# Where are the hard problems?

### Remember Graph Colouring?

Remember 3Col?





















Does Size Matter?

Easy?



# So, Where are the hard problems?

| <del>毲</del> F | Peter (      | Cheese  | man':      | s Home-page          | - Netsca     | аре        |                |           |               |               | _               |
|----------------|--------------|---------|------------|----------------------|--------------|------------|----------------|-----------|---------------|---------------|-----------------|
| <u>F</u> ile   | <u>E</u> dit | ⊻iew    | <u>G</u> o | <u>C</u> ommunicator | <u>H</u> elp |            |                |           |               |               |                 |
|                | 4            |         | Ň          | 3                    |              | Ž          | m)             | 4         | s.            |               |                 |
|                | Back         | For     | rward      | Reload               | Home         | Search     | Netscape       | Print     | Security      | Stop          |                 |
| 1              | ا * 🌿        | Bookmar | ks 🤇       | 🙏 Location: h        | ttp://ic-wv  | ww.arc.nas | a.gov/ic/proje | ects/baye | s-group/peopl | le/cheeseman/ | 🔽 🏹 What's Rela |
|                | 🖳 Me         | embers  |            | WebMail 関            | Connectio    | ns 🖳 B     | izJournal 🛯 🖺  | SmartU    | pdate 🛛 🖳 M   | 1ktplace      |                 |

### **Dr. Peter Cheeseman**



Affiliation: Research Institute for Advanced Computer Science Postal address: Computational Sciences Division - Code IC NASA Ames Research Center, MS 269-2 Moffett Field, CA 94035-1000 Voice: (650)604-4946 Fax: (650)604-3594 Electronic mail: cheesem@ptolemy.arc.nasa.gov

#### **Career Summary**

**\_\_\_** 

Document: Done

= 🐝 📲 🗗





🖉 🕑 🕞 👕 🔤 0 🔄 slides

💾 start

🖉 2 Internet ...

🍞 emacs@BIAK

🤇 🛒 🗱 🔍 🔞 📶 11:13 🚳 Microsoft Po...



# Problem:

We were working on a new algorithm for constraint-satisfaction problems. We needed hard problems to try it out on.



An NP-complete problem like Graph-Colorability should provide plenty of hard cases, right?

### Surprise!

There's already a backtracking algorithm (by Brélaz) that solves large random graphs in linear time.





What does this say about NP problems?

Wots NP?

# Nondeterministic Polynomial Problems that cannot be solved in polynomial (P) time ... as far as we know

NP-Complete (NPC) If a polytime alg can be found for any NPC problem Then it can be adapted for all NPC problems

# Theory shows NP problems are worst case exponential but says nothing about complexity in a particular case!



Intractability Theorem The problem of determining whether a proposition is necessarily true in a nonlinear plan whose action representation is sufficiently strong to represent conditional actions ... is NP hard.

**Hoping for the best** amounts to arguing that for the particular cases that come up in practice, extensions to current planning techniques will happen to be efficient. My intuition is that this is not the case.

— D. Chapman, A.I.J. (1967)

# Where are the hard problems in NP?

Problem

Reduced

Problem

Reduction

Operator

- Pathological?
- Unpredictable?

### Partial an swer:

Not in 'trivial' part of space.

Eliminate all problems solvable without search.

Reduction Operators.

(Can be applied recursively) 🎛











# Wot's SAT?

# Toby?



# Propositional Satisfiability

### • SAT

- does a truth assignment exist that satisfies a propositional formula?
- special type of constraint satisfaction problem
  - Variables are Boolean
  - Constraints are formulae
- NP-complete
- 3-SAT
  - formulae in clausal form with 3 literals per clause
  - remains NP-complete

### (x1 v x2) & (-x2 v x3 v -x4)

### x1/ True, x2/ False, ...

Wots complexity of 3SAT?



# Random 3-SAT



- Random 3-SAT
  - sample uniformly from space of all possible 3clauses
  - *n* variables, *l* clauses
- Which are the hard instances?
  - around l/n = 4.3

What happens with larger problems? Why are some dots red and others blue?

# Random 3-SAT

- Varying problem size, *n*
- Complexity peak appears to be largely invariant of algorithm
  - backtracking algorithms like Davis-Putnam
  - local search procedures like GSAT







🔁 File Edit Document View Window Help



😂 4 Interne...



