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Maintaining Arc Consistency (MAC)

Achieve (generalised) arc consistency (AC3, etc).
If we have a domain wipeout, backtrack.

If all domains have one value, we're done.

Pick a variable (using a heuristic) with more than one value,
then branch:
m Try giving it one of its possible values (using a heuristic), and
recurse.
m If that failed, reject that value, pick a new value, and try again.
m If we run out of values, backtrack.
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Search as a Tree

m Circles are recursive calls, triangles are 'big’ subproblems.
m Heuristics determine the ‘shape’ of the tree.
m MAC is like Depth-First Search (DFS).
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Variable-Ordering Heuristics

m Variable-ordering heuristics determine the number of children
at each level of the search tree.

m We have quite good general-purpose variable-ordering
heuristics:

m Smallest domain first (but not for 0/1 encodings).
m Most constrained first.
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Value-Ordering Heuristics

m Value-ordering heuristics determine the paths taken through
the search tree.

m Designing value-ordering heuristics can be harder. ..

m For MAC, value-ordering heuristics only matter for satisfiable
instances, and for optimisation problems.
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Subgraph Isomorphism
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Subgraph Isomorphism
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Subgraph Isomorphism

m A variable for each vertex in the pattern graph.

m Smallest domain first.
m Tiebreak on highest degree first.

m Domains are target vertices.
m Highest degree to lowest.
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Subgraph Isomorphism
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Subgraph Isomorphism
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Heuristics and Discrepancies

m If our value-ordering heuristics are perfect, and an instance is
satisfiable, we walk straight to a solution by going left at every
level.

m If an instance is unsatisfiable, perfect variable-ordering
heuristics would give the smallest possible search tree.

m But heuristics aren’t perfect. . .

m We call going against a value-ordering heuristic choice a
“discrepancy”.
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Two Claims About Value-Ordering Heuristics

Limited Discrepancy Search

William D. Harvey and Matthew L. Ginsberg
CIRL
1269 University of Oregon
Eugene, Oregon 97403
US.A.
ginsberg@cs.uoregon.edu

The total number of discrepancies to find a solution is usually
low (our value-ordering heuristics are usually right).

Value-ordering heuristics are most likely to wrong higher up in
the tree (there is least information available when no or few
choices have been made).
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So What?

m If these claims are true, depth-first search is a bad idea: we're
committing entirely to the first decision made, which is most
likely to be wrong.
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Limited Discrepancy Search

m First, search with no discrepancies.
m Then search allowing one discrepancy.

| First try one discrepancy at the top.

B Then try one discrepancy at the second
level.

B Then try one discrepancy at the third
level.

u

m Then search allowing two discrepancies.

B At the top, and at the second level.

B Then at the top, and at the third level.

[ [

B Then at the second level and the third
level.

|
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Figure 2: Execution trace of LDS.
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Completeness

m Complete: yes means yes, no means no.

m Incomplete: yes means yes, no means maybe.

m LDS is quasi-complete: if the total number of
discrepancies is allowed to go high enough, it
is complete.

m Discrepancy searches do more total work if
there is no solution, and make optimality
proofs longer.
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Non-Binary Trees?

m We can rewrite our search tree to be binary. Instead of
branching on each value for a variable in a loop, pick a variable
and a value, and branch twice:

m Yes, the variable takes that value.
m No, the variable does not take that value.

m But this means that giving the 10th value to a variable counts
as 9 discrepancies. Is this good or bad?

m Alternatively, we can treat the left branch as no discrepancy,
and all right branches as discrepancies.
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Using LDS?

[gecode-users] Important: Licensing
information regarding LDS

Christian Schulte
Sat Oct 9 20:35:51 CEST 2010

* Previous message: [gecode-users] Gecode 3.4.2 released
* Messages sorted by: [ date ] [ thread ] [ subject ] [ author

Dear all,

We have been informed by one of the patent holders that LDS (Limited
discrepancy search) is patented in the United States of America. While this
does not pose an issue per se for us as developers (the MIT license under
which Gecode is released makes that clear), it does to you as users.

After weighing the merits of offering LDS in Gecode with the effort for
obtaining a non-commercial license, we have decided to remove LDS from
Gecode. Gecode 3.4.2 removes LDS.

This decision just reflects our current understanding of how useful LDS is
compared to any effort regarding licensing.

If you feel strongly about having LDS for Gecode available, we might make it
available as an additional contribution with an explicit statement that it
is patented in the United States of America. The patent holder has informed
me that he is willing to give a non-commercial Llicense to anybody who seeks
one.

Please also take this information into account when using versions of Gecode
before 3.4.2: you need to have a license to use LDS in the United States of
America.

Christian
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Depth-Bounded Discrepancy Search

Depth-bounded Discrepancy Search

Toby Walsh*
APES Group, Department of Computer Science
University of Strathclyde, Glasgow G1 1XL. Scotland
twlcs.strath.ac.uk

m If the second claim is important, m m m
why not emphasise it more?

m Depth-bounded discrepancy
search considers k discrepancies,

but only at depth up to kK — 1.

3rd iteration 4thiteration

Figure 2: DDs on a binary tree of depth 4.
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Depth-Bounded Discrepancy Search

function PROBE(node,k)

fanction Dps if leal(node) then return (goal-p(rnode), 0)

fo]:)(?at if k= 0 then
) {lﬂml depth) = PROBE(root, k) (goal, depth) = PROBE(le ft(node),0)
j ];+'1 ’ return (goal,1 + depth)

if k=1 then
(goal, depth) = PROBE(right(node),0)
return (goal, 1 + depth)
if k> 1 then
{goal, depth,) = PROBE(le [{(node),k — 1)
if goal; then return (goaly,1-+ depth,) else
(goaly, depth,) = PROBE(right(nodc),k — 1)
return (goals,1 + max(depth,, depth,))

until goal or k > depth
return goal
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DDS for Subgraph Isomorphism
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Restarts?

Value Ordering, Discrepancies, and Restarts for Subgraph Algorithms*

Anonymous and Anonymous and Anonymous
Somewhere
Some Email Address
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Restarts?

m Run for a bit, then restart and try something else.

m Need to change something when we restart: what about just
using a random value-ordering heuristic?
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Restarts?
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Restarts?

Chaff: Engineering an Efficient SAT Solver

Matthew W. Moskewicz ‘Conor F. Madigan Ying Zhao, Lintao Zhang, Sharad Malik
Department of EECS Department of EECS Department of Electrical Engineering
UC Berkeley MIT Princeton University

i.princeton.edu i it odu {yingzhao, lintacz, sharad)@ee princeton.edu

m Use nogood recording to avoid revisiting parts of the search
space?
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Restarts?
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Restarts?

m Select a vertex v/ from the chosen domain D, with probability

odeg(v’)

A
p(V ) - EweDv odeg(w)
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Restarts?
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Restarts?
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This is Not The Exam Question

What are the two assumptions regarding value ordering heuristics
which underlie limited discrepancy search?

Why are discrepancy searches a bad choice if instances are expected
to be unsatisfiable?

When using MAC, what effect do value ordering heuristics have on
unsatisfiable instances?
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