
Parallel Constraint Programming

Ciaran McCreesh and Patrick Prosser



Motivation

This laptop: 4 cores.

Modern workstation or server: 32 cores per machine.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 1 / 19



Parallelism and Concurrency

Concurrent: lots of stuff happening at once (GUIs, operating
systems, networking).

Parallel: our hardware can do more than one thing at once
(multi-core, multi-machine, vector processing, GPUs).

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 2 / 19



Goals

1 Make slow things run faster.

If “today’s list of parcels to be delivered” isn’t available until
5am, and producing “today’s delivery schedule” takes twelve
hours, we’re in trouble. If it takes one hour, we’re OK.
If it takes one second, we don’t care if we can reduce it to one
tenth of a second. (Or maybe we do. What if we’re producing
results interactively?)

2 Deal with bigger or harder problems in “the amount of time we
have”.

We have a fixed amount of time (say, a week) to produce exam
timetables. If the University offers more courses, or more
flexibility in course choices, we need to solve a larger and harder
problem in the same amount of time.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 3 / 19



Unfortunately. . .

Parallel constraint programming is hard.

Most of this lecture is about techniques that don’t usually work
very well in practice. The goal is to understand why these
techniques fail.

We’ll eventually see some techniques that usually work fairly
well, most of the time, if you don’t investigate too closely.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 4 / 19



Attempt One: Parallel Optimisation?

An optimisation problem is just a sequence of decision
problems.

What if we run each decision problem on a separate processor?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 5 / 19



Attempt One: Parallel Optimisation?

% graph colouring optimisation problem

int: n; % number of vertices

array [1..n, 1..n] of 0..1: A; % adjacency

array [1..n] of var 1..n: v; % v[i] = j means vertex i has colour j

% adjacent vertices must have different colours

constraint forall(i, j in 1..n where i < j /\ A[i, j] = 1)(v[i] != v[j]);

% objective is to minimise chi

var 1..n: chi;

constraint chi = max(v);

% make a copy of v, sorted to have highest degree first

array [1..n] of var 1..n: sorted_v = sort_by(v, [-sum(row(A, w)) | w in 1..n]);

% smallest domain first , tie -breaking on highest degree , lowest colour first

solve :: int_search(sorted_v , first_fail , indomain , complete) minimize chi;

% symmetry: colours are equivalent. make colours appear in order in sorted_v.

include "value_precede_chain.mzn";

constraint value_precede_chain ([i | i in 1..n], sorted_v );

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 5 / 19



Attempt One: Parallel Optimisation?

$ mzn -gecode colOpt.mzn g80.dzn -a -s

v = array1d (1..80 ,[10, 12, 2, 13, 1, 4, 10, 2, 11, 2, 7, 7, 3, 14, 6, 13, 3, 4, 11, 5, 12, 4, 5, 12, 8, 14, 9, 3, 8, 14, 6, 9, 13, 4, 14, 6, 9, 1, 5, 8, 3, 13, 2, 7, 4, 10, 14, 10, 11, 4, 5, 8, 7, 15, 6, 12, 12, 9, 4, 8, 2, 5, 9, 7, 12, 15, 1, 8, 3, 10, 16, 1, 9, 11, 15, 1, 3, 10, 7, 16]);

chi = 16;

----------

v = array1d (1..80 ,[10, 12, 2, 13, 1, 4, 10, 2, 11, 2, 7, 14, 3, 15, 6, 13, 3, 4, 11, 5, 12, 4, 5, 12, 7, 7, 9, 3, 8, 12, 6, 7, 13, 4, 15, 6, 9, 1, 5, 8, 3, 13, 2, 11, 5, 10, 7, 10, 4, 4, 5, 8, 7, 14, 6, 15, 12, 9, 4, 8, 2, 5, 9, 14, 13, 14, 1, 8, 3, 10, 9, 1, 15, 11, 12, 1, 3, 10, 7, 15]);

chi = 15;

----------

v = array1d (1..80 ,[12, 2, 2, 14, 1, 4, 10, 12, 10, 7, 7, 7, 3, 5, 6, 12, 3, 4, 12, 5, 13, 4, 11, 13, 8, 2, 9, 3, 8, 13, 6, 9, 12, 4, 14, 6, 9, 1, 10, 8, 3, 10, 2, 7, 4, 11, 7, 11, 11, 4, 5, 8, 7, 4, 6, 13, 13, 9, 10, 8, 2, 5, 9, 5, 14, 14, 1, 8, 3, 10, 13, 1, 9, 11, 2, 1, 3, 14, 7, 14]);

chi = 14;