Artificial Intelligence 88 (1996) 349-358

### Artificial Intelligence

🔇 🕼 🜒 🛒 🏙 🔍 🚷 🧶 🏷 🚛 10:46

Research Note

### The TSP phase transition

Ian P. Gent<sup>a,\*</sup>, Toby Walsh<sup>b,c,1</sup>

<sup>a</sup> Department of Computer Science, University of Strathclyde, Glasgow G1 1XH, UK <sup>b</sup> Mechanized Reasoning Group, IRST, Trento, Italy <sup>c</sup> DIST, University of Genoa, Genoa, Italy

Received October 1995; revised July 1996

#### Abstract

🕑 🍞 🔤 🙆

The traveling salesman problem is one of the most famous combinatorial problems. We identify
► N 65×95in □ Η ₩ <

🚞 2 Window...

💽 Microsoft P...

🖄 Acrobat Re...

ৰুটাৰ ৰ

🛃 start

1 of 10

e

C

Thumbnails Bookmarks

🖄 Acrobat Reader - [sdarticle.pdf]

□ □ □ □ A A A · □

Thumbnails Bookmarks

(4) [4]

🛃 start

1 of 10

🔁 File Edit Document View Window Help

#### 🕒 🕨 🔺 🔶 🖑 🔍 - To - 🐼 🛛 🗢 206% 🛛 - 🛞 🗋 🛅 🛅 🗳 - 🎑

Ian P. Gent<sup>a,\*</sup>, Toby Walsh<sup>b,c,1</sup>

D

🔥 Acrobat Re...

<sup>a</sup> Department of Computer Science, University of Strathclyde, Glasgow G1 1XH, UK <sup>b</sup> Mechanized Reasoning Group, IRST, Trento, Italy <sup>c</sup> DIST, University of Genoa, Genoa, Italy

Received October 1995; revised July 1996

#### Abstract

14

The traveling salesman problem is one of the most famous combinatorial problems. We identify a natural parameter for the two-dimensional Euclidean traveling salesman problem. We show that for random problems there is a rapid transition between soluble and insoluble instances of the decision problem at a critical value of this parameter. Hard instances of the traveling salesman problem are associated with this transition. Similar results are seen both with randomly generated problems and benchmark problems using geographical data. Surprisingly, finite-size scaling methods developed in statistical mechanics describe the behaviour around the critical value in random problems. Such phase transition phenomena appear to be ubiquitous. Indeed, we have yet to find an NP-complete problem which lacks a similar phase transition.

Keywords: NP-complete problems; Complexity; Traveling salesman problem; Search phase transitions; Finite-size scaling; Eeasy and hard instances

#### 1. Introduction

😂 🕑 💽 🛜 🔤 📓

▶ ▶ 6.5x9.5in 🔲 🗄 🚻 🧉

There are many useful connections between statistical mechanics and a wide variety

🕒 4 Interne... 👻 🛅 2 Window... 👻 🐻 Microsoft P...







- CKT were first to report the phenomenon
- Were they the first to see it?

### Feldman and Golumbic 1990 Student Scheduling Problems



### Gaschnig PhD thesis 1979 2nd last page

Figure 4.4.3-1 Dependence of mean number of pair-tests  $(T_{ij})$  on degree of constraint (L)150 randomly generated SAPs of size H = k, = 18 for each picted point 1350 e.e. per algorithm, 5488 a.e. total · . . upper solid curves BRCKTRACK; middles BACKJUMP; lowers BACKMARK first solution .

| . L    | BACKTRACK | 89CKHARK        | BACKJUMP  | 8330      |
|--------|-----------|-----------------|-----------|-----------|
| +886   | 666,661   | 188.000         | 166,000   | 180.888   |
| +168   | 223. B88  | 188.699         | 189.008   | 378, 188  |
| - +208 | 452.800   | 299.888         | 371.889   | 1162.888  |
| +368   | 985.989   | 5 <b>24.888</b> | 794.000   | 3776.000  |
| 488    | 2548.888  | 1645.888        | 1945.000  | 4568.000  |
| .588   | 8718.888  | 2682.909        | 5259.000  | 7552.000  |
| .696   | 35598.888 | 7791.089        | 22551.000 | 16368,888 |
| .658   | 15893.888 | 3846,998        | 9836.000  |           |
| .798   | 9143.088  | 751.800         | 2346.008  | 3152. RRB |
| .800   | 352.600   | 137.808         | 171,608   | 2686. RRR |
| .988   | 67.400    | 67.288          | 67.488    | 2763.088  |
| 1.089  | 45.000    | 45.068          | 45.888    | 666,2021  |

..

