at each node. A node in a trace 
is shown in terms of the contents of array d at that node, 
using the domain array representation and shading conven- 
tions described near the start of Sect. 4. In particular, black 
cells denote an instantiated value, grey cells denote still viable 
values, and white cells denote values eliminated from con- 
sideration. Unless otherwise stated, the domain array for 
a node wilI show the contents of d just after all arc con- 
sistency processing (call1 and call2 in Fig. 8 )  has taken place, 
but before any instantiation (d[k] - (zk) in Fig. 8 )  of the 
current variable. In some cases, the domain array for d prior 
to any AC processing at  the node, and (in Appendix I )  at 
various intermediate stages, may also be shown. 

For simplicity, the traces of this section do  not indicate 
the individual constraint checks performed for the arc revi- 
sions. The reader should be able to hand simulate the pro- 
cessing at this level of detail him/herself, coming up with 
the same constraint check numbers and final domain arrays 
as given at each node in the diagrams. Some traces at this 
detailed level of individual constraint checks appear in 
Appendix I below and in Nadel (1988a). As pointed out in 
connection with the AC algorithms of Sect. 4, the hybrid 
algorithm traces in the present section and in Appendix I 
also double as traces of the AC algorithms, since the latter 

are components of the former so that the AC algorithm pro- 
cessing shows up at the nodes of the hybrid algorithm traces. 

5.1. Nine full arc consistency hybrids 
This section presents nine hybrid tree search/arc con- 

sistency algorithms in three families of three algorithms each: 
TSRACi, TSACi, and RFLi for 1 I i 5 3. Each of the 
algorithms ensures that at  each search tree node, full arc 
consistency is attained for the whole constraint graph GI:, 
corresponding to the set of all n problem variables. Within 
a given family of three, the algorithms differ in whether they 
use the full arc consistency procedure A C l ,  AC2, or AC3 
(possibly in conjunction with the partial A C  procedure 
ACV4). The families themselves differ as to what subgraph 
of the constraint graph they apply their AC procedures to. 
The TSRACi, TSACi, and RFLi families correspond to SUC- 
cessively smaller subgraphs and hence are successively more 
efficient. 

Since each of the nine algorithms achieves the same state 
of full arc consistency at corresponding nodes, they all gen- 
erate search trees with the same node structure and hence 
with the same number of nodes. This will be seen in the 
traces below and in the experiments of Sect. 6. The work 
done at a given node, and hence the overall work for the 
search tree, will of course differ though. 

Many algorithms in the literature are of the type discussed 
in this section, for example, Gaschnig's CS2 (1974) and 
DEEB (Domain Element Elimination with Backtracking) 
(1978, 1979), and Mackworth's NC (19776). Similarly, 
McGregor (1979) cites Ullman (1976) as having used such 
an  approach, although application-specific details in 
Ullman's implementation obscure this. Since most of the 
latter algorithms, however, have not been given in sufficient 
detail, it is often not clear whether they correspond to the 
TSRACi, TSACi, or FRLi families. As we will see, the effi- 
ciency difference can be considerable between and within 
these families. 

5. I .  I .  Tree search and redundan t arc consistency: 

The calls ACl(k) ,  AC2(k), and AC3(k) each achieve full 
arc consistency of the constraint network Gk,". Thus the 
most straightforward way at each node of a search tree to 
achieve full arc consistency of the constraint network GI:, 
corresponding to all n variables is to call ACl(k),  AC2(k), 
o r  AC3(k) with k = 1. Doing this gives us the variants 
TSRACI, TSRAC2, and TSRAC3 of our combined algo- 
rithm in Fig. 8. The R in the names stands for redundant; 
we will see why shortly. These names reflect the algorithm 
structures, which can be written schematically as 

TSRACi(k) = TS(k) + ACi(1) 

TSRACi(k) = TS(k) + ACi(l), 

Column A of Fig. 9 shows the domain array for d at nodes 
along a given search tree branch when solving an  arbitrary 
problem with 4 variables. (The contents of the domains of 
nonpast variables zk to z4 at these nodes are irrelevant for 
the purposes of Fig. 9.) Column B of the figure shows, for 
each node, the set of arcs that are ultimately made consis- 
tent by the corresponding ACi(1) call of TSRACi. The 
braces around the arcs in column B emphasize that we are 
displaying the set of arcs made consistent at a node, rather 
than the actual sequence of arc revisions. ACl( l ) ,  AC2(1), 

i = 1, 2 ,  or 3 
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FIG. 9. Successive simplification of the arcs revised at nodes along a search tree branch. (See text for details.) -3 -t 
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FIG. 10. Processing at the level k = 2 node 2,  = 2, when solving 4-queens by the nine full arc consistency hybrid algorithms 
corresponding to columns B, C ,  and E of Fig. 9. 

and AC3(1) all make the same set of arcs consistent, but 
they do so in generally different order and with varying 
amounts of multiple revisions of some arcs. 

This is seen in Fig. 10, which shows the specific arc con- 
sistency processing at  the single z ,  = 2 node when solving 
the 4-queens problem by each of the nine hybrid algorithms 
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of Sect. 5.1. The present three TSRACi algorithms corre- 
spond to rows (a), (c), and (e) of the figure. We see there 
how the AC processing at the node shown, and the 
associated cost in constraint checks, differs with the ACi 
component used, even though the same set of arcs (as 
opposed to sequence or multiset of arcs) is revised, and the 
same final state is achieved at the node. 

In Fig. 1 1, the single node of Fig. 10 is placed, as node C, 
in the context of the whole left subtree for the 4-queens prob- 
lem. The conventions used in Figs. 10-12 are essentially the 
same, as follows. To the right of each node is a sequence 
of arrows showing the arcs revised and their order of revi- 
sion at the node. These are grouped, and labeled, accord- 
ing to the AC procedure call to which they correspond. The 
number of constraint checks performed for each arc revi- 
sion is shown below the corresponding arrow. The tables 
at the right in the figures show respectively the number of 
nodes in the corresponding example and in the whole tree 
for the problem, and the number of constraint checks per- 
formed in the example and in the whole tree. The number 
of constraint checks in the example is, of course, the sum 
of the numbers under the corresponding individual arc revi- 
sion arrows shown. 

Figure 10 shows the domain array for d both before and 
just after the AC processing at the node. To save space, in 
the search tree traces of Figs. 11 and 12 we give only the 
domain array for d after the AC processing at a node. The 
domain array before the AC processing (which equals that 
on entry to the node) can, however, be easily inferred in such 
tree traces. Given the workings of our algorithm in Fig. 8, 
the domain array for d on entry at a level-k node must be 
simply the domain array inherited from the node's parent 
in the tree diagram, since the latter corresponds to d just 
after AC processing at the parent node. However, the cor- 
responding instantiation for variable zk-  I must be added, 
since this instantiation occurred just before exit from the 
parent node and just after the state represented by the 
domain array shown for the parent. The before node in 
Fig. 10 is an example of the above. Figure 3 of Nude1 
(1983a) may also be helpful. 

Figure 1 la shows the left half of the TSRACl search tree 
in solving the 4-queens problem, together with the corre- 
sponding statistics, and those for the TSRAC2 and TSRAC3 
versions (whose trees are not shown). In the TSRACl tree 
that is shown, only one cycle of the ACl(1) subroutine 
AC'/2(1) is carried out at node B. This is because a domain 
wipe-out is found to occur during that cycle. At node C ,  
on the other hand, two cycles of ACI/Z( 1) are executed. No 
domain wipe-out occurs, but the second cycle is the last since 
it causes no change. At nodes D and E only single cycles 
of AC'/2(1) occur, since even these first cycles cause no 
change. 

From the statistics of Fig. 1 l a  we see that, as required, 
each TSRACi version generates the same number of nodes 
due to their all achieving the same state of full arc con- 
sistency at corresponding nodes. But in terms of constraint 
checks, there is a difference due to the different ACi com- 
ponents used. As expected, the i = 2 and i = 3 forms of 
TSRACi are more efficient than the i = 1 form, due to the 
general superiority of the components AC2 and AC3 over 
ACl,  which is made explicit in the case of node C, at lines 
(a), (c), and (e) of Fig. 10. 

5.1.2. Tree search and arc consistency: 
TSACi(k) = TS(k) + ACi(k - I) 

As implied by the R in the name TSRACi, those algo- 
rithms contain some redundant processing. The reason can 
be seen by reference to Fig. 9. Under some arcs in column B 
are crosses and circles. These are respectively the arcs into 
and out of net nodes 1 to k-2. Revision of such arcs at 
a level-k tree node is redundant because 

(i) the in-arcs have been made consistent at some earlier 
level in the tree. Since at that time the target net nodes 1 
to k - 2 had only one domain value, due to instantiation, 
the arcs into them cannot become inconsistent by subsequent 
instantiation of zk- I at level k - 1 and the other arc revi- 
sions at level k. 

(ii) since, by ( i ) ,  the in-arcs are ensured consistent, then 
so are the out-arcs. This is again because the network nodes 
1 to k -  2 all have only one value, and the out-arc from any 
net node with one value is consistent if the reverse in-arc 
is consistent. 

