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Abstract. We present the first complete algorithm for the SMTI the stable marriage problem with ties and incomplete lists (SMTI). o

problem, the stable marmiage problem with ties and incomplete lists. We restrict ourselves in this paper to weak stability: under this defi- b

We do this in the form of a constraint programming encoding of the nition a marriage is unstable if there is a man m; and a woman |,

problem. With this we are able to camry out the first empirical study each of whom strictly prefers the other to his/her current partoer [ 7],

of the complete selution of SMTI instances. In the stable marriage ie.m; and w; will elope.

problem (SM) [?] we have » men and » women. Each man ranks the No complete algorithm has previously been proposed for SMTI

n women, giving himself a preference list. Similarly each woman and no empirical study has been carried out. The questicn “Ts there %

ranks the men, giving herself a preference list. The problem is then a weakly stable matching?” is uninteresting as there always is [?].

to marry men and women such that they are stable i.e. such that there Se in this paper we present a constraint programming encoding for

is no incentive for individuals to diverce and elope. This problem the SMTI decision problem “Is there a stable matching of size n?” O

is polynomial time solvable. However, when preference lists contain and the optimisation problem, to find the largest or smallest stable

ties and are incomplete (SMTT) the problem of determining if there matching These questions are NP-complete [?. ?]. We also propose a

is a stable matching of size n is then NP-complete, as is the optimisa- problem generator for random instances of SMTI. We then study the _ﬂ;

tion problem of finding the largest or smallest stable matching [7. 7] SMTI investigating what features of the problem appear to influence p

In this paper we present constraint programming solutions for the
SMTI decision and optimisation problems, a problem generator for
random instances of SMTI, and an empirical study of this problem.

1 Introduction

In the stable marriage problem [7] we have n men and » women
Each man ranks the n women, giving himself a preference list. Sim-
ilarly each woman ranks the men. giving herself a preference list.
The problem is then to marry men and women such that they are sta-
ble. By stable we mean that there is no incentive for individuals to
divorce and elope. For example. a matching would be unstable if it
contained the marriages Romeo to Isobel and John to Juliet. where
Romeo prefers Juliet to Isobel, and Juliet prefers Romeo to John, i e
Romeo and Juliet would elope. This problem has a long history, and
an optimal algorithm was proposed by Gale and Shapley almost 40
years ago [7]. The algorithm’s complexity is (J{ n”), and is linear in
the size of the problem. where size is measured in terms of the n
people each with a preference list of size n.

If men or women find some members of the opposite sex nnac-
ceptable. preference lists become incomplete. These problems are
classified as stable marriage problems with incomplete lists (SMI)
and are again solvable in polynomial time. We might also have ties
in the preference lists. That is, 3 man (or a woman) might be indif-
ferent between a number of his (or her) choices. For example John
might have a preference such that he prefers Isobel to Jane, but Jane

the hardness and size of stable matchings.

The paper is organised as follows. In the next section we present a
problem generator for SMTI. We then present constraint program-
ming solutions for the SMTI decision problem and optimisation
problem. These are the first complete algorithms for these problems.
We then discuss the constrainedness of SMTI. The empirical study is
then presented and the paper concludes.

2 Random Instance Generation

A class of randomly generated instance of SMTI is represented by
a triple {n.p . p2) where n is the number of men and women in
the problem, jiy is the probability of incompleteness and p: is the
probability of ties. Problems are generated as follows

1. A random preference list of size n is produced for each man and
each woman.

2. We iterate over each man’s preference list as follows. For a man
m; and for all women w; in his preference list. we generate a
random number ) < p < 1. Ifp < p1 we delete w; from mi's
preference list and delete mi; from w; 's preference list.

3. If any man or woman has an empty preference list. discard the
problem and go to step 1.

4. We iterate over each person’s (men and women's) preference list
as follows. For a man m; and for his choices r; ranging from his
second to his last, we generate a random gumber [} < p < 1. If
< po then the preference for his <" choice is the same as his




for those vanables.

