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A b s t r a c t .  We show that the same methodology used to study phase 
transition behaviour in NP-complete problems works with a polynomial 
problem class: establishing arc consistency. A general measure of the con- 
strainedness of an ensemble of problems, used to locate phase transitions 
in random NP-complete problems, predicts the location of a phase tran- 
sition in establishing arc consistency. A complexity peak for the AC3 
algorithm is associated with this transition. Finite size scaling models 
both the scaling of this transition and the computational cost. On prob- 
lems at the phase transition, this model of computational cost agrees 
with the theoretical worst case. As with NP-complete problems, con- 
strainedness - and proxies for it which are cheaper to compute - can be 
used as a heuristic for reducing the number of checks needed to establish 
arc consistency in AC3. 

1 Introduct ion 

Following [4] there has been considerable research into phase transit ion behaviour 
in NP-complete  problems. Problems from the phase transition are now rou- 
tinely used to benchmark algorithms for constraint satisfaction, satisfiability and 
other NP-complete  problems. Phase transition behaviour has even suggested new 
heuristics for NP-complete  problems [7]. Many interesting questions are raised 
by this research. Are phase transitions impor tant  in other complexity classes? I f  
so, do they behave like phase transitions in NP? Does performance at the phase 
transit ion agree with the worst case complexity? Can we use phase transit ion 
behaviour to suggest heuristics for problems in these new complexity classes? In 
this paper  we show that  the same techniques used to study phase transitions in 
NP-complete  problems can be used to study a phase transition in a polynomial  
problem class: establishing arc consistency in constraint satisfaction problems. 

2 Constraint  satisfaction 

A binary constraint satisfaction problem consists of a set of variables V and a 
set of constraints C. Each variable v E V has a domain of values of size my. 
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Each binary constraint c E C rules out some proportion pc of combinations 
of values for a pair of variables. We call pc the "tightness" of a constraint. 
Two variables are adjacent if a constraint acts between them. The constraint 
satisfaction decision problem is then to determine if there exists an assignment 
of values to variables such that none of the constraints are violated. Consistency 
techniques are often applied to simplify such decision problems either before 
or during search. Arc consistency (or AC) is the simplest and most commonly 
used such technique. A problem is arc consistent if all values in all variables 
are supported. A value i for variable v is supported if, when i is assigned to v, 
all variables adjacent to v can be assigned values without violating constraints 
on v. Any value which is not supported cannot occur in a solution and can 
be removed. An arc consistency algorithm achieves an arc consistent state by 
repeatedly removing unsupported values. If it succeeds, we have established AC. 
If not, a domain wipe out occurs, where one variable has all values in its domain 
removed and the problem is insoluble. Therefore, the arc consistency decision 
problem is to determine if there exists a non-empty domain of supported values 
for each variable. The arc consistency algorithms studied here are AC3 [t2] and 
AC6 [2]. The worst case complexity of AC3 is O(em 3) [13] and of AC6 is O(em2), 
where m is the size of the largest domain and e is the number of edges in the 
constraint graph. 

3 Phase  transit ions in N P  

Phase transition behaviour has been studied in many NP-complete problems 
[4, 14, 9]. To unify such studies, [7] defines the constrainedness, n of an ensemble 
of combinatorial problems as, 

=def 1 l°g2((S°l)) (1) 
N 

where N is the base 2 logarithm of the size of the state space, and (Sol> is the 
expected number of these states that  are solutions. Since 0 < (Sol) < 2 N, ~ lies in 
the range [0, co). If x = 0 then (Sol) = N. Problems here are under-constrained 
since every state is expected to be a solution. If ~ = ~ then (Sol) = 0. Problems 
here are over-constrained since no states are expected to be solutions. If t~ ~ 1 
both soluble and insoluble problems can occur. As problems are on the "knife- 
edge" between solubility and insolubility, it is often difficult to find solutions or 
prove that  none exist. 

This definition of constrainedness captures parameters used to study phase 
transitions in a wide variety of NP-complete problems including constraint satis- 
faction [6], satisfiability [14], graph colouring [4] and number partit ioning [9]. As 
we vary problem size, the location of the phase transition tends to occur over a 
small range of ~. Other parameters can be less stable. For example, the expected 
number of solutions, which is used to predict the location of the phase transition 
in constraint satisfaction in [20], can grow exponentially with problem size. In 
random 3-SAT problems, (Sot) at the phase transition grows as 2 °18N [8]. 
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In this paper, it will be convenient to express ~ as, 

log p 
= (2) 

where p -- (Sol)~2 N is the solution density. That is, the probability that an 
arbitrarily chosen candidate in the ensemble is a solution. 