Removing the redundant crossed and circled arcs in col- 
umn B, we get the reduced sets of arcs in column C. Since 
we have removed all arcs into and out of net nodes 1 to k- 2 
from the network we are left with the arcs in the 
subnetwork on nodes k-  1 to n, which is the subnetwork 
Gk- l :n .  This can be made arc consistent by the call 
ACi(k - 1). Thus we can achieve arc consistency of the whole 
network GI:, at each level-k tree node by calls ACi(k- l), 
rather than the more expensive calls ACi(1) in TSRACi(k) 
above. Doing this gives us the variants TSACl, TSAC2, and 
TSAC3 of our combined algorithm in Fig. 8. These names 
reflect the corresponding algorithm structure 

i = 1, 2, or 3 TSACi(k) = TS(k) + ACi(k- l ) ,  

Figure 116 shows the left half of the TSACl search tree 
in solving the 4-queens problem, together with the corre- 
sponding statistics and those for the TSAC2 and TSAC3 
versions (whose trees are not shown). Again, as required, 
each TSACi version generates the same number of nodes, 
and the same number as for the three TSRACi above, due 
to their all achieving the same state of full arc consistency 
at corresponding nodes. But as seen in the statistics of 
Figs. l l a  and I lb ,  the number of checks performed by 
TSACi is less than TSRACi for a given i, due to the simpler 
arc consistency processing at nodes of the TSACi version. 
Actually, at corresponding k = 2 nodes the processing is 
the same for TSACi and TSRACi for a given i. This is simply 
because their respective calls ACi(k- 1) and ACi( 1) are the 
same when k = 2. It is only at levels k > 2 that the TSACi 
processing is actually less at a node than that of the TSRACi 
version. These effects can of course be seen in comparing 
corresponding k = 2 nodes and corresponding k > 2 nodes 
in Figs. 1 l a  and 1 lb. 

As for TSRACi above, the statistics at the right of 
Fig. 1 l b  show the i = 2 and i = 3 forms of TSACi to be 
better than the i = 1 form because of the general superiority 
of the components AC2 and AC3 over ACl. An explicit 
comparison of the difference between the action of these 
TSACi algorithms at node C can be seen in lines (b), (d), 
and (f) of Fig. 10. Actually, since node C is a k = 2 node, 
these lines in the figure have the same processing respectively 
as for lines (a), (c), and (e). 
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FIG. 1 1 .  Solving 4-queens by the hybrid algorithms. 
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KEY: W = assigned value, 0 = eliminated value, E3 = still possible value 
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FIG. 12. Solving confused 4-queens by revise-based BT. Compare with trace for standard BT in Fig. 1 (and Fig. 2). 

5.1.3. Really Full Lookahead: RFLi(k) = TS(k) + 
AC'/4(k) + ACi(k) = FC(k) + ACi(k) 

The above simplification of the processing at nodes may 
be taken even further without sacrificing guaranteed full arc 
consistency. As in column B of Fig. 9, some arcs in col- 
umn C also have circles under them, denoting still remain- 
ing redundant arc revisions. The circled arcs of column C 

are the out-arcs from net node k -  1 to net nodes k to n .  
The reason their revision is redundant is that for each such 
out-arc the corresponding in-arc is also in the set (of col- 
umn C) to be made arc consistent. If the in-arc to net node 
k -  1 is made consistent, then the out-arc will automatically 
be consistent since net node k -  1 has only one value. (This 
is the same reason as used in point (ii) of the previous sec- 
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tion’s argument). Removing the redundant arcs of col- 
umn C, we obtain the further-reduced arc sets of column D. 

The arcs in Gk- I:n of column C have thus been reduced 
in column D to the set of in-arcs to net code k -  1 coming 
from net nodes k to n, and the set of arcs on net nodes k 
to n, i.e., the arcs in the subnetwork Gk:,. The partition 
into these two groups (type A and type B arcs respectively) 
is shown explicitly in column E. Note further that each arc 
type A need to be revised only once to guarantee its even- 
tual consistency. Subsequent revision of another arc of 
type A or B cannot undo the arc consistency of a type A 
arc, because the latter is an in-arc to a single-value net node 
(the argument used above in point (i) of the section on 
TSACi). Hence we have removed the set braces around the 
type A arcs in column E, denoting that they are each to be 
revised only once. 

The job of revising each type A arc just once at a level-k 
tree node is precisely what is achieved by the call AC’/4(k) 
to our earlier partial arc consistency algorithm AC’/4. 
Unlike the type A arcs, the type B arcs may possibly need 
multiple revisions to achieve the goal of arc consistency for 
the corresponding subnetwork Gk:,. This can be achieved 
by a call to ACi(k), i = 1, 2, or 3. In conclusion, we can 
replace the call ACi(k - 1) of TSACi(k) above by the more 
efficient pair of calls AC’/4(k) and ACi(k), and still achieve 
arc consistency of the whole network GI:, at all tree nodes 
at each level k. Doing this gives us the variants RFLI, RFL2, 
and RFL3 of our combined algorithm in Fig. 8. The corre- 
sponding algorithm structures are 

RFLifk) = TS(k) + AC’/4(k) + ACi(k) 

The second equality here is because, as we will see later, 
TS(k) + AC’/4(k) is Haralick’s Forward Checking algo- 
rithm, FC(k). The names RFLi stand for Really Full 
Lookaheadi, since these algorithms are essentially extensions 
of Haralick’s Full Lookahead, discussed next. The algo- 
rithms’ structures in terms of FC suggests FCACI, FCAC2. 
and FCAC3 as alternative systematic names. 

Note that the AC’/4(k) call is made before the ACi(k) 
call. This is because revisions of type A arcs made by the 
former call are more likely to lead to domain wipe-out (and 
hence early termination of the corresponding path through 
the tree) than are revisions of type B arcs made by the latter 
call. This is because the type A arcs are the only ones going 
to a guaranteed single-value network node”, viz, network 
node k -  1; a single-value target net node offers relatively 
little chance of support for values in the source node of their 
connecting arc, and hence increases the chance of a revi- 
sion that actually removes a domain value in the source 
node. 

Figure 1 l c  shows the left half of the RFLl search tree in 
solving the 4-queens problem, together with the correspond- 
ing statistics and those for the RFL2 and RFL3 versions 
(whose trees are not shown). Note that for completeness, 
otherwise scheduled arcs that were not revised due to a 
preceding domain wipe-out are included, but with a 0 
(denoting no checks performed) below them. Again, as 
required, each RFLi version generates the same number of 

Hence the comment in Sect. 4.1 that the arc revisions per- 
formed by ACl/o(k) in these hybrid algorithms are always of the 
specialized type where the target net node has only a single domain 
value. 

= FC(k) + ACi(k), i = 1, 2, or 3 

I5 

nodes, and the same number as for the three TSRACi and 
the three TSACi above, due to their all achieving the same 
state of full arc consistency at corresponding nodes. But as 
seen in the statistics of Figs. 1 la-1 lc, there is a successive 
improvement in the number of checks in going from 
TSRACi to TSACi to RFLi for a given i, due to the suc- 
cessive simplification in arc consistency processing at cor- 
responding nodes for these algorithms. 

As for the TSRACi and TSACi above, the statistics at 
the right of Fig. Ilc show the i = 2 and i = 3 forms of 
RFLi to be better than the i = 1 form because of the general 
superiority of the corresponding components AC2 and AC3 
over AC1. (However, see Sect. 6 and Appendix I regarding 
the surprising possibility of ACI being better than AC2 and 
AC3). An explicit comparison of the difference between the 
action of these RFLi algorithms at node C can be seen in 
lines (g), (h), and (i) of Fig. 10. Another, more detailed, com- 
parison of the processing by RFLl and RFL3 at a node 
appears in Figs. AS and A6 in,Appendix I. 

5.2. 
The nine hybrid algorithms above were all designed to 

ensure full arc consistency of the whole constraint network 
GI,, at each search tree node. We saw that this can be 
achieved with successively less arc revision as we went from 
the TSRACi set of algorithms to the TSACi set, then to the 
RFLi set. In this section we maintain the above hybrid algo- 
rithm structure and continue the process of reducing the 
amount of arc consistency attained at the nodes. Four new 
algorithms are obtained in this way. 

Unlike for the reductions of the previous section, how- 
ever, the reductions here are sufficient to lose us guaranteed 
full arc consistency of the whole network GI:, at tree 
nodes. (Full arc consistency may nevertheless still be 
achieved forfuitously at some, or even all, tree nodes, 
depending on the problem.) Each algorithm does, however, 
still preserve guaranteed full arc consistency of the subnet- 
work GI:k at each level-k node. (For brevity, we forgo the 
proofs in each case. They are similar to those showing that 
GI:, remains fully arc consistent in the algorithms above). 
Thus at least at the last level, k = n, these algorithms all 
ensure full arc consistency of the whole network GI:,. Since 
at k = n nodes, all variables but Z, have already been 
instantiated to only a single value, the full arc consistency 
of GI:, at such nodes is sufficient to ensure that the solu- 
tions output by our tree search shell are indeed all valid solu- 
tions. (This corresponds to case (iii) of when full arc con- 
sistency is sufficient to solve a problem, discussed near the 
start of Sect. 4.2.) 

The nine hybrid algorithms above all generated search 
trees with the same node structure, since each achieved the 
same state of full arc consistency at each node. The trees 
of the following algorithms, however, may have a different 
node structure due to their achieving only partial arc con- 
sistency, of various degrees, at the nodes. In spite of the 
differences in node structure of the search trees, we will still 
be talking below of corresponding nodes in two trees. By 
this we mean simply two nodes which correspond to the same 
set of instantiations of their past variables. Corresponding 
nodes have the same letter labeling them in the traces of 
Fig. 11. 

The lower the degree of arc consistency achieved at nodes 
by an algorithm, the more nodes we can expect in the algo- 
rithm’s tree since less arc consistency processing leaves more 

Four partial arc consistency hybrids 
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values still viable in net nodes (variable domains), and this 
results in extra descendant tree nodes. This need not 
necessarily be less efficient, however. Even though there are 
more nodes in the tree, the extra nodes are a result of less 
arc consistency processing at each node. More nodes, but 
with less constraint checks per node, may result in less total 
checks for the overall tree. The experiments of Sect. 6 ,  and 
the traces of the present section, will show that further reduc- 
tion of arc consistency processing is indeed cost-effective, 
but only up to  a point. 

