
Failing First: An Update1

J. Christopher Beck2 and Patrick Prosser3 and Richard J. Wallace2

1 Introduction

In ECAI 1998 Smith & Grant performed a study [4] of the fail-first
principle of Haralick & Elliott [2]. The fail-first principle states that
“To succeed, try first where you are most likely to fail.” The basic
hypothesis of Smith & Grant was that if failing first is such a good
thing then more of it must be better. Therefore, creating heuristics
with a stronger ability to fail early should increase search efficiency.
Efficiency was defined as the number of constraint checks required
to find a solution to a problem or to prove that no solution exists. Be-
cause the focus of the study was on the relation between fail-firstness
and search efficiency, the computational effort to make those heuris-
tic decisions was (correctly) factored out of the experiments.

Experiments were performed over randomly generated binary con-
straint satisfaction problems. Each set of problems was defined by a
4-tuple 〈n, m, p1, p2〉, where n is the number of variables, m is the
uniform domain size, p1 is the proportion of edges in the constraint
graph, and p2 is the uniform constraint tightness. p2 can be consid-
ered as the probability that when a pair of constrained variables are
instantiated they will be in conflict. All their experiments were over
problems with n = 20 and m = 10.

Using the forward checking algorithm [2] and standard chrono-
logical backtracking Smith & Grant tested four heuristics engineered
for increasing levels of fail-firstness.

• FF: Choose the variable with the smallest remaining domain.
• FF2: The variable, vi, chosen is the one that maximizes

(1 − (1 − pm
2)di)mi , where mi is the current domain size

of vi, and di is the future degree of vi. The FF2 heuristic takes
into account an estimate (based on the initial parameters of prob-
lem generation) of the extent to which each value of vi is likely to
be consistent with the future variables of vi.

• FF3: FF3 builds on FF2 by using the current domain size of fu-
ture variables rather than m. The variable, vi, chosen is the one
that maximizes the expression (1) below, where C is the set of all
constraints in the problem, F is the set of unassigned variables,
and P = p2.

• FF4: FF4 modifies FF3 by substituting the current tightness, P =
pij , of the future constraints (the fraction of tuples from the cross-
product of the current domains that fail to satisfy the constraint)
instead of p2.

(1 −
∏

(vi,vj)∈C,vj∈F

(1 − P
mj))mi (1)

1 This work has received support from Science Foundation Ireland, Grant
00/PI.1/C075 and ILOG, SA.

2 Cork Constraint Computation Center Computing Science Department, Uni-
versity College Cork, Ireland, {c.beck,r.wallace}@4c.ucc.ie

3 Department of Computing Science, University of Glasgow, Scotland,
pat@dcs.gla.ac.uk

The progression from FF through to FF4 uses more and more in-
formation in determining which variable is most likely to fail at any
given stage of search. With respect to total search effort, Smith &
Grant expected that the heuristics would be ranked as follows: FF
> FF2 > FF3 > FF4, where > means “results in greater search ef-
fort than”. Their results were not as expected. Through a number of
experiments Smith & Grant showed that except on easy problems,
FF2 incurred the least search effort, followed by FF3, FF and finally
FF4. That is, they observed the following order: FF4 > FF > FF3 >

FF2. This ordering is clearly at odds with the hypothesis of a sim-
ple mapping between the ability to fail-first and search effort. Smith
& Grant concluded that there must be some other factor at work in
determining the search efficiency for variable ordering heuristics.

2 A Bug in FF4

In order to continue on from Smith & Grant’s work and investigate
additional factors that may impact the search efficiency of variable
ordering heuristics, our first step was to reproduce their experiments.
We were able to reproduce the results for FF, FF2, and FF3, but we
were unable to reproduce the behavior of FF4. Our version of FF4
was orders of magnitude better than the FF4 reported by Smith &
Grant. Our results were tested on a number of independent imple-
mentations of the algorithms and problem generators: a solver writ-
ten in C, one in Java, one based on ILOG Solver, and one written in
LISP. All of our attempts failed to reproduce the reported results.

Barbara Smith and Stuart Grant kindly provided us with the source
code of their solver and we found a programming error in their code.
When computing the value of pij for the FF4 heuristic they used in-
teger division instead of floating point division. This resulted in pij

being assigned a value of 1 for a variable that is inconsistent with
an adjacent variable and 0 otherwise. Therefore the search algorithm
will either select a future variable that is arc-inconsistent with some
other future variable, generating a dead-end, or select any other vari-
able with equal likelihood.

When this error was corrected in their solver we were able to re-
produce our results using their solver. Figure 1 presents the median
number of constraint checks to find a solution or to prove that no so-
lution exists for problems from the set 〈20, 10, 0.2〉. The constraint
tightness was varied from 0.01 to 0.99 in steps of 0.01. For each
combination of parameters 1000 problem instances are generated.
Median checks are plotted against κ (kappa), the measure of con-
strainedness proposed by [1]. In the new results we typically see the
following ordering of the heuristics: FF > FF3 > FF4 ≥ FF2. This
ordering was reproduced over all values of p1 in the range 0.1 to 1.0.
Although we have fixed Smith and Grant’s bug, resulting in a new
ordering of the heuristics, we are still lead to the same conclusion:
trying harder to fail-first does not guarantee a reduction in search
effort.