By representing SMTI a5 a constraint szhsfachon problem we can
mezame v for ezch instance genemated . This will grve us some indica-
tion of what ensemble such an mstance most hikely belongs to. How-
ever, we can make some corjectures as to how the difficulty of SMTT
will vary as we vary the problem generation parameters (i, i, p2 ).
When we increase o we should expect each stable mamage con-
straint to become loozar, Le. the mumber of mfsazble fuples wall £a1l
Therefore « should be nmwersely related to .. When we merease
this will mevezse the amount of meompletensss in preference lists
Consequently domain sizes will f5ll, and we should expect « torise.
However, as domam =sizes f2ll 5o too does the munber of stable mar-
nage consiraints. Therefore, 1t 1= not immediately clear if ths fall
in the mmmber of constramnts will win out azairst the falling domzin
sizes. Will « fall or nse with p; 7 And what wall happen as we vary
1 and i together? Will these be opposing forces, where ;i tends to
dirve problems towards msolubility, whereas 1. tends to mzke prob-
lems looser? We will imeestizate these questhons m the next secton

5 The Empirical Study

e performed our sxperiments usng the choco constramt program-
ming toalkit [7]. The study is mestly of problems of size 10. Prob-
lems were generated with incompletenass ) varying from 0.1 to 0.8
in steps of 0.1, When 1, > 0.9 problems have empty preference
lisis. and are mjected from this study. For each value of 1, we vary
ties i, from 0.0 to 1.0 m steps of 0,01, wath a sanmple size of either
100 or 50 at each data pomt Experiments were nin on machines with
arther T33MHz or 1GHz processors, with betwreen 256ME and 1GB
of FAM. The expenments reported here took m exeess of 2 months
CPU e We also coded an mdependent implementation, wiitten
by a different auther in Eclipse, and obtained consistent results with
those presented here. In our experiment= we first mvestizate how pa-
ramefers 11, and ;i: miuence the decision problem “Ts there a sta-
ble matehing of size i7", We then explore the optimmsation problem
“What 15 the size of the largest and the smalle=t stable matching=7".

%1 The Decision Problem

In the decizion problem we detenmmine if there 1= 3 stable matching
of size 1. This 15 a feature of the problem and 1= algonthm indepen-
dent Figure 77 shows for ezch value of 1, the proportion of soluble
instances as we vary the ameowmt of ties i .. We see that as the amount
of ties ;. Increases the proportien of soluble Instances increases.
Thus suggests that as we inerease ties the constraints between men
and women become looser, consequently we should expect fo see a
fall in the constramedness of problems. We also observe that as o

increases, Le. preference lists get chorter, solubility decreases. This
maght at fost appear imawprizing. However, a5 preference lists gat
shorter the mumber of stability constraints fall Ths fall 1= not encugh
o prevent 2 fall m solubidity due to falling domam siza.

In Figme 77 we plot solulility against the average consirainedness
of the problem mstances, 1 e. « 15 on the x-2as. We see the farmliar
phase transitien behaviow as observed m [7, 7).

The allDhff constraint makes no difference. The mmmber of search
nodes was the same with and withowt thi= redundant constaimt, and
there was no significant difference m mn times. Figzure 77 showrs the
average cost of answenng the decision problem mezsred in terms
of search nodes, for (10, pi, o) plotted agamst ;i .. Search costs m-
creases a5 we Increase fies po. This 1s because constramts get looser
as fies merease, consequently the problem is less determumed by prop-
agation Therefore at each instanfiztion a choee has tobe made Nev-

-
o
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Fignre 3. The decizion problem: is thers a stable matching of size 7

esmBFE

Figure 4. The decision problem: is there a smble matching of size » fora
given value of = 7

Figure . The average cost of the decision problem
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An Empirical Study of Two Vertex Selection Strategies for the Clique
Decision and Maximisation Problems

PATRICK PROSSER, University of Glasgow

Civen a graph & = (., E) a clique is set of vertices O C V' such that all pairs of vertices in O are adjacent.
We can construct o cligue using an exact algorithm that has a guessing stage, ie. a stage whers it must
choose a vertex and add it to . Intuition suggests that we choose the vertex adjacent to most others. Our
study shows that intuition is incorrect and offers an explanation of why that is so. We perform an empirical
study of the cligue decision problem and demonstrate that it has a phase transition with a corresponding
complecity peak. We then chararterise this with respect to the constrainedness of the decision problam and
show that we can derive a theory-based strategy for vertex selection and predict its behaviour. We show
that the vertex selection strategy also works well on the optimisation problem ie. finding the maximum
clique.