5.2.1. FUN Lookahead: FL(k) = TS(k) + AC'h(k) + 
Our successive simplifications of the previous section, 

culminated in three algorithms of structure RFLi(k) = 
'TS(k) + AC'/4(k) + ACi(k), i = 1, 2, or 3. Let us con- 
centrate on the i = 1 version, which uses ACl,  the most 
straightforward of the three full arc consistency algorithms 
ACl, AC2, and AC3 treated in Sect. 4.2. Remember that 
ACl(k) works by simply making multiple calls to the par- 
tial arc consistency algorithm AC'/2(k), until no change 
occurs for such a call or until a domain wipe-out occurs. 
'Thus we might express ACl (k) schematically as having the 
structure ACl(k) = ACh(k)  + ACh(k) + ..., and hence 
express RFLl(k) as having the structure 

AC'/z(k) = FC(k) + AC'hfk) 

RFLI(k) = TS(k) + AC'/4(k) + AC'/z(k) + 
AC'/2(k) + ... 

This suggests a simplified algorithm, where only a single 
call is made to AC'/2(k), corresponding to column F of 
Fig. 9. Accordingly, as already occurred for the AC'/4(k) 
arcs in column E, the other arcs in column F have now also 
lost the set braces around them. This denotes that we are 
simply revising each arc once, rather than necessarily 
guaranteeing its eventual consistency (which another arc's 
subsequent revision may now undo). This reduction gives 
us the variant FL of our combined algorithm in Fig. 8. The 
corresponding algorithm structure is 

FL(k) = TS(k) + AC'/4(k) + AC'/2(k) 

We call this FL because it is essentially Haralick and 
Elliot's (1980) Full Lookahead algorithm. Its above struc- 
ture in terms of FC suggests the alternative systematic name 
FCAC'h. The algorithm first revises the arcs (f, k-  l) ,  
k I f 5 n (from the nonpast variables to the most recent 
past variable) and then the arcs (f 1, f 2), k I f 1 f f 2 I n 
(between nonequal, nonpast variables). 

Note that our FL above and the Full Lookahead algo- 
rithm of Haralick and Elliot do differ in two respects. The 
first is the trivial difference of how the algorithms implicitly 
partition the search tree into nodes (see footnote 7). The 
second is the more substantial difference that the 
LookFu tu re  subroutine of Haralick and Elliot's Full 
Lookahead and the AC92 subroutine of our FL correspond 
to different loop nestings, as explained in Sect. 4.1. As a 
result, the constraint-check order (but not the final state) 
is different at corresponding .tree nodes. 

It is this loop-nesting rearrangement that makes it possible 
to write FL compactly in terms of revise-based subroutines, 
and to thus consider it as one of our family of hybrid tree 
search/arc consistency algorithms. The resulting economy 

= FC(k) + AC'/z(k) 

and unity of code makes the present version FL preferable, 
at least for pedagogical purposes. Which version is best in 
terms of efficiency is a different question. There is no 
obvious efficiency reason to prefer one nesting scheme over 
the other, although it would appear that a difference in the 
number of constraint checks can occur. Surprisingly, how- 
ever, all experiments so far have shown no such difference 
for the two versions, both overall and at each correspond- 
ing pair of nodes. (The reader may like to try and show that 
this must necessarily be the case or to discover counter 
examples.) 

Fig. 1 Id shows the left half of the FL search tree in solving 
the 4-queens problem, together with the corresponding 
statistics. The node structure of the FL tree is the same as 
that of the common tree for the full arc consistency hybrids 
in Figs. 1 la-1 lc. However, this is just because for 4-queens, 
the reduced arc consistency processing done by FL is 
apparently still sufficient to ensure full arc consistency at 
each node. In general, since the subroutine AC'/z(k) of FL 
is not guaranteed to achieve full arc consistency of the 
subgraph it applies to, there will be more values left in the 
domains of variables, and hence more descendants per node 
and thus bigger trees for FL. For 5-queens and higher, we 
see in Table 3 that the FL tree indeed has more nodes than 
those of the full arc consistency hybrids, as expected. 

Of course, in our 4-queens example, since the FL tree has 
no more nodes than the RFLl tree, but has less or equal 
number of constraint checks per node, the total number of 
checks is less. This reduction in constraint checks compared 
to RFLl is found for other problems, as in Tables 2 and 3, 
even when the number of nodes does increase over that for 
RFLl and the other full arc consistency hybrids. The general 
decreaseI6 in work per node is sufficient to reduce the work 
summed over all nodes, in spite of the increase in the number 
of nodes. At least for the problems studied here, the extra 
work per node of the full arc consistency hybrids is not 
cost-effective. 

5.2.2. Partial Lookahead: PL(k) = TS(k) + 
ACi/4(k) + AC'h(k) = FC(k) + AC'h(k) 

Remember from Sect. 4.1 that procedure AC%(k) revises 
a subset of the arcs revised by AC'/2(k). We can thus 
further reduce the amount of arc consistency achieved at 
search tree nodes if we replace the call to AC'/t(k) in FL(k) 
by a call to ACv3(k). This corresponds to column G of 
Fig. 9 and gives us the variant PL of our combined algo- 
rithm in Fig. 8. The corresponding algorithm structure is 

PL(k) = TS(k) + AC'/4(k) + ACv3(k) 
= FC(k) + AC!4(k) 

'6The number of constraint checks at corresponding nodes is 
not always less for FL than for RFL1, even though the former 
revises only a subset of the arcs revised by the latter at a node. 
This is because less arc revisions at an FL node may result in larger 
filtered domains being inherited at a descendant node, and hence 
possibly more constraint checks being necessary at the lower node. 
This is not seen in comparing nodes of our example traces for FL 
and RFLI. The same phenomenon is seen, however, in compar- 
ing nodes D of PL and FL, and may occur at corresponding nodes 
of any two hybrid algorithms where one algorithm revises a subset 
of the arcs revised by the other at the nodes. The algorithm revis- 
ing the arc subsets will generally have less checks per node, but 
not necessarily at all nodes. 
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We call this P L  because it is essentially Haralick and 
Elliot’s (1980) Partial Lookahead algorithm. Its structure 
in terms of FC suggests the alternative systematic name 
FCAC’h. The algorithm first revises the arcs cf, k -  l), 
k 5 f 5 n (from the nonpast variables to the most recent 
past variable) and then the arcs cf 1, f2) k I f 1 < f 2 I n 
(from the nonpast variables to more-future nonpast 
variables, rather than, as in FL, from the nonpast variables 
to any nonequal, nonpast variable). 

Note that our P L  differs from Haralick and Elliot’s Par- 
tial Lookahead aigorithm in the same two ways that our FL 
differed from their Full Lookahead. In particular, the loop- 
nesting is different as discussed in connection with ACv3 
in Sect. 4.1. Again, however, no  complexity difference has 
been detected, although it seems that one should sometimes 
exist between the two versions of Partial Lookahead. 

Figure l l e  shows the left half of the P L  search tree in 
solving our running 4-queens example, together with the cor- 
responding statistics. Note that corresponding nodes in the 
PL and FL trees (such as node C) do  show different states 
for the domains after arc consistency processing. AS 
expected, due to the lesser degree of arc consistency attained 
at  nodes of the P L  tree, the domains there generally have 
more still viable (grey) values than corresponding domains 
in the FL tree, and hence there are extra children nodes and 
more overall nodes in the PL tree. In spite of the extra nodes 
for PL, we see that the lower amount of arc consistency, 
and hence the generally lower amount of constraint checks, 
per node is sufficient to cause a reduction in the overall 
number of constraint checks compared to FL. Note the inter- 
esting phenomenon, discussed in footnote 16, of there being 
more checks at node D of the P L  tree than of the FL tree, 
in spite of less arcs being revised. 

5.2.3. Forward Checking: FC(k) = TS(k) + AC’/4(k) 
Continuing the trend above, we can still further reduce 

the amount of arc consistency achieved at search tree nodes 
by retaining only the AC1/4(k) component of PL. This cor- 
responds to column H of Fig. 9 and gives us the variant FC  
of our combined algorithm in Fig. 8. The corresponding 
algorithm structure is 

FC(k) = TS(k) + ACl/o(k) 

We call this FC because it is essentially Haralick and Elliot’s 
Forward Checking algorithm, also studied by McCregor 
(1979). Its structure suggests the alternative systematic name 
TSACV4. Since it retains only ACv4(k), FC revises only the 
arcs cf, k -  l), k I f 5 n, from nonpast variables to the 
most-recent past variable k - 1, avoiding the revision of arcs 
between pairs of nonpast variables done by FL and PL. 

As with FL and P L  above, our FC differs from Haralick 
and Elliot’s version in how the tree is partitioned into nodes. 
But unlike with FL and PL, there is no  difference in loop 
nesting between our FC and Haralick and Elliot’s version. 
Figure 1 lfshows the left half of the FC search tree in solv- 
ing our running 4-queens example, together with the corre- 
sponding statistics. We see that the same trend as before is 
still continuing: the total number of checks is still dropping, 
due to the reduced number of checks per node, even though 
the number of nodes increases. This trend of improved effi- 
ciency as a result of less AC processing at the nodes is finally 
reversed with our next algorithm. It takes us full circle, being 
a version of Backtracking, the first algorithm treated above. 

5.2.4. Revise-based Backtraking: BT(k) = 

Somewhat surprisingly, even the standard Backtracking 
algorithm, when slightly rearranged, can be formulated as 
a tree search/arc consistency hybrid. The new form, though 
arrived at independently here, was subsequently found to 
have been developed by McGregor (1979, p. 241). McGregor 
did not, however, identify his hybrid algorithm as being a 
form of plain backtracking. We first note that our original 
version of BT from Sect. 3.1 may be rewritten as follows, 
by interchanging the nesting of its two FOR-loops. 