. . • . . · · · · ·

. .

•.

My favourite! Gaschnig's random 10 queens

.

### Gaschnig 1979 Log of search effort against constraint tightness Algorithm independent phenomena

| ipper solid curve:<br>inst solution | - BRCKTRACK, | ALO, IOTAL<br>Biddles BACKJUMP | Luting J  | BACKMARK  |  |
|-------------------------------------|--------------|--------------------------------|-----------|-----------|--|
| ~                                   | BRCKTRACK    | BACKHARK                       | BACKJUMP  | DEEB      |  |
| + 888                               | 666,661      | 199.008                        | 166,000   | 120-886   |  |
| +100                                | 223, BOQ     | 158,688                        | 183.008   | 378-188   |  |
| + 208                               | 452.BQQ      | 299,888                        | 373.889   | 1162.888  |  |
| +368                                | 985.880      | 524. BBB                       | 794.000   | 3776.000  |  |
| 400                                 | 2548.888     | 1048.BBQ                       | 1945.000  | 4563.000  |  |
| , S06                               | 8719.88B     | 2882.909                       | 5259.000  | 7552.000  |  |
| .698                                | 98239-988    | 580'1644                       | 22551.000 | 16368,899 |  |
| .658                                | 15893.888    | 304 <b>8,</b> 938              | 9536.000  |           |  |
| .708                                | 9143.008     | 751.000                        | 2346,888  | 3152,888  |  |
| . 800                               | 352.000      | L37.800                        | 171, 608  | 2686.888  |  |
| .989                                | 67,400       | 67,200                         | 67,488    | 2743.088  |  |
| L. 080                              | 15,000       | 45.080                         | 888,59    | 1105.344  |  |

Rotate to view!

Gaschnig's Thesis, page 179

### 4.4.3 Cost as a Function of L: A sharp Peak at L = -0.6

- Random CSP's <n,m,p1,p2>
  - n the number of variables
  - m domain size
  - p1 the probability of a constraint
    - between variables Vi and Vj
    - p2 probability Vi=x and Vj=y are in conflict
- <20,10,1.0,0>
  - easy soluble clique
- <20,10,1.0,1.0>
  - easy insoluble clique
- <20,10,1.0,0.2>
  - hard, phase transition, clique
- <20,10,0.5,0.37>
  - Drosophilia

#### ECAI94, random csp's



1994, PT for CSP, show it exists, try and locate it (bms also at ECAI94) And lunch with Barbara, Toby, and Ian