Categories and Subject Descriptors: F2.2 [Analysis of Algorithms and Problem Complexityl Monnu-
merical Algorithms and Problems—Computafions on discrede structures; G.2.1 [Discrete Mathematics]:
Combinatorice—Combinatorial algorithms

Genaral Terms: Algorithms, Heuristics, Experimentation

Additional Key Words and Phrases: Maximum clique, clique decision problem, vertex selection strategy,
heuristics, empirical study, phase transition, constrainedness
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1. INTRODUCTION

A simple undirected graph & is a pair (V, E) where V is a set of vertices and E a set
of edges. An edge {u,v} is in £ if and only if {u,v} C V and vertex u is adjacent to
vertex v. A cligue is a set of vertices ' C V such that every pair of vertices in ' is
adjacent in (. Clique is one of the six basic NP-complete problems given in [Garey and
Johnson 1979]. It is posed as a decision problem [GT19]: given a simple undirected
graph 7 = (V. E) and a positive integer k& < |V|, does & contain a clique of size &k or
more? The optimisation problem is then to find a maximum cligue, where w((7) is the
size of a maximum clique.

We can address the decision and optimisation problems with an exact algorithm,
such as a backtracking search [Pardalos and Rodgers 1992; Fahle 2002; Régin 2003;
Wood 1997; Carraghan and Pardalos 1990; Segundo et al. 2011; Kone and Janezic
2007; Tomita et al. 2010]. Backtracking search incrementally constructs the set O by
choosing a vertex from the candidate set P (where P is initially V') and adding that ver-
tex to C. The candidate set is then updated, removing vertices that cannot participate
in the evolving clique.
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An Empirical Study of Two Vertex Selection Strategies for the Clique
Decision and Maximisation Problems

PATRICK PROSSER, University of Glasgow

Given a graph & 7] a clique is set of vertices & C V' such that all pairs of vertices in & are adjseent.
We can construct & cligue using an exact algorithm that has o guessing stage, ie. o stage whers it must
choose a vertex and add it to . Intuition suggests that we choose the vertex adjacent to most others. Our
study shows that intuition is incorrect and offers an explanation of why that is so. We perform an empirical
study of the clioue decision problem and demonstrate that it has a phase transition with a corresponding
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choosing a vertex from the candidate set P (where P is initially V') and adding that ver-
tex to C. The candidate set is then updated, removing vertices that cannot participate
in the evolving clique.
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4, THE CONSTRAINEDHESS OF CLIQUE DECISION

We now define constrainedness « (kappa) for the clique decision problem and demon-
strate that it captures the behaviour seen in Figures 1 and 2. We then use « to explain
the behaviour of the vertex selection heuristics.

4.1, Constrainedness ()
The phase transition has been characterised in [Gent et al. 1996] as follows

log(Sal)
G
where (Sal} is the expected number of solutions and |5| is the size of the state space,
i.e. the maximum number of states that could be considered by a simple generate-and-
test algorithm. When all states are solutions « = 0 and problems are satisfiable and
easy, when no state is a solution x = = and problems are unsatisfiable and easy, and
when there iz on average a single solution = = 1 and problems are hard. We now define
& for the clique decision problem in G{n, ) for clique size &t The size of the state space
5| is equal to the number of ways we can select k vertices, hence

o-()

To compute the expected number of solutions (Sol} we first calculate the probability
Paot that a state is a solution, i.e. that having chosen k vertices they are all adjacent

()
Since the probability holds for any & vertices the expected number of solutions is given
by

Psal = P

(Sol) = 15| Prat

Combining these results we have that for the clique decision problem in random graphs
G(n, p) with clique size &

i 1
aigue = 2108() @
log((3)]
In Figure 3 we present the same data as in Figure 1 but with constrainedness (<) on
the x-axis, demonstrating that « is a good measure for this problem.