TS(k) -+ AC’/s(k) 

PROCEDURE BT(k, VAR z); 
dk - (1 2 ... m[k]); (initialize domain for variable zk.) 
FOR p - 1 TO k -  1 WHILE dk # empty DO 

BEGIN 
dk-copy - dk 
FOR z[k] - each element of dk-copy DO 

END 

FOR z[k] - each element of dk DO 

IF  not check(k, z[k], p, z[p]) THEN dk - dk - z[k]; 

IF  dk # empty THEN 

I F  k = n THEN output(z) ELSE BT(k+ I ,  z) 
END; 

The first statement here denotes an assignment to variable 
dk of the list of integers 1 to m[k], being the domain of prob- 
lem variable z k .  (m[k] = m,, the domain size of variable 
z k ,  as for the algorithms of S‘ect. 3.) At a level-k node, the 
original BT checked an instantiation for the current variable 
z k  against the instantiations for each past variable z I  to 
z k -  ,, and then (in general, after returning from a recursive 
child generation) repeated such checks for a different instan- 
tiation of zk. The new version of BT, on the other hand, 
checks all domain values of z k  against the single instantia- 
tion for zI, then all surviving domain values for z k  against 
the instantiation for z2, repeating till it has checked all sur- 
viving values for z k  against the instantiation for z k -  I .  

This change of ordering means that no instantiations are 
made nor children nodes generated until all surviving z k  

values have been determined. Thus it is not a truly depth- 
first formulation as was that of Sect. 3.1, but is rather what 
Horowitz and Sahni (1978, chap. 7) have called D-first 
(D-search actually). Nodes are still generated in the same 
order but the order of processing at a given node is changed, 
and if only one solution is sought then the new formulation 
may waste some effort in unnecessarily finding more than 
one viable value for z k .  However, this will only be the case 
for the n nodes actually on the search-tree branch leading 
to the first solution found and will thus usually not be sig- 
nificant. In any case, when all solutions are of interest, as 
we are assuming throughout, then the two formulations are 
equivalent in all respects except the order in which checks 
are done, and in which recursion is interleaved, at a node. 

The above loop-interchange has allowed us to factor the 
processing at a node into a constraint-checking part followed 
by an instantiation and child-generation part (rather than 
interleaving the two). The constraint-checking part can be 
seen as a succession of calls to the revise procedure of 
Sect. 4.1, embedded in our earlier tree search shell TS(k). 
In particular, arcs (k, p )  for 1 5 p < k are successively 
revised. That is, arcs from the current variable to all past 
variables are revised, corresponding to column I of Fig. 9. 
This is precisely what is achieved by a call AC’/s(k) to 
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TABLE 2. Number of constraint checks (and nodes, in parentheses) for solving confused q-queens 

9 3 4 5 6 7 8 9 10 

Algorithm solutions 9 6 7 8 9 10 11 12 
No. of 

214 

our 

BT (TSACh) 
BJ 
BM 

FC (TSACV4) 
PL (FCAC%) 
FL (FCAC~Z) 

RFLl (FCACl) 
RFL2 (FCAC2) 
RFL3 (FCAC3) 

TSACl 
TSCA2 
TSAC3 

TSRACI 
TSRAC2 
TSRAC3 

41(11) 
41(11) 
29( 1 1) 

29( 1 1) 
37( 1 1) 
43(11) 

43(1 I )  
43(11) 
43( 1 1) 

96( 11) 
56( 1 1) 
68( I 1) 

136(11) 
88( 1 1) 

102(11) 

160(29) 
139(27) 
90(29) 

90(23) 
117(17) 
146( 17) 

162(17) 
158( 17) 
146(17) 

367( 17) 
194(11) 
260( 17) 

509( 17) 
300( 17) 
372( 17) 

332(47) 
288(44) 
192(47) 

188(35) 
270(27) 
345(27) 

393(27) 
392(27) 
347(27) 

853(27) 
466(27) 
654127) 

1 195(27) 
760(27) 
958(27) 

590(69) 
509(65) 
346(69) 

334(49) 
525(39) 
688(39) 

792(39) 
806(39) 
696(39) 

1681(39) 
938(39) 

1 358(39) 

2 399(39) 
1 596(39) 
2 030(39) 

949(95) 
8 16(90) 
563(95) 

537(65) 
9 1 5 (5  3) 

1 222(53) 

1 412(53) 
1 439(53) 
1241(53) 

2 954(53) 
1 645(53) 
2 468(53) 

4 308(53) 
2 927(53) 
3 768(53) 

1 428(125) 
1225(119) 

856( 125) 

808 (83) 
1 482 (69) 
2 014 (69) 

2 326 (69) 
2 422 (69) 
2 052 (69) 

4 825 (69) 
2 732 (69) 
4 145 (69) 

7 175 (69) 
4 998 (69) 
6 433 (69) 

2 042( 159) 
1 747(152) 
1 234(159) 

1 154(103) 
2 266 (87) 
3 125 (87) 

3 601 (87) 
3,746 (87) 
3 190 (87) 

7 427 (87) 
4 180 (87) 
.6 514 (87) 

11 249 (87) 
7 906 (87) 

10 266 (87) 

2 810(197) 
2 399(189) 
1 710(197) 

1 586(125) 
3 316(107) 
4,638( 107) 

5 326(107) 
5 622(107) 
4 742(107) 

I0 950( 107) 
6 218(107) 
9 774(107) 

16 852(107) 
12 012(107) 
15 598(107) 

partial arc consistency procedure AC’h (or required, the trees in Figs. 1 and 12 are essentially the same, 
CheckBackward) of Sect. 4.1. Thus our rearranged BT 
can be expressed as a hybrid tree search/arc consistency algo- 
rithm with structure 

BT(k) = TS(k) + ACYs(k) 

corresponding to variant BT of the combined algorithm in 
Fig. 8. The structure suggests the alternative systematic name 
of TSACh for this revise-based version of BT. As with 
AC’/4(k) in all earlier hybrid algorithms, note the special- 
ized use of revise by AC’/5(k) here. Due to the instantia- 
tion of variables at ancestor tree nodes, all the arcs revised 
by AC%(k) or AC’/4(k) have target net nodes with only 
one domain value. This was also noted in Sect. 4.1 where 
the AC procedures were first introduced. 

A trace of our revise-based BT solving our running 
4-queens example appears in Fig. 1 lg. We see that though 
the above trend of successively more nodes (or no less nodes) 
is continuing, the trend of successively less constraint checks 
has been reversed. Thus with the previous algorithm FC we 
had reached the limit of the usefulness of reducing the degree 
of arc consistency attained at tree nodes. 

Actually, it is not really obvious that BT achieves a lower 
degree of arc consistency at a node than the earlier algo- 
rithms, since unlike for our previous succession of algo- 
rithms, the arcs revised by BT at a given node are not simply 
a subset of those revised by the earlier algorithms. (This is 
seen clearest in Fig. 9.) However, as seen in Tables 2 and 3 ,  
we find empirically that BT does generate more (or the same 
number of) nodes than even FC, and we take this as indicat- 
ing that BT in effect is attaining the lowest degree of arc 
consistency of all our hybrid algorithms. 

Besides comparing traces of revise-based BT with those 
of the other hybrid algorithms as in Fig. 11, it is instructive 
to similarly compare the two forms of BT. Since regular BT 
was traced on confused 4-queens in Fig. 1 (for the reason 
given in footnote 4), we include in Fig. 12 a trace of revise- 
based BT on the confused version of the problem. As 

with the same number of nodes and constraint checks. How- 
ever, the constraint check order at a node differs in general. 
For example, the two arrows beside node E in Fig. 120 
indicate that arc (3 1) is first revised then arc (3 2). This cor- 
responds to constraint checks in the order a, b, d ,  e (the 
revision of arc (3 1)) then c, f (the revision of arc (3 2)), 
as shown in Fig. 12b. Regular BT, however, checks in the 
order a, 6, c, d, e, f, as shown in Fig. 12c. 

Schematically, we can Say that regular BT does checking 
at a node in column-wise order or “vertically” and revise- 
based BT does it in row-wise order or “horizontally.” (The 
same kind of difference exists between our revise-based ver- 
sions of FL and PL above and those of Haralick and Elliot 
(1 980), due to the analogous loop-nesting interchanges 
involved.) In terms of interleaving recursion, we have in our 
Fig. 12 example that regular BT generates node F after 
check c and before check d, whereas (as with all hybrid algo- 
rithms above) revise-based BT completes all checks at the 
node before recursing to generate subnodes. (Unlike the 
check-order difference above, this interleaving difference 
does not also exist between Haralick and Elliot’s and our 
version of FL or PL.) 