----------

v = array1d (1..80 ,[4, 7, 2, 8, 1, 11, 12, 6, 13, 10, 8, 4, 3, 13, 4, 4, 3, 4, 13, 5, 1, 12, 5, 7, 9, 11, 12, 3, 6, 13, 6, 2, 10, 4, 11, 6, 8, 7, 5, 10, 3, 2, 7, 10, 5, 4, 13, 11, 13, 6, 5, 9, 10, 8, 2, 12, 7, 9, 12, 9, 6, 5, 2, 7, 11, 8, 1, 9, 3, 13, 12, 1, 4, 9, 8, 1, 3, 11, 10, 2]);

chi = 13;

----------

==========

%% runtime: 6:32.621 (392621.621 ms)

%% solvetime: 6:32.595 (392595.935 ms)

%% solutions: 4

%% variables: 81

%% propagators: 1601

%% propagations: 1437165314

%% nodes: 13502114

%% failures: 6851645

%% restarts: 0

%% peak depth: 72

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 5 / 19



Attempt One: Parallel Optimisation?

% graph colouring decision problem

int: n; % number of vertices

array [1..n, 1..n] of 0..1: A; % adjacency

int: k; % number of colours allowed

array [1..n] of var 1..k: v; % v[i] = j means vertex i has colour j

% adjacent vertices must have different colours

constraint forall(i, j in 1..n where i < j /\ A[i, j] = 1)(v[i] != v[j]);

% make a copy of v, sorted to have highest degree first

array [1..n] of var 1..n: sorted_v = sort_by(v, [-sum(row(A, w)) | w in 1..n]);

% smallest domain first , tie -breaking on highest degree , lowest colour first

solve :: int_search(sorted_v , first_fail , indomain , complete) satisfy;

% symmetry: colours are equivalent. make colours appear in order in sorted_v.

include "value_precede_chain.mzn";

constraint value_precede_chain ([i | i in 1..k], sorted_v );

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 5 / 19



Attempt One: Parallel Optimisation?

$ mzn -gecode colDec.mzn g80.dzn -s -Dk=2

===== UNSATISFIABLE =====

%% runtime: 0.013 (13.011 ms)

%% solvetime: 0.000 (0.082 ms)

%% solutions: 0

%% variables: 80

%% propagators: 0

%% propagations: 0

%% nodes: 0

%% failures: 1

%% restarts: 0

%% peak depth: 0

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 5 / 19



Attempt One: Parallel Optimisation?

$ mzn -gecode colDec.mzn g80.dzn -s -Dk=3

===== UNSATISFIABLE =====

%% runtime: 0.023 (23.387 ms)

%% solvetime: 0.000 (0.192 ms)

%% solutions: 0

%% variables: 80

%% propagators: 0

%% propagations: 70

%% nodes: 0

%% failures: 1

%% restarts: 0

%% peak depth: 0

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 5 / 19



Attempt One: Parallel Optimisation?

$ mzn -gecode colDec.mzn g80.dzn -s -Dk=4

===== UNSATISFIABLE =====

%% runtime: 0.014 (14.702 ms)

%% solvetime: 0.000 (0.527 ms)

%% solutions: 0

%% variables: 80

%% propagators: 1525

%% propagations: 186

%% nodes: 3

%% failures: 2

%% restarts: 0

%% peak depth: 1

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 5 / 19



Attempt One: Parallel Optimisation?

$ mzn -gecode colDec.mzn g80.dzn -s -Dk=80

v = array1d (1..80 ,[10, 12, 2, 13, 1, 4, 10, 2, 11, 2, 7, 7, 3, 14, 6, 13, 3, 4, 11, 5, 12, 4, 5, 12, 8, 14, 9, 3, 8, 14, 6, 9, 13, 4, 14, 6, 9, 1, 5, 8, 3, 13, 2, 7, 4, 10, 14, 10, 11, 4, 5, 8, 7, 15, 6, 12, 12, 9, 4, 8, 2, 5, 9, 7, 12, 15, 1, 8, 3, 10, 16, 1, 9, 11, 15, 1, 3, 10, 7, 16]);

----------

%% runtime: 0.025 (25.464 ms)

%% solvetime: 0.009 (9.443 ms)

%% solutions: 1

%% variables: 80

%% propagators: 1600

%% propagations: 6867

%% nodes: 73

%% failures: 0

%% restarts: 0

%% peak depth: 72

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 5 / 19



Attempt One: Parallel Optimisation?