 100

 1000

 10000

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

M
ed

ia
n

ch
ec

ks

Kappa

FF
FF2
FF3
FF4

Figure 1. The median number of checks for the 〈20, 10, 0.2〉 problem set.
The heuristics are ranked as follows : FF > FF3 > FF4 ≥ FF2. That is, FF2

and FF4 compete as the best heuristics, and FF3 is better than FF.

3 Varying Problem Size

Do we get the same ranking of the heuristics FF > FF3 > FF4 ≥ FF2
when we look at larger problems? We generated random problems of
varying size, from n = 20 up to n = 70. These problems were gen-
erated such that in each set of problems variables had the same av-
erage degree of 10, i.e. each variable was on average constrained by
10 other variables. Variables had a uniform domain size of 10. Each
set of problems was generated such that constrainedness κ ≈ 0.9.
Figure 2 gives contours for the four heuristics, with median consis-
tency checks plotted against problem size. We see that the ranking
of the heuristics is not influenced by problem size. Problems with
more than 60 variables were too hard for the FF heuristic. Figure 2
shows contours for the soluble problems only. Similar experiments
were performed with κ > 1.0 such that all problems were insoluble.
Again, we observed the same ranking of the heuristics. Therefore, as
far as the relative ranking of our heuristics is concerned, size does
not matter.

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 20 30 40 50 60 70

M
ed

ia
n

ch
ec

ks

Problem Size

FF
FF2
FF3
FF4

Figure 2. The median consistency checks for problems with 20 to 70
variables. All problems have 10 values per variable, a density that results in
10 constraints on each variable, and a tightness set so as to give a κ ≈ 0.9.
All problems are soluble and at each problem size we have 50 instances.

4 Moving to MAC

Might the consistency enforcement algorithm have an effect on the
heuristics? To test this out we repeated the above experiments, but
this time using the maintaining-arc consistency algorithm (MAC) [3].
As the name implies, whenever a variable is instantiated the future
sub-problem is made arc-consistent. If this results in a domain wipe-
out, a new value is tried, and failing that, backtracking takes place.
Our results are presented in Figure 3. The ranking of the heuristics
has changed! We now have the order FF > FF2 > FF3 > FF4, sug-
gesting that as we try harder to fail-first we do indeed see a reduction
in search effort, but this is algorithm dependent. The results in Figure
3 are for soluble problems, and though not shown, we got the same
ranking over insoluble problems. Again, these results were replicated
across our solvers and across sites.

 10000

 100000

 1e+06

 1e+07

 1e+08

 20 30 40 50 60 70

M
ed

ia
n

ch
ec

ks

Problem Size

FF-mac
FF2-mac
FF3-mac
FF4-mac

Figure 3. The median consistency checks for problems with 20 to 70
variables using MAC. All problems have 10 values per variable, a density

that results in 10 constraints on each variable, and a tightness set so as to give
a κ ≈ 0.9. All problems are soluble and each problem size has 50 instances.

5 Conclusion

Smith & Grant claimed that trying harder to fail first does not result in
reduced search effort and that there must be some other factor at work
in determining the search efficiency for variable ordering heuristics.
We have discovered a bug in their experiments, and have shown that
their most aggressive failing-first heuristic FF4 ties with their best
heuristic FF2. We have also shown that when we change algoritim,
moving to MAC, trying harder to fail-first does indeed reduce search
effort, i.e. this phenomenon is algorithm dependent. Work still needs
to be done to explain why, when using forward checking, FF2 is as
good as FF4, and more generally what other factors than failing-first
influence heuristic performance?

REFERENCES
[1] Ian P. Gent, Ewan MacIntyre, Patrick Prosser, and Toby Walsh, ‘The

constrainedness of search’, in AAAI/IAAI, Vol. 1, pp. 246–252, (1996).
[2] R. M. Haralick and G. L. Elliott, ‘Increasing tree search efficiency for

constraint satisfaction problems’, Artificial Intelligence, 14, 263–314,
(1980).

[3] Daniel Sabin and Eugene Freuder, ‘Contradicting Conventional Wisdom
in Constraint Satisfaction’, in Eleventh European Conference on Arti-
ficial Intelligence (ECAI 94), pp. 125–129. John Wiley & Sons, Ltd.,
(1994).

[4] Barbara. M. Smith and Stuart. A. Grant, ‘Trying harder to fail first’, in
Thirteenth European Conference on Artificial Intelligence (ECAI 98), pp.
249–253. John Wiley & Sons, Ltd., (1998).