6. Empirical comparison and discussion 
We have now completed our presentation of 15 algorithms 

for solving constraint satisfaction problems. Some of these 
(Sect. 3) were what we called tree search algorithms and 
some (Sect. 5 )  were hybrids of a tree search shell with various 
parameterized arc consistency procedures (Sect. 4) applied 
at the search tree nodes. The parameterization of our arc 
consistency procedures is in contrast to  the usual practice 
in presenting consistency algorithms (Mackworth 1977a; 
Montanari 1974; Freuder 1978; Mohr and Henderson 1986). 
Without parameterization the implication, whether intended 
or not, is either that consistency algorithms are adequate 
in themselves to solve a csp or, if not, that they be used only 
for preprocessing before applying some tree search algo- 
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A 

0 BJ 

0 BM 

TABLE 3. Number of constraint checks (and nodes, in parentheses) for solving regular q-queens 

3 4 5 6 7 8 9 10 4 
No. of 

Algorithm solutions 0 2 10 4 40 92 352 724 

BT (TSAC'/5) 17(6) 84(15) 405(44) 2 016(149) 9 297(512) 46 752(1965) 243 009(8042) 1 297 558(34815) 
BJ 17(6) 84(15) 405(44) 1 864(147) 8 309(489) 41 862(1869) 219 997(7742) 1 131 942(33000) 
BM 17(6) 76(15) 276(44) 944(149) 3 236(512) 12 308(1965) 50 866(8042) 220 052(34815) 

FC (TSACV4) 17(6) 76(15) 282(44) 964(127) 3 338(424) 13 024(1633) 5 5  326(6680) 242 174(27109) 
PL (FCACVi) 17(4) 97(11) 485(40) 1 703 (79) 6 511(284) 25 882 (977) 112 327(4014) 496 455(15005) 
FL (FCACh) 17(4) 99 (9) 598(40) 2 095 (51) 8 942(248) 35 323 (777) 153 455(3144) 661 017(10737) 

RFLl (FCAC1) 17(4) 111 (9)' 915(38) 2 744 (41) 12 009(232) 42 923 (677) 185 030(2786) 815 599 (9085) 
RFL2 (FCAC2) 17(4) 95 (9) 595(38) 1 957 (41) 8 781(232) 33 765 (677) 148 893(2786) 637 448 (9085) 
RFW (FCAC3) 17(4) 103 (9) 636(38) 2 101 (41) 9 320(232) 35 999 (677) 157 222(2786) 677 213 (9085) 

TSAC 1 
TSAC2 
TSAC3 

29(4) 171 (9) 1 359(38) 3 622 (41) 18 405(232) 69 179 (677) 309 346(2786) 1 321 662 (9085) 
19(4) 113 (9) 677(38) 2 093 (41) 9 521(232) 35 967 (677) 157 801(2786) 668 108 (9085) 
29(4) 157 (9) 901(38) 2 850 (41) 13 285(232) 51 188 (677) 224 812(2786) 960 552 (9085) 

TSRACl 29(4) 203 (9) 1 913(38) 4 624 (41) 29 829(232) 121 881 (677) 613 796(2786) 2 692 076 (9085) 
TSRAC2 19(4) 145 (9) 1 131(38) 2 883 (41) 17 799(232) 72 171 (677) 362 421(2786) 1 558 494 (9085) 
TSRAC3 29(4) 189 (9) 1 387(38) 3 704 (41) 22 143(232) 90 924 (677) 449 484(2786) 1 949 272 (9085) 

Degree of 
consistency 
achieved at 
tree nodes 

i 
Less work per tree node More work per tree node 

More tree nodes Less tree nodes 

FIG. 13. Schematic plot of the complexities of our 15 CSP algorithms. 

rithm. With parameterization, consistency algorithms may 
be hybridized with a tree search shell to allow arc consistency 
processing on the subproblem corresponding to each indi- 
vidual search tree node. 

A combined algorithm for our hybrid algorithms appeared 
in Fig. 8. The structure of each hybrid was given schematic- 
ally in Table 1 in the form TS + ACil or TS + ACil + 
ACi,. The ACI are either one of the full arc consistency 
algorithms that Mackworth (1977~) has called ACl,  AC2, 
and AC3, or  one of the partial arc consistency algorithms 
AC'/s, AC1/4, AC73, and AC1/2 introduced above, being 

essentially subroutines due to McGregor (1979) and Haralick 
and Elliot (1980). (Note that there are other full arc con- 
sistency algorithms of interest, such as AC4 (Mohr and 
Henderson 1986) and DEE (Gaschnig 1978, 1979), but we 
have not used these in making hybrids.) 

We saw that the tree search/arc consistency hybrid struc- 
ture applied even to the prototypical tree search algorithm, 
Backtracking, when the order of its two nested loops is 
switched. Similarly, by rearranging the loop nesting in two 
of Haralick and Elliot's algorithms, Partial Lookahead and 
Full Lookahead, they also were able to be expressed in this 
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common hybrid form. In this section we compare the above 
algorithms (tree search and hybrid) empirically and discuss 
the implications for future work. 

We use for our experiments the q-queens problems and 
the confused q-queens problems (Sect. 2) for 3 I q I 10. 
Tables 2 and 3 show the results for these two problem types. 
(Table 3 overlaps somewhat with Table 1 in Haralick and 
Elliot (1980).) Note that in all hybrid algorithms that use 
AC2 and AC3 as a component (algorithms RFLi, TSACi, 
and TSRACi, i = 2, 3), we are using the queue-based ver- 
sion of AC2 and AC3 whose code appears above, rather 
than the stack-based, or any other, version. The general rela- 
tionship between the algorithms' efficiencies for a given 
problem instance (that is, for a given column of Table 2 or 
Table 3) is summarized schematically in Fig. 13. It will be 
useful to keep this figure in mind in reading the following, 
which is a discussion of our experimental results and of 
possible flirections for future research. 

1. Our results show that the nine full arc consistency 
hybrids (RFLi, TSACi, and TSRACi, i = 1, 2, 3) always 
generate the same number of nodes for a given csp. This 
is as required, because all these algorithms achieve the same 
state of full arc consistency at each tree node and hence gen- 
erate search trees with the same node structure. 

2. The other algorithms all generate more nodes than the 
full arc consistency hybrids. In the case of the other hybrid 
algorithms, this is because, due to the incomplete degree of 
arc consistency achieved, more domain values are left sur- 
viving for the variables (net nodes) at a tree node and this 
gives rise to more children nodes. As the degree of arc con- 
sistency at the tree nodes decreases, the total number of 
nodes in the tree increases. Actually, even a partial arc con- 
sistency algorithm may fortuitously achieve full arc con- 
sistency for some, or even all, nodes of a tree. This is why, 
in Table 2, FL and even PL achieve the same minimal 
number of nodes as do the full arc consistency hybrids. This, 
however, is of course not guaranteed to occur, as seen in 
Table 3. As required, BM always has the same number of 
nodes as BT, while BJ has less (or at teast no more). 

3. Amongst the nine full arc consistency hybrids, for a 
given i, the RFLi form is better than the TSACi form, which 
is better than the TSRACi form. This is expected from the 
successive removal of redundant arc revisions, without 
sacrifice of guaranteed full arc consistency at the nodes, in 
going from TSRACi to TSACi to RFLi (as discussed in con- 
nection with Fig. 9). 

4. Within a given triple (the i = 1, 2 or 3 forms) of these 
nine algorithms, the i = 2 and i = 3 forms are generally 
better than the i = 1 form, as expected from the way AC2 
and AC3 refine the brute-force approach to arc consistency 
taken by ACl. Surprisingly however, this is not always the 
case. This is seen in the RFLi rows of Table 2 for q 2 6. 
There we see that RFLl is better than RFL2, and hence that 
ACl is better than AC2 at some tree nodes. Presumably in 
other cases, ACl may be better than AC3 also. These 
possibilities have apparently not previously been noted in 
the literature. Appendix I discusses this in more detail. 

5 .  Comparing corresponding i = 2 and i = 3 amongst 
the nine full arc consistency algorithms, we see that generally 
the i = 2 form is better, indicating that AC2 is better than 
AC3. Sometimes, however, AC3 may be better, as seen in 
comparing the RFL2 and RFL3 data of Table 2. Of course, 
our data is for the specific arc revision orderings assumed 

by our versions of AC2 and AC3 above (initial lexographic 
order of arcs, with lists maintained as queues during pro- 
cessing). Other orderings may change the relative ranks of 
AC2 and AC3, and hence of corresponding i = 2 and i = 3 
form algorithms. Arc-revision ordering is a potential source 
of significant efficiency improvement and deserves more 
study. 

6 .  In our hybrid algorithms, less arc consistency per tree 
node means more tree nodes, but may also mean less con- 
straint checks over the whole tree. This is because even 
though there are more nodes, there are less checks per node 
and hence possibly less checks per tree. (Number of checks, 
not nodes, is the more meaningful measure of complexity, 
since for our problems each node besides the root corre- 
sponds to at least one check.) This overall reduction of 
checks per tree does indeed occur as we decrease the degree 
of arc consistency. Both Tables 2 and 3, and the schematic 
plot of Fig. 13, show that the break-even point amongst our 
hybrid algorithms occurs for algorithm FC, after which the 
number of checks rises again for BT. FC is in fact the best 
algorithm in Table 2, and very nearly the best in Table 3, 
being beaten slightly by BM. 

Thus in hybrid algorithms it does not necessarily pay to 
pursue much arc consistency at the tree nodes. And this is 
a strengthening of the observation by other researchers that 
it does not in general pay to pursue degrees of j-consistency 
(Freuder 1978) higher thanj  = 2 at the tree nodes (remember 
that 2-consistency is arc consistency, 3-consistency is path 
consistency). Figure 13 also indicates this deterioration of 
efficiency in pursuing higher degrees of j-consistency for 
j > 2. 

7. There are of course algorithms conceivable with degrees 
of arc consistency between BT and FC or between FC and 
PL. The true minimum complexity (maximum efficiency) 
may very well occur for 'one of these. This has in fact led 
us to the discovery of a new hybrid algorithm better than 
FC, corresponding to Algorithm Y in Fig. 13. It revises at 
a tree node only those arcs (i j )  whose target net node j has 
only a single domain value left. Note that most of our hybrid 
algorithms above call AC'/4(k) at a level-k node, and all 
arcs revised by this call are of this singleton-target-node type. 