$ mzn -gecode colDec.mzn g80.dzn -s -Dk=12

===== UNSATISFIABLE =====

%% runtime: 4:10.639 (250639.167 ms)

%% solvetime: 4:10.625 (250625.001 ms)

%% solutions: 0

%% variables: 80

%% propagators: 1533

%% propagations: 909705614

%% nodes: 8390437

%% failures: 4275231

%% restarts: 0

%% peak depth: 32

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 5 / 19



Attempt One: Parallel Optimisation?

$ mzn -gecode colDec.mzn g80.dzn -s -Dk=13

v = array1d (1..80 ,[4, 7, 2, 8, 1, 11, 12, 6, 13, 10, 8, 4, 3, 13, 4, 4, 3, 4, 13, 5, 1, 12, 5, 7, 9, 11, 12, 3, 6, 13, 6, 2, 10, 4, 11, 6, 8, 7, 5, 10, 3, 2, 7, 10, 5, 4, 13, 11, 13, 6, 5, 9, 10, 8, 2, 12, 7, 9, 12, 9, 6, 5, 2, 7, 11, 8, 1, 9, 3, 13, 12, 1, 4, 9, 8, 1, 3, 11, 10, 2]);

----------

%% runtime: 1:58.791 (118791.370 ms)

%% solvetime: 1:58.777 (118777.305 ms)

%% solutions: 1

%% variables: 80

%% propagators: 1534

%% propagations: 518688552

%% nodes: 5165932

%% failures: 2604376

%% restarts: 0

%% peak depth: 41

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 5 / 19



Attempt One: Parallel Optimisation?

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80

R
un

ti
m

e
(s

)

Number of Colours

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 5 / 19



Parallel In Theory

Speedup is sequential runtime divided by parallel runtime.

Ideally, over a good sequential algorithm, not a parallel
algorithm run with one thread. This is sometimes called
absolute speedup.
This may not be practical if using special hardware.

A linear speedup is a speedup of n using n processors.

This is not a realistic expectation on modern hardware. Of
particular concern for CP is that more cores does not mean
more memory bandwidth.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 6 / 19



Parallel In Theory

Balance is whether every compute unit is kept busy doing
useful work.

A regular problem is one which can easily be split into equally
sized units of work. Irregular problems are hard to balance.

Often only a small number of the decision problems are “really
hard”, so we get poor balance.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 6 / 19



Parallel In Theory

Most parallel algorithms contain a “sequential” part which
cannot be parallelised, and a “parallel” part.

Amdahl’s law says that if the sequential portion is fixed and we
divide the parallel portion perfectly among n processors, and if
k is the fraction of the work we cannot parallelise, then

best speedup =
1

k + 1
n (1− k)

For CP algorithms, things get much more complicated, so it is
important to understand where the formula comes from (using
primary school maths), rather than memorising it.

Gustafson’s law deals with using more processors to tackle
larger problems.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 6 / 19



Parallel In Theory

We need a large parallelisable portion of the algorithm, and
good work balance, or we don’t get much of an improvement.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 6 / 19



Parallel Consistency?

Partition the variables between processors.

Run AC3 independently on each processor, but when deleting a
value, also send a message to other processors telling them to
re-add the relevant variables to their stack.

But maybe only a few variables are involved, and we spend all
our time bouncing around between a small number of
processors. . .

And what about slow-running global constraints?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 7 / 19



Parallel Consistency?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 7 / 19



Parallel Consistency?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 7 / 19



Parallel Consistency?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 7 / 19



Parallel Consistency?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 7 / 19



Parallel Consistency?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 7 / 19



Parallel Consistency?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 7 / 19



A Little Bit of Heresy

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 8 / 19



A Little Bit of Heresy

“I want to buy a polynomial number of processors.”

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 8 / 19



A Little Bit of Heresy

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 8 / 19



A Little Bit of Heresy

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 8 / 19



Bitsets and Bit Parallelism

Domains are sometimes small and compact.

If domains have no more than 64 values, we can store them in
(long unsigned) integers. We have one bit per value. 0 means
“not in the set” and 1 means “in the set”.