MC'mm w ans plied to (n. {I-n} instances with n < {100,110, 120, 130, 140, 150},
10 < k < 50 a sample size of 100. Plotted in Figure 4 iz on the laft logarithm
of a\rerage run time in milliseconds and on the right percentage satisfiability, both
with « on the x-axiz. Ideally we would like the 50% crossover point to occur at x = 1
with the complexity peak occuring simultanecusly. In fact we see the crossover point
and complexity peak oceurring in the range 0.82 < « = 090, Le. earlier than antiei-
pated but as expected when problem size is small [Gent et al. 1996). The evidence of
Figures 3 and 4 suggest that « characterizses the phase transition phenomena in the
clique decision problem for random G(n, p).

4.2, Constrainedness (x) as a Heuristic

In [Gent et al. 199€] it iz proposed that « be used az a guiding principle when dezigning
variable ordering heuristics, i.e. to make decisions that minimise the constrainedness
of the future sub-problem. In partieular » suggests how we should select a vertex to
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add to the clique. In the setting of G(n.p) with clique size k when a vertex is selected
 changes as follows:

(H] log(1) (%) log( L)
- =
log((E)) log((™. "))
In (2) one vertex is selected so n becomes n — 1, all the edges emanating from that
vertex are removed and edge probability p becomes p', where p' is the number of edges
remaining divided by (";'). Therefore the only differences between vertex selections
is the resulting values of p/. If p' decreases then lng-::P—l,] increases as does x, and if
¢’ increases then 11:@(? ) decreases and so does s. Consequently we should choose the
vertex that makes p' as large as possible and we do this by choosing the vertex that

(2)
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Computational results show that greedy was good for (easy) sparse graphs and non-
greedy good for (hard) dense graphs.

In [Wood 1997] graph colouring and fractional colouring is used to bound search and
vertices are selected in non-increasing degree order.

Patric R. J. Ostergérd proposed an algorithm that has a dynamic programming
flavour [Ostergard 2002]. The search process starts by finding the largest clique con-
taining vertices drawn from the set 5, = {v,} and records it size in ¢[n]. Search then
proceeds to find the largest clique in the set §; = {v;.vyy,...,v,} using the value in
o[z + 1] a8 a bound. The vertices are ordered at the top of search in colour order, i.e. the
vertices are coloured greedily and then ordered in non-decreasing colour order.

[Fahle 2002] presented a simple algorithm (Algorithm 1) (essentially the same as
M€ in Section 5) with a free selection of vertices. This is then enhanced (Algorithm 2)
with forced accept and forced reject steps similar to Rules 4, 5 and 7 of [Pardalos and
Rodgers 1992]. Fahle notes that ‘The ordering in which nodes are considered during

ACM Journal of Experimental Algorithmics, Vol V, No. N, Article A, Publication date: January YYYE
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Abstract

The subgraph isomorphism problem involves deciding whether a copy of a pattern
graph occurs inside a larger target graph. The non-indueed version allows extra edges in
the target, whilst the induced version does not. Although both variants are NP-complete,
algorithms inspired by constraint programming can operate comfortably on many real-world
problem instanees with thousands of vertiees. However, they cannot handle arbitrary in-
stances of this size. We show how to generate “really hard” random instances for subgraph
isomorphism problems, which are computationally ehallenging with a eouple of hundred
vertices in the target, and only twenty pattern vertices. For the non-induced version of the
problem, these instances lie on a satisfiable / unsatisfiable phase transition, whose location
we can prediet; for the indueed variant, much richer behaviour is observed, and constrained-
ness gives a better measure of difficulty than does proximity to a phase transition. These
results have practical consequences: we explain why the widely researched “filter [ verify”
indexing technique used in graph databases is founded wpon a misunderstanding of the
empirical hardness of NP-complete problems, and cannot be beneficial when paired with
any reasonable subgraph isomorphism algorithm.