Revision of arcs (i j )  which have target nodes j with only 
one value has a triple advantage: (i) filtering of source node 
i is more likely to  occur, (ii) arc ( i  j )  once revised need not 
be revised again, and (iii) arc (j i )  is implicitly revised when 
( i j )  is revised. The arc processing at a tree node in our new 
algorithm is orchestrated as for AC3, but modified to only 
consider singleton-target-node arcs. The modified AC3 also 
differs in that it remembers which arcs have been revised 
along a branch of the tree, so as not to revise again an arc 
already revised, explicitly or implicitly, at an ancestor tree 
node. Each branch through the search tree thus corresponds 
to one directed-arc revision for each undirected arc in the 
overall constraint graph, (3 arc revisions in the case of 
complete graphs on n nodes. We tentatively call this algo- 
rithm TSSTAC3 for Tree Search + Singleton Target Node 
AC3. More details will be given in a future paper. 

8. It is interesting to note that in Table 3 the trends seem 
to indicate that every algorithm in the table (even the grossly 
inefficient TSACl and TSRACl) is better than traditional 
BT for large enough q, In the examples of Table 2, however, 
BT seems to be holding its own except against BJ, BM, and 
FC. This variation with q, and the different effects in the 
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two tables, is no  doubt due at least in part t o  the change 
in constraint looseness that occurs with q, and the different 
way it changes for the two problem classes. We saw in 
Sect. 2 that looseness increases with q for regular q-queens 
problems, but decreases with q for confused q-queens prob- 
lems. How exactly this affects the relative ranking of our 
algorithms as a function of q is far from obvious, however. 
Only mathematical analyses can really clarify such issues (see 
below). 

9. The above point generalizes to the observation that the 
ranking of CSP algorithms depends on the problem instance 
being solved. And even more generally, any empirical study 
such as that here, or those in Gaschnig (1978, 19791, 
Haralick and Elliot (1980), McGregor (1979), and Nadel 
(1986), must always be taken with a grain of salt because 
of the inevitably limited nature of the problem set used. In 
our case, remember that both the q-queens and the confused 
q-queens problems used here are complete, binory CSP 
instances, for which, moreover, each domain size m, and 
the number of variables n are all equal t o  the same v a h e  q 
(see Sect. 2). Moreover, specific instantiation orders, 
constraint-check orders, and arc-revision orders were used 
by the algorithms. Only mathematically derived complexity 
expressions can serve as a truly general basis for comparing 
these algorithms for arbitrary problem instances and pro- 
cessing orders. Mathematical results of the form in Haralick 
and Elliot (1980), Mackworth and Freuder (1985), Nadel 
(19861, and Nudel (1983~1, 6) would thus be desirable for 
the wider range of algorithms considered here. The notion 
of instonce-specificity or  precision of such analytic results, 
so that they capture the variation of complexity as a func- 
tion of individual problem instance, is discussed in Nadel 
(1986, 19886, c )  and Nudel (1983a). 

10. The hybrid algorithms above were all subsumed by 
the meta-algorithm of Fig. 8. Actually, this meta-algorithm 
could be further generalized to subsume the whole spectrum 
of full and partial arc consistency hybrid algorithms, which 
achieve j-consistency for 1 I j i 2 at the tree nodes. An 
analysis of the resulting algorithm would serve as a simul- 
taneous analysis of all its subsumed algorithms, including 
those here. The same holds for the next level of generaliza- 
tion of the meta-algorithm to allow j-consistency for 
1 I j I n at the tree nodes. Whatever the range of j 
allowed, an analysis of such a “continuous-j” meta- 
algorithm provides a convenient theoretical basis for choos- 
ing the best j-consistency/tree search hybrid from a con- 
tinuum of possiblej values. This would be done by finding 
the j value that minimized the complexity of the meta- 
algorithm as a function of j ,  for the problem of interest. 

Such a theory-based and instance-specific approach to  
decision-making has already been used in deciding on  the 
best search order (Nadel 1986; Nudel 1983~) and on the best 
representation (Nadel 19886) in solving constraint satisfac- 
tion problems. It has also been used (Nudel 19830, b )  in 
deciding on the best from a small number of algorithms. 
It has not yet been used, as proposed here, in deciding on 
the best from a parameterized continuum of algorithms. 

1 I .  The hybrid algorithms we have studied, or proposed 
above, apply the samej-consistency procedure(s) at all nodes 
of the search tree. I f  efficiency can benefit from a good 
choice for a common degree of j-consistency at all the nodes 
of the tree, then all the more so if this optimization is allowed 
separately for each level or even for each individual node 

(assuming that the extra decision-making cost does not out- 
weigh the extra cost saved). 

Actually, we already have a special case of this in our 
above algorithms’ avoidance of any arc consistency process- 
ing at the root node. Such processing is not generally cost- 
effective, as discussed near the start of Sect. 5 .  Gaschnig’s 
DEELEV(1) algorithm (1979) extends this notion, avoiding 
arc consistency processing till level i. However, the switch- 
on level, i, must still be decided by the user. Algorithms that 
dynamically decide (level-wise or node-wise) what degree of 
j-consistency processing to d o  where deserve more considera- 
tion. A mathematical analysis should be useful in guiding 
this kind of decision-making. Basically, the decision should 
depend on the chances of attaining useful filtering. This in 
turn depends on what set of constraints a re  involved, their 
tightness, and how large are the current domains of the 
variables to be filtered (source net nodes) and of the variables 
they are to be filtered against (target net nodes). 

12. The hybrid algorithms .studied above all combined 
j-consistency processing ( f o r j  = 2) with the simple search 
tree mechanism of Backtracking. Combining j-consistency 
with Backjump or Backmark should also be possible, as sug- 
gested by Gaschnig (1979, p. 172). And Backmark and Back- 
jump may themselves perhaps be combined, as suggested 
in Sect. 3.3 above. Such algorithms deserve attention. 

The above CSP algorithms, and suggested improvements, 
far from exhaust all possibilities. Seidel (1981) has devel- 
oped an algorithm that is apparently of a totally new type. 
Other important new directions have also been taken by 
Dechter and Pearl (1987, 1988), Dechter and Dechter (1987), 
and Dechter (1986, 19870, 6). And parallel approaches to 
solving constraint satisfaction problems are opening up new 
possibilities (Freuder and Quinn 1985; McCall el al. 1985; 
Kasif 1986). Besides improving algorithms, considerable 
attention has also been given to formulating and solving 
alternative versions of the problem. Fuzzy, probabilistic, 
inexact, and weighted versions of CSP have been studied 
(Shapiro and Haralick 1981; Faugeras and Berthod 1981; 
Rosenfeld et al. 1976). The latter work is particularly rele- 
vant for machine vision because the image being analyzed 
usually is noisy to some extent. Thus with ( i )  finding new 
applications, (ii) understanding existing algorithms better, 
both empirically and theoretically, (iii) developing new algo- 
rithms, and ( iv)  generalizing the problem and its algorithms, 
research on the Constraint Satisfaction Problem will no 
doubt remain a central endeavor in artificial intelligence for 
considerable time to come. 
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Appendix I. More-detailed examples 
To avoid losing sight of the forest for the trees, our hybrid 

algorithm traces above (Figs. 10-12) did not show the actual 
constraint checks that were performed. The tree search algo- 
rithm traces (Figs. 1 and 2) did show the constraint checks, 
but not their order nor the values of important variables 
which controlled the search. (The only exceptions were in 
connection with the E nodes in Figs. 1 and 12, where the 
constraint check sequencing was explicitly given, as it was 
also in connection with Fig. 6.) 

This avoidance of detail allowed the main features of our 
algorithms to be more clearly exposed, but at the cost of 
conveying a possibly incomplete understanding of what was 
really going on. In this appendix we fill in these details. 
Earlier traces, and some new ones, are given, showing the 
sequencing of individual constraint checks. For the tree 
search algorithms BJ and BM, the effect of their control 
variables (faildepth, returndepth, MaxCheckLevel, Min- 
BackupLevel) is also discussed in more detail, and their 
values are shown in the corresponding traces. 

In all figures below, individual constraint checks are 
denoted by 5-tuples as described in Sect. 4 in connection with 
Fig. 6. Specifically, the 5-tuple ABCDE denotes that instan- 
tiation zA = B was checked against zc = D, and that the 
result was E, where E can be either T for true or F for false, 
indicating respectively that the corresponding binary con- 
straint was found to be satisfied or  violated by the pair of 
instantiations. This convention, and most others for the BT, 
BJ, and BM traces below, are from Gaschnig (1979). 

Tree search algorithms 
Figure A1 gives traces for BT, BJ, and BM solving con- 

fused 4-queens. These are more-detailed versions of the 
graphical traces which appeared above in Figs. 1 and 2. For 
ease of comparison, the block of processing at a node is 
labeled before with “L start” and after with “L end,” where 
L is the same letter as used for that node in Figs. 1 and 2. 
Corresponding node starts and ends are aligned in the three 
traces here. The resulting gaps left in the BJ trace emphasize 
the instantiation and node savings of this algorithm com- 
pared to BT. The lack of such gaps in the BM trace 
emphasize that BM carries out all instantiations, and gen- 
erates all nodes, that BT does. Remember, BJ avoids checks 
by avoiding instantiations, but cannot save checks once a 
given instantiation is made. BM cannot avoid instantiations, 
but may save checks by avoiding them at the instantiations 
it does make. In Sect. 3.3 these were distinguished as “hor- 
izontal” versus “vertical” savings respectively. 

In Fig. A l ,  the constraint checks ABCDE corresponding 
to a given instantiation zA = B are placed on a single line 
in their order of execution, preceded by the pair AB. Thus 
the line 34 3412T 3421F occurring for algorithm BT means 
that after setting z3 = 4, this instantiation was checked 
against past instantiation z1 = 2 and found to satisfy the 
corresponding constraint, then it was checked against 
22 = 1 and found to violate the constraint. Note that all 
the check 5-tuples in such a line start with the same AB as 
precedes the line, and that the third component increases 
from 1 by 1 in successive 5-tuples, since the three algorithms 
check against past variables in the order zl, z2, z3, .... 