4 Phase  transit ions in P 

The same methodology developed to study phase transitions in NP-complete 
problems can be applied to polynomial problems. This yields several immediate 
results. First, the measure of constrainedness of a particular polynomial prob- 
lem is the same as that for NP-complete problems. Consequently we are able 
to observe experimentally scaling of computational cost, and this is consistent 
with the theoretical worst-case complexity. Finally we use the definition of con- 
strainedness to design new heuristics and explain the performance of existing 
heuristics. 

There is an obvious complexity peak in graphs of the performance for the 
AC3 and AC6 algorithms in [2]. However, the phase transition in arc consistency 
was not systematically studied till [10]. For example, in Figure 1 of [10] we see a 
transition from a region where problems do not benefit from arc consistency, to 
one which can be proved insoluble by applying arc consistency. In between is a 
region of problems whose domains get smaller when arc consistency is applied, 
and which tend to be the hardest to make arc consistent. Graphs in [10] are 
plotted against ~csp, the constrainedness of the constraint satisfaction decision 
problem. 

Unlike NP-complete problems, the location of the phase transition in estab- 
lishing arc consistency does not occur around some fixed vMue of ~c,v close 
to 1. For example, Table 1 of [10] reports the location of the phase transition 
shifting from ~,p  ~ 1.08 to ~c,p ~ 3.68. This might suggest a different ap- 
proach is needed to locate phase transitions in polynomial problems compared 
to NP-complete problems. 

In the rest of the paper, we show that the phase transition in establishing arc 
consistency is in fact very similar to that in NP-complete problems. The problem 
with the presentation of results in [10] is that ~c,v is the constrainedness of the 
NP-complete decision problem: Is there a consistent assignment of values to 
variables? But we are merely solving a polynomial problem, establishing arc 
consistency, and ~csp does not measure the constrainedness of this problem. As 
soon as we compute the constrainedness of establishing arc consistency, we see 
very similar phase behaviour in P as in NP. 

5 C o n s t r a i n e d n e s s  o f  arc  c o n s i s t e n c y  

To compute the constrainedness of establishing arc consistency, ~¢~c, we need to 
decide what the state space, S, and a solution within it look like. A solution 
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is a constraint satisfaction problem with arc consistent domains. Each point 
in the state space represents a constraint satisfaction problem with variables 
that  have domains that are some subset of the original domains. The number of 
possible subsets of the domain of v is 2 m~. The size of the state space is therefore 
H~ev  2rn~, and hence N = ~veV my. 

We next calculate the probability q that  a candidate state is arc consistent. 
Assume that  a constraint c between variables x and y is represented by a con- 

by ~ The candidate is arc consistent if there is at least flict matr ix  of size m ,  my. 
one allowable value in each row and each column of every conflict matrix.  To 
simplify the computat ion of the probability, q we assume independence between 
the probability that  there is an allowable value in each row and the probability 
that  there is an allowable value in each column. Whilst such an assumption is 
strictly false, similar independence assumptions have proved very successful in 
predicting the location of phase transitions in NP-complete problems. For ex- 
ample, in number partitioning, assuming independence between the binary digit 
positions predicts the location of the phase transition to within a 4% accuracy 

[9]. 
When we know the tightness of each constraint, it is easy to calculate if 

there is at least one allowable value. Our ensemble of problems has random in- 
dependent constraints, of tightness Pc. Note that,  on average, all arc consistency 
candidates for this problem class have constraints that  are the same tightness as 
the corresponding constraints in the original problem. Thus, the values of Pc for 
each constraint c in the original problem can be used when assessing candidates. 
It follows that,  

q = H(1 -pcm ' )m '~ (1 -pcm '~ )m '~  
cEC 

To derive p, we need the mean value of q over the state space: p = 2 - ~  ~-':.s~s q," 
Due to variations in domain sizes over each candidate, this is not a simple cal- 
culation. Instead, we estimate p using a mean field approximation, and assume 
that  all candidates have an equal value of q, derived from an "average" candidate 
with domain sizes half that  of the original problem. This gives, 

P = H (1 - pcm=/2)m~/2(1 - pomP~2) m~/2 
cEC 

That  is, 
m ~  m a z  

-- ~ c e c  rn= log2(1 -- Pc ~ ) q