We can use arrays of integers for larger domains. (And we can
go up to 512 bit integers on some Intel CPUs.)

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 9 / 19



Bitsets and Bit Parallelism

This is hardware-friendly: the entire model might fit in cache.

Setting a domain to take exactly one value:

d ← 1� v

Testing whether or not a value is present in a domain:

d & (1� v) 6= 0

Turning a single bit off:

d ← d & ˜(1� v)

There are dedicated hardware instructions for all of these in
recent CPUs. We can also count the number of set bits (how
many values are left in our domain?), and find the first set bit
(pick a value from the domain) in hardware.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 9 / 19



Bitsets and Bit Parallelism

Some constraints are similarly bitset friendly.

Extensional constraints (a list of all “allowed pairs”) can be
represented as a “compatibility” bitset for each value in each
variable’s domain. Now forward checking is just a bitwise “and”
operation.

Uses a lot of memory, but if our model is reasonably small and
dense that’s fine.

Less than, greater than, and certain arithmetic constraints work
nicely with bitsets.

Fun exercise: figure this out.

Some constraints are probably not bitset friendly.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 9 / 19



Fixed Parallel Tree Search

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 10 / 19



Fixed Parallel Tree Search

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 10 / 19



Fixed Parallel Tree Search

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 10 / 19



Embarrassingly Parallel Search

If we create n subproblems, chances are we’ll get poor balance.

We can’t tell beforehand where the really hard subproblems will
be.

What if we create lots of subproblems, and distribute them
dynamically?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 11 / 19



Embarrassingly Parallel Search

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 11 / 19



Embarrassingly Parallel Search

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 11 / 19



Embarrassingly Parallel Search

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 11 / 19



Embarrassingly Parallel Search

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 11 / 19



Random Work Stealing

What if we split work entirely dynamically?

Whenever a worker is idle, have it steal a subproblem from
another randomly selected worker.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 12 / 19



Random Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 12 / 19



Random Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 12 / 19



Random Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 12 / 19



Random Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 12 / 19



Random Work Stealing

$ mzn -gecode colOpt.mzn g80.dzn -a -s

%% runtime: 6:32.621 (392621.621 ms)

%% runtime: 6:31.311 (391311.168 ms)

%% runtime: 6:31.314 (391314.705 ms)

%% runtime: 6:30.360 (390360.443 ms)

%% runtime: 6:31.217 (391217.210 ms)

%% runtime: 6:33.723 (393723.672 ms)

%% runtime: 6:31.279 (391279.313 ms)

%% runtime: 6:30.765 (390765.244 ms)

%% runtime: 6:31.057 (391057.970 ms)

%% runtime: 6:30.460 (390460.464 ms)

$ mzn -gecode colOpt.mzn g80.dzn -a -s -p32

%% runtime: 1:31.237 (91237.601 ms)

%% runtime: 22.783 (22783.639 ms)

%% runtime: 1:33.024 (93024.102 ms)

%% runtime: 23.844 (23844.334 ms)

%% runtime: 1:32.932 (92932.198 ms)

%% runtime: 24.415 (24415.674 ms)

%% runtime: 26.329 (26329.784 ms)

%% runtime: 1:31.005 (91005.068 ms)

%% runtime: 1:17.512 (77512.379 ms)

%% runtime: 1:33.766 (93766.558 ms)

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 12 / 19



Random Work Stealing

$ mzn -gecode colDec.mzn g80.dzn -s -Dk=12

===== UNSATISFIABLE =====

%% runtime: 4:10.639 (250639.167 ms)

%% solvetime: 4:10.625 (250625.001 ms)

%% solutions: 0

%% variables: 80

%% propagators: 1533

%% propagations: 909705614

%% nodes: 8390437

%% failures: 4275231

%% restarts: 0

%% peak depth: 32

$ mzn -gecode colDec.mzn g80.dzn -s -Dk=12 -p32

%% runtime: 20.642 (20642.164 ms)

%% runtime: 21.168 (21168.189 ms)

%% runtime: 21.896 (21896.198 ms)

%% runtime: 20.773 (20773.895 ms)

%% runtime: 21.291 (21291.617 ms)

%% runtime: 21.229 (21229.889 ms)

%% runtime: 21.994 (21994.265 ms)

%% runtime: 21.929 (21929.667 ms)

%% runtime: 20.992 (20992.017 ms)

%% runtime: 21.269 (21269.629 ms)

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 12 / 19



Random Work Stealing

$ mzn -gecode colDec.mzn g80.dzn -s -Dk=13

v = array1d (1..80 ,[4, 7, 2, 8, 1, 11, 12, 6, 13, 10, 8, 4, 3, 13, 4, 4, 3, 4, 13, 5, 1, 12, 5, 7, 9, 11, 12, 3, 6, 13, 6, 2, 10, 4, 11, 6, 8, 7, 5, 10, 3, 2, 7, 10, 5, 4, 13, 11, 13, 6, 5, 9, 10, 8, 2, 12, 7, 9, 12, 9, 6, 5, 2, 7, 11, 8, 1, 9, 3, 13, 12, 1, 4, 9, 8, 1, 3, 11, 10, 2]);

----------

%% runtime: 1:58.791 (118791.370 ms)

%% solvetime: 1:58.777 (118777.305 ms)

%% solutions: 1

%% variables: 80

%% propagators: 1534

%% propagations: 518688552

%% nodes: 5165932

%% failures: 2604376

%% restarts: 0

%% peak depth: 41

$ mzn -gecode colDec.mzn g80.dzn -s -Dk=13 -p32

%% runtime: 28.291 (28291.176 ms)

%% runtime: 38.170 (38170.591 ms)

%% runtime: 24.390 (24390.286 ms)

%% runtime: 10.547 (10547.847 ms)

%% runtime: 39.040 (39040.280 ms)

%% runtime: 28.988 (28988.032 ms)

%% runtime: 1:08.091 (68091.332 ms)

%% runtime: 1:13.061 (73061.990 ms)

%% runtime: 11.618 (11618.722 ms)

%% runtime: 1:05.073 (65073.290 ms)

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 12 / 19



Speedups from Parallel Tree Search

If a decision problem is satisfiable, or for an optimisation
problem, our speedups could be arbitrary: one worker might
find a feasible or strong solution very quickly. In particular,
superlinear speedups are possible, as are no speedups at all.

For an unsatisfiable decision problem, or for an enumeration
problem, our speedups can be at best linear (assuming we do
not change the search tree): we are dividing up a fixed amount
of work.

If we do not communicate bounds, or if we do not preserve
sequential ordering, we could get an absolute slowdown.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 13 / 19



Work Splitting Affects Search

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 14 / 19



Work Splitting Affects Search

?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 14 / 19



Work Splitting Affects Search

?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 14 / 19



Work Splitting Affects Search

For satisfiable instances and optimisation problems, where you
split the work doesn’t just affect balance. It also affects the
amount of work to do. We just saw an example where better
work balance gave worse performance, because it took longer
to find a solution.

Remember Harvey and Ginsberg’s Limited Discrepancy Search?

2 Value-ordering heuristics are most likely to wrong higher up in
the tree (there is least information available when no or few
choices have been made).

Stealing early or splitting high introduces diversity against early
heuristic choices. Stealing late gives a close-to-sequential
ordering.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 14 / 19



Parallel Discrepancy Search

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 15 / 19



Confidence-Based Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 16 / 19



Confidence-Based Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 16 / 19



Confidence-Based Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 16 / 19



Confidence-Based Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 16 / 19



Using Confidence-Based Work Stealing

Unfortunately, you can’t. . .

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 17 / 19



Parallel Portfolios?

We might have several models, several variable- and
value-ordering heuristics, tiebreaking, etc.

Just run them all, and pick whichever finishes first?

We can share incumbents and bounds between models.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 18 / 19



Parallel Portfolios?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 18 / 19



Parallel Portfolios?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 18 / 19



This is Not The Exam Question

A constraint model takes 10 seconds to solve using one processor. Suppose 80% of
that time is spent doing propagation. What is the best possible speedup that could be
obtained if 4 processors are used to do parallel propagation, and the rest of the
program remains unchanged? What about if we had an unlimited number of
processors?

What about if we used the four processors for a portfolio of different solvers?

What is balance, and why is it a problem if we try to parallelise a tree-search by
creating n sub-trees for n processors? Suggest two potential remedies.

Suppose we are solving a decision problem which has a sequential part taking one
second to run, and a parallelisable part which takes twenty seconds to run on one
processor. What is the best possible runtime we might see when using ten processors
to solve this problem with a parallel tree-search, if the instance is satisfiable? What if
it is unsatisfiable?

Design a parallel constraint programming approach that always gives linear speedups.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 19 / 19