Lines of our traces here are indented right in proportion 
to the level of their node in the tree. The traces thus corre- 
spond to trees “lying on their side” with the root to the left. 
Top-to-bottom traversal in Figs. 1 and 2 corresponds to left- 
to-right traversal in Fig. A l .  And left-to-right traversal in 
the former traces corresponds to top-to-bottom traversal in 
the latter. 

For the purpose of comparison, at the beginning and end 
of the traces in Fig. A l ,  two complexity measures are given 
in the form (x:y). x is the cumulative number of constraint 
checks performed to the end of the corresponding line’s 
checks. y is the number of nodes that have been generated 
(started, though not necessarily completed) by the algorithm 
to that stage. 

Backtracking 
The BT trace of Fig. A1 makes explicit the depth-first 

order in which BT traverses the search tree shown graphically 
in Fig. 1. In particular, note that the order of constraint 
checking at node E, and the interleaving of subnode genera- 
tion, is as discussed in Sect. 3.1. In the trace of Fig. A7 
below, we contrast this order with that of revise-based BT. 
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FIG. Al.  Detailed traces of BT, BJ, and BM solving confused 4-queens, for the same subtrees as shown graphically in Figs. 1 and 2. 

Backjumping 
The BJ trace in Fig. A1 is similar to that for BT. How- 

ever, lines of the BJ trace include an additional one or two 
numbers in square brackets. The first is the value of the local 
returndepth variable before, and just after, the correspond- 
ing instan!iation took place. The second number in square 
brackets occurs only on lines where the constraint checking 
turned up an inconsistency, or on a line just before a solu- 
tion is found. I t  is the value assigned to faildepth after that 

line's constraint checking. This value equals the number of 
checks appearing on the corresponding line of the trace. As 
required by BJ, the first of these two values (returndepth) 
on a line is the running maximum over the second of these 
values (faildepth) on previous lines - previous instantia- 
tions - for the same node, and over values returned by 
earlier recursive calls to BJ from that node, if there were any. 

Consider node D of the BJ trace, for example, where z4 
is being instantiated. The local value of returndepth at that 
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node starts with value 0, and then successively takes on 
values 1, 2, 2, 2 after the four assignments of faildepth to 
1,  2 ,  1, and 1, corresponding to failures of the z4 values 
against the instantiations for past variables 21, z2, 21, and 
z1 respectively. (The assignment of returndepth to  its final 
value at a node is not recorded in the trace. Its value is easily 
determined though, as the maximum of the returndepth and 
faildepth values appearing on the line for the last instantia- 
tion at that node.) 

On exiting node D, returndepth has value 2. On return 
to the parent k = 3 node C, faildepth is set to this value 
of 2, and the test faildepth < k succeeds. Node C i s  therefore 
immediately exited, avoiding the constraint checks corre- 
sponding to instantiations z3 = 3 and z3 = 4. Node C 
returns to set faildepth to 2 at its parent k = 2 node B. At 
this latter node, the test faildepth < k fails; the backjump- 
ing thus stops and the next value, z2 = 2, is tried at  
node B. A similar process occurs on return from node H ,  
but note the avoidance then not onIy of instantiations and 
their checks in the parent node G but also the avoidance 
of the whole node I (as seen graphically in Fig. 1.) 

Backmarking 
As discussed in Sect. 3.3, constraint checks done by BT 

are avoided by BM in two ways, which we called type (a) 
and type (b) savings. Both types of savings are achieved by 
use of BM’s two array variables MinBackupLevel and Max- 
CheckLevel. In terms of these variables, the reasoning 
behind these savings is as follows: 

(a) MaxCheckLevel[k, v] < MinBackupLevel[k] means 
that since the last node at which BM checked zk = v 
against instantiations of the past variables z I ,  z2, ..., BM 
has not yet backed up to  the levelp = MaxCheckLeveRk, v] 
of the deepest past variable zp reached during that check- 
ing. It also means that the check of z k  = v failed then 
against the value of z,. This is because it is always true that 
MinBackupLevel[k] < k,  and this together with MaxCheck- 
Level[k, v] < MinBackupLevel[k] implies t ha t  
MaxCheckLevel[k, v] < k - 1. This means that zk = v 
failed when it was last tested, as discussed for the analogous 
integer variable MaxCheckLevel of algorithm BJ2 in 
Sect. 3.2. Since the last time it was tested, Zk = v failed 
against the value of z, and we have not yet backed up to 
level p to change the value of z,, then z k  = v will again fail 
against the unchanged value of z, i f  tested. Thus 
MaxCheckLevel[k, v] < MinBackupLevel[k] means that we 
can avoid all checks of Zk = v against past variables and 
go on to the next instantiation of z k .  This saves the p 
checks that BT would otherwise have performed. 

(b) MaxCheckLevel[k, v] 2 MinBackupLevel[k] means 
that since the last node at which BM checked zk = v 
against instantiations of the past variables z I ,  z2, ..., BM 
has backed up to a level q = MinBackupLevel[k] which is 
equal to, or shallower than, the level p = MaxCheck- 
Level[k, v] of the deepest past variable z, reached during 
that checking. The check of z k  = v against the value of i, 
may or may not have succeeded, but the checks against the 
instantiations of zI to zp- must have succeeded, else the 
checking of zk = v could not have reached zp. Thus checks 
now against the past instantiations of zI to zq- will again 
succeed because we have since backed up only to level q I. p 
so that these past instantiations are still unchanged. The 
check of z k  = v against z ,  and deeper variables may fail, 

however, because they have since changed their values during 
backup. Thus MaxCheckLevel[k, v] I MinBackupLevel[kl 
means that we may avoid the q - 1 checks of z k  = v 
against zlr  zz, ..., 2,- I ,  which are guaranteed to succeed, 
and need only check zk = v against the instantiations of 2, 
to 2 k - l  (stopping of course at  the first failure, i f  one 
occurs). 

In the BM trace of Fig. A l ,  constraint-check savings of 
type (a) are indicated by aT and aF symbols, the T and F 
indicating respectively that the corresponding check was one 
that would have succeeded or failed. (The aT and aF symbols 
correspond respectively to the grey circled check marks and 
the grey circled crosses in Fig. 2.) Type (b) check savings 
are indicated by bT symbols in the trace, the T denoting that 
these checks were each destined to succeed. (The bT symbols 
correspond to the grey squared check marks in Fig. 2.) 

The BM trace also includes MaxCheckLevel and Min- 
BackupLevel values to clarify the use of these arrays. A line 
of the trace corresponding to an instantiation zA = B, after 
giving the initial juxtaposed pair AB as in the other traces, 
also includes a pair [X:Y] where X and Y are respectively 
the values MaxCheckLevel[A, B] and MinBackupLevel[Al 
before the constraint checking for that instantiation. For 
example, in node F of the BM trace, the [1:2] in the line 43 
[1:2]N aF indicates that initially MaxCheckLevel[4, 31 = 1 
and that MinBackupLevel[4] = 2 (both of which can be seen 
to be correct from a look at the preceding part of the trace). 
The [X:Y] pair is followed by a (redundant) Y or  N, indicat- 
ing respectively whether the BEGIN-END block of BM was 
actually entered or not. An N corresponds to type (a) sav- 
ings. A Y may correspond to type (b) savings, or to no 
savings. 

For lines with a Y, a final number in square brackets 
appears giving the value assigned to MaxCheckLevelIA, B] 
after the constraint checking for that instantiation. These 
values are the same as the corresponding faildepth value in 
the BJ trace, where one is shown. For both algorithms, this 
value is the number of checks appearing in the corresponding 
line of output of the trace (including possibly type (b) 
avoided checks in the case of BM). 

Just before completing any node, BM updates the Min: 
BackupLevel array to reflect the backup that is about to 
occur. The trace shows this update in the form ABCD - > 
EFGH, where ABCD and EFGH are the array values before 
and after update respectively. The updates are shown on a 
separate line following the last instantiation at  each node. 

Hybrid tree searchlare consistency algorithms 
This section shows the detailed traces for most of our 

hybrid algorithms of Sect. 5. For all but the revise-based 
BT algorithm, the traces show the processing at a single node 
of the search tree for 5-queens: the level k = 2 node having 
past instantiation zI = 2. This is the 5-queens analog of the 
4-queens node which was treated above in Fig. 10, and which 
was extended to the whole half-tree in Fig. 11. Revise-based 
BT is also traced, but using confused 4-queens as the exam- 
ple. In each case, the trace is at the detailed level of individ- 
ual constraint checks performed. 

Algorithms FC, PL, FL, RFLI,  RFLZ, and  RFL3 
Figures A2-A6 give the traces respectively for algorithms 

FC, PL, FL, RFLI, and RFL3 at the zI = 2 node for solv- 
ing 5-queens. Each trace shows the domain array (as con- 
tained in array parameter d of the corresponding algorithms) 
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FIG. A3. The z ,  = 2 node when solving 5-queens by PL(k) = TS(k) + AC%(k) + AC'/3(k). 
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FIG. A6. The zI = 2 node when solving 5-queens by RFL3(k) = TS(k) + AC'/4(k) + AC3(k). 
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TABLE Al. Statistics for solving 5-queens by RFLi, i = 1, 2, and 3 

Nodes Checks for z ,  = 2 node Checks Algorithm 
RFLi = TS + ACY4 + ACi AC% ACi for problem for problem 

RFLl = TS + AC% + ACI 20 112 915 38 
RFLZ = TS + AC% + AC2 20 49 595 38 
RFL3 = TS + AC94 + AC3 20 60 636 38 

TABLE A2. Statistics for solving confused 6-queens by RFLI‘, i = I ,  2, and 3 

Checks Nodes Checks for z ,  = 2 node Algorithm 
RFLi = TS + ACj/4 + ACi AC% ACi for problem for problem 

RFLl = TS + AC% + ACl 30 52 792 39 
RFLZ = TS + AC94 + AC2 30 67 806 39 
RFL3 = TS + AC% + AC3 30 35 696 39 

are listed left to right in the order of their performance. The 
(x:y) pair shown at  the end of each node’s processing gives 
the number of checks performed, and the number of nodes 
generated, to that stage. 