1. Introduction

The non-induced subgraph isomorphism problem 18 to find an injective mapping from the
vertices of a given pattern graph to the vertices of a given target graph which preserves
adjacency—in essence, we are “finding a copy of” the pattern inside the target. The induced
variant of the problem additionally requires that the mapping preserve non-adjacency, so
there are no “extra edges”™ in the copy of the pattern that we find. We illustrate both
variants in Figure 1. Although these problems are NP-complete (Garey & Johnson, 1979),
modern subgraph isomorphism algorithms based upon constraint programming techniques
can handle problem instances with many hundreds of vertices in the pattern graph, and
up to ten thousand vertices in the target graph (Solnon, 2010; Audemard, Lecoutre, Mod-
eliar, Goncalves, & Porumbel, 2014; McCreesh & Prosser, 2015; Kotthoff, McCreesh, &
Solnon, 2016), and subgraph isomorphism is used successfully in application areas includ-
ing computer vision (Damiand, Solnon, de la Higuera, Janodet, & Samuel, 2011; Solnon,
Damiand, de la Higuera, & Janodet, 2015), biochemistry (Giugno, Bonnicl, Bombieri, Pul-
virenti, Ferro, & Shasha, 2013; Carletti, Foggia, & Vento, 2015), and pattern recognition
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Figure 3: With a fixed pattern graph order of 20, a target graph order of 150, a target edge
probability of 0.40, and varving pattern edge probability, we observe a phase tran-
sition and complexity peak with the Glaszow solver in the non-induced variant.
Each point (x,y) represents one instance i, where r is the pattern edge probahil-
ity used to generate i, y is the number of search nodes needed by the Glasgow
solver to solve i, and the point is drawn as a green circle if § 1s satisfiable, and a
blue cross otherwise. The black line plots the evolution of the arithmetic mean
number of search nodes when increasing the pattern edge probability from O to 1
in steps of 0,01, using a larger sample size of 1, 000

ohserve looks remarkably similar to random 35AT problems—compare, for example, Fig-
ure 1 of the work of Leyvton-Brown, Hoos, Hutter, and Xu (2014). In particular, satisfiable
instances tend to be easier, but show greater variation than unsatisfiable instances, and
there are exceptionally hard satisfiable instances (Smith & Grant, 1997).

2.2 Phase Transitions when Varying Pattern and Target Edge Probabilities

What if we alter the edge probabilities for both the pattern graph and the target graph?
In the top row of Figure 4 we show the satisfiahility phase transition for the non-induced
variant, for patterns of order 10, 20 and 30, targets of order 150, and varying pattern [x-
axiz) and target (y-axis) edge probabilities. Each axis runs over 101 edge probahilities, from
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G(10,z) < G4, x) < G(15 x) —
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Figure 5: Behaviour of algorithms on the induced variant with target graphs of 150 vertices,
shown in the style of Figure 4. The sixth row plots constrainedness using equa-
tion (3): the darkest region is where x = 1, and the lighter regions show where
the problem is either over- or under-constrained. The final row shows when the
Glasgow algorithm performs better when given the complements of the pattern
and target graphs as inputs—the solid lines show the empirical location of the
phase transition, and the dotted lines are d; = 0.5 and the d, = d; diagonal.
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Figure 6: Behaviour of other solvers on the induced variant using smaller target graphs with
75 vertices, shown in the style of Figure 4. The second row shows the number
of search nodes used by the Glasgow algorithm, the third and fourth rows show
the number of decisions made by the pseudo-boolean and SAT solvers, the fifth
shows the number of search nodes used on the MIP encoding, and the final row
the clique encoding.
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Figurz 3: A more detailed picture of difficulty of sodving the cligue optimisation problem for G150, 2). Also plotted is the mean search
effort to find the optimal sodution at not prove its opimality, and the mean search e ffort peeded to prove optimality afier the optimal sodution
is found. Finally, each light line shows the mean search effort for a smgle decision problem. For each line, density is increased in steps of
.00, with 100,000 samples per step.
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Figurz 3: A more detailed picture of difficulty of sodving the cligue optimisation problem for G150, 2). Also plotted is the mean search
effort to find the optimal sodution at not prove its opimality, and the mean search e ffort peeded to prove optimality afier the optimal sodution
is found. Finally, each light line shows the mean search effort for a smgle decision problem. For each line, density is increased in steps of
0001, with 100,000 samples per step.
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0001, with 100,000 samples per step.
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