# Frost and Dechter AAAI94

| Κ     | N        | C          | C/N   | C        | C/N   | C         | C/N   | C         | C/N   |
|-------|----------|------------|-------|----------|-------|-----------|-------|-----------|-------|
| 1.765 | A anna a | T =        | 1/9   | T =      | = 2/9 | T =       | = 3/9 | T =       | = 4/9 |
| 3     | 25       | 199        | 7.96  | 89       | 3.56  | 51        | 2.04  | 31        | 1.24  |
| 3     | 30       | 236        | 7.87  | 104      | 3.47  | 59        | 1.97  | 36        | 1.20  |
| 3     | 35       | 272        | 7.77  | 120      | 3.43  | 68        | 1.94  | 41        | 1.17  |
| 3     | 40       | 310        | 7.75  | 137      | 3.43  | 76        | 1.90  | 45        | 1.13  |
| 3     | 50       | 380        | 7.60  | 166      | 3.32  | 91        | 1.82  | 53        | 1.06  |
| 3     | 60       | 454        | 7,57  | 196      | 3.27  | 106       | 1.77  | 62        | 1.03  |
| 3     | 75       | 565        | 7.53  | 244      | 3.25  | 132       | 1.76  | 74        | 0.99  |
| 3     | 100      | 747        | 7.47  | 317      | 3.17  | 169       | 1.69  | 92        | 0.92  |
| 3     | 125      | 927        | 7.42  | 394      | 3.15  | 207       | 1.66  | 109       | 0.87  |
| 3     | 150      | 1100       | 7.40  | 468      | 3.12  | 242       | 1.61  | 127       | 0.85  |
| 3     | 175      | 1290       | 7.37  | 546      | 3.12  | 281       | 1.61  | 146       | 0.83  |
| 3     | 200      | 1471       | 7.36  | 623      | 3.11  | 318       | 1.59  | 159       | 0.80  |
| 3     | 225      |            |       | 697      | 3.10  | 353       | 1.57  | 176       | 0.78  |
| 3     | 250      | 1          |       | 773      | 3.09  | 390       | 1.56  | 193       | 0.77  |
| 3     | 275      | C. M. DECK |       | 847      | 3.08  | 425       | 1.54  | 205       | 0.75  |
|       | S. H.    | T = 4/36   |       | T = 8/36 |       | T = 12/36 |       | T = 16/36 |       |
| 6     | 15       | **         | **    | 102      | 6.80  | 62        | 4.13  | 41        | 2.73  |
| 6     | 25       | **         | **    | 165      | 6.60  | 100       | 4.00  | 65        | 2.60  |
| 6     | 35       | 500        | 14.29 | 228      | 6.51  | 137       | 3.91  | 89        | 2.54  |
| 6     | 50       | 710        | 14.20 | 325      | 6.50  | 193       | 3.87  | 125       | 2.51  |
| 6     | 60       | 852        | 14.20 | 389      | 6.48  | 231       | 3.85  | 150       | 2.50  |
| 107   | See 1.5  | T =        | 9/81  | T =      | 18/81 | T =       | 27/81 | T =       | 36/81 |
| 9     | 15       | **         | **    | **       | **    | 79        | 5.27  | 53        | 3.53  |
| 9     | 25       |            | **    | 211      | 8.44  | 128       | 5.12  | 87        | 3.48  |
| 9     | 35       | **         | 81    | 294      | 8.40  | 178       | 5.09  | 119       | 3.40  |

Figure 1: The "C" columns show values of C which empirically produce 50% solvable problems, using the model described in the text and the given values of N, K, and T. The "C/N" column shows the value from the "C" column to its left, divided by the current value for N. "\*\*" indicates that at this setting of N, K and T, even the maximum possible value of C produced only satisfiable instances. A blank entry signifies that problems generated with these parameters were too large to run.

1994 again, Frost and Dechter tabulate, use this for comparison of algs (CKT's first goal!)

#### Bessiere AIJ65 1994











1994 again! A problem in P

### Constrainedness

$$\kappa = 1 - \frac{\log_2()}{N}$$

<Sol> is expected number of solutions N is log\_2 of the size of the state space

k = 0, all states are solutions, easy, underconstrained

 $k = \infty$ , <Sol> is zero, easy, overconstrained

k = 1, critically constrained, 50% solubility, hard

Applied to: CSP, TSP, 3-SAT, 3-COL, Partition, HC, ...?



$$\kappa = \frac{-\sum_{c \in C} \log_2(1 - p_c)}{\sum_{v \in V} \log_2(m_v)}$$

### The Constrainedness of Arc Consistency $^{\star}$





$$\kappa_{ac} = \frac{-\sum_{c \in C} m_x \log_2(1 - p_c^{\frac{m_y}{2}}) + m_y \log_2(1 - p_c^{\frac{m_x}{2}})}{2\sum_{v \in V} m_v}$$

- 1994
  - critical ratio of clauses to variables in 3SAT
- 1995
  - applied techniques from statistical mechanics to analysis
- 1996
  - Kappa, a theory of constrainedness
    - applies in CSP, 3-SAT NumPart, TSP!, ...
  - kappa based heuristics
  - P/NP phase transition (2+p)-SAT
    - At p ~0.4

- 1997
  - Kappa holds in P, achieving arc-consistency
  - Empirically derive complexity of AC3
  - Derive existing heuristics for revision ordering in AC3
- 1998
  - Expectation of better understanding of behaviour of algorithms and heuristic
  - What happens inside search?

- 1999
  - Kappa for QSAT
- 2000
  - the backbone
- 2001
  - backbone heuristics
- 2000 and beyond
  - Physics takes over?
  - New problems and richer behaviour
- 2019
  - Optimisation

Conclusion?

- More to it than just P and NP
- we are now learning about the structure of problems
- the behaviour of algorithms
- using this to solve the problems!

# Where are the hard problems?