Note that extra information is added to the RFL3 trace 
of Fig. A6. Following each arc revision by AC3 in which 
a domain-value deletion actually occurred, the figure gives 
the current value of the arc-list Q, the value of the incremen- 
tal arc-list Q-extra to be post-unioned onto Q due to the 
deletion, and the resulting new value of the list Q. 

From the traces and associated statistics shown, we see 
again the ineffectiveness of increasing the amount of arc con- 
sistency processing at a node. (Or in terms of the order of 
presentation used in the body of the paper, we see the effec- 
tiveness of reducing the amount of processing at a node.) 
PL removes no  more domain values at our node than does 
FC. FL removes three more than PL. RFLl and RFL3 
remove one more value than FL. But large amounts of extra 
constraint checks are expended at the node by the successive 
algorithms to achieve these small gains. Over the whole tree, 
the extra filtering at nodes does result in some small decreases 
in the total number of nodes in the tree. The total number 
of checks, however, certainly does not drop, but increases 
significantly. Despite having the most nodes, we see again 
that FC, with the least amount of processing per node of 
the algorithms in Figs. A2-A6, has the least checks for the 
whole tree. 

Owing to  space restrictions we d o  not present a trace of 
RFLZ analogous to those for RFLl and RFL3. However, 
the corresponding statistics for the z ,  = 2 node and for the 
whole tree are given in Table A l ,  where they are compared 
with the statistics seen above for RFLl and RFL3. 

We see that for our 5-queens node, AC2 is more efficient 
than AC3, which is more efficient than A C l ,  with corre- 
sponding order for RFL2, RFL3, and RFLl over the whole 
tree. Of course, as will always be the case for any problem, 
the three algorithms generate the same number of nodes 
because, at each corresponding node, they all achieve the 
same state of full arc consistency. (Note the same final 
domain array in Figs. A5 and A6). 

Though AC2 is preferable to AC3 for the above example 
and for q-queens more generally, as seen in Table 3, this 
is certainly not always the case, as seen in Table 2 for con- 
fused q-queens. Table 2 in fact shows that not only AC3 

but even ACl  can be preferable to AC2 - a possibility 
apparently not previously noted in the literature. A specific 
example where we see this is the z1 = 2 node for confused 
6-queens. For that node and problem, the analog of 
Table A1 is given in Table A2. 

Revise-based B T 
The action of revise-based BT (Sect. 5.2.4) on  the above 

5-queens node is straightforward and is therefore not given 
here. Instead, we give in Fig. A7 the trace of revise-based 
BT solving confused 4-queens. In particular, the figure is 
a more-detailed view of the processing given graphically in 
Fig. 12. The detailed trace here also provides the counter- 
part t o  the trace given in Fig. A1 for regular BT. As in 
Fig. A1 for ease of comparison, the block of processing at  
a node is labeled before with “L start” and after with 
“L end,” where L is the same letter as used for that node 
in Fig. 12 (and Figs. 1 and 2). 

In Fig. A7, constraint checks for a given node all appear 
on the same line in their order of execution. Vertical lines 
are used to separate the checks corresponding to successive 
arc revisions at  a node. The sequence of arc revisions, and 
associated number of checks, is of course that shown in 
simplified form using arrows, and associated numbers, at  
the corresponding nodes of Fig. 12. 

Note that as required, the trace here has exactly the same 
43 checks as shown for regular BT in Fig. A l ,  but that the 
order is in general different at  corresponding nodes. In par- 
ticular, the order of checks at  a node in Fig. A7 is that 
obtained from a column-wise ordering of the checks at the 
corresponding node in Fig. A l .  This is the same “horizon- 
tal” versus “vertical” difference in ordering of constraint 
checks as noted earlier for the individual node E in com- 
paring regular and revise-based BT in parts (b) and (c) of 
Fig. 12. 

Note also that as required, the same 8 nodes are gener- 
ated, in the same order, by the two versions of BT. As seen 
in the figure, revised-based BT proceeds in D-first manner 
(Horowitz and Sahni 1978) and does not interleave subnode 
generation till all constraint checking is completed at a parent 
node. On the other hand, in Fig. A1 we saw that regular 
BT proceeds in true depth-first manner, interleaving sub- 
node generation between constraint checking at a parent 
node. This difference in interleaving is why we could place 
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... (37: 7) 
B start 2112T 2212T 2312T 2412F B end (41 : 8) 

C start 3112F 3212T 3312F 3412T I 3221T 3421F C end 

E start 3112F 3212T 3312F 3412T I 32221 3422F E end 

G start 3112F 3212T 3312F 3412T I 3223T 3423T G end 

D start 4112F 4212T 4312F 4412F I 4221F D end 

F s t a r t  4112F 4212T 4312F 4412F I 4222T I 4232T Solut ion = 2222 F end 

H start 4112F 4212T 4312F 4412F I 4223F H end 
I start 4112F 4212T 4312F 4412F I 4223F I end (80:15) 

FIG. A7. Trace of subtree for solving confused 4-queens by revise-based BT(k) = TS(k)  + AC%(k). 

all checks for a given node on a single line in the trace of 
Fig. A7, whereas in Fig. A1 only checks for a given instan- 
tiation at a node could appear on the same line. 

Appendix 11. Programming conventions 
Our algorithms above are written in a pseudocode 

modeled essentially on Pascal. Using pseudocode has the 
advantage of brevity but the disadvantage of potentially 
introducing ambiguities. The following points are intended 
to clarify the programming conventions used. 

Due to their expressive power, we have made extensive 
use of FOR-WHILE loops of the form 

FOR v : = lower TO upper WHILE condition DO body 

This kind of loop does not exist in Pascal, but is modeled 
on those in Algol and Sail (Stanford Artificial Intelligence 
Language). We are assuming that such a loop works by first 
initializing the loop variable v to the integer value “lower.” 
i f  (i) this value does not exceed “upper” and (ii) the Boolean 
“condition” expression evaluates to true, then the body of 
the loop is executed. On each subsequent cycle the loop 
variable is incremented by one, after which the same two 
tests must be passed before performing the loop body again. 
The loop variable is assumed to retain its most recent value 
after termination of the loop. Thus it terminates with a value 
(possibly even upper + 1) one greater than during the last 
completed loop cycle. This is the reason for having to sub- 
tract 1 from p in algorithms BJ and BM to obtain the value 
at the last completed FOR cycle. 

As in Pascal, reference parameters are preceded in a 
formal parameter list by the word VAR. For clarity, each 
formal parameter that needs it gets its own preceding VAR 
qualifier, rather than covering several reference parameters 
with one VAR as allowed in Pascal. Care has been taken 
to include a formal reference parameter for each variable 
that is modified and passed back by a subroutine, rather 
than allowing updates as side effects. This makes for clearer 
code and also allows our subroutines to be used in a lex- 
ically scoped language such as Pascal or Common Lisp, 
without the need to physically include their definition in 
every (sub)program that uses them. 

For brevity, a Return(x) or Return statement is some- 
times used respectively in a function or procedure (see the 
two versions of BJ in Sect. 3.2), although these are not avail- 
able in standard Pascal. If such explicit returns are not used 
in a function, the normal Pascal mode of return applies 
where the returned value of the function is that which is last 
assigned to the function name before exit (as in function 
check of Sect. 2). 

As in Pascal, semicolons are used to divide between suc- 
cessive statements, but need not appear just to terminate 
a statement when there is not an immediate successor 
statement. 

Comments are delimited by brace symbols {, ), and com- 
ments are allowed anywhere, including in the header line 
of a subroutine declaration. 

For brevity of code, type declarations for variables (but 
not functions) are left implicit or, if necessary, are described 
in the text. Also for brevity, the BEGIN that precedes the 
body of a subroutine in Pascal is left out. 

We have assumed the language does its own garbage 
collection. (Pascals usually don’t. Lisps usually do.) All arc 
consistency procedures of Sect. 4 and all the hybrid algo- 
rithms of Sect. 5 which use them are based ultimately on 
the revise procedure which stores the domain lists in an 
array d such that d[i] contains the current version of domain 
dz, of variable zi. However, as mentioned in Sect. 4, since 
only deletions are performed on the domain lists, an additive 
version of revise is possible for which it suffices to use an 
array to implement the domain list d[i]. Using this approach, 
garbage collection becomes unnecessary for domain filter- 
ing. However, besides simple deletion of values from domain 
lists, arc consistency procedures AC2 and AC3 also require 
more complicated manipulations on their arc lists Q, 
Q-extra, Ql ,Q2,  and Q2-extra. Thus for AC2 and AC3 
and the algorithms which use them, true dynamically allo- 
cated lists will be convenient for the arc lists. In that case 
in a language such as Pascal, algorithms AC2 and AC3 and 
their utilities (e.g., pop) will need to be augmented to include 
explicit disposal of unneeded nodes. Don’t forget on exit 
of AC2 and AC3 to dispose of lists Q, Q1, and 42 ,  since 
they can be non-nil at that point if early termination has 
occurred due to an empty-domain = True condition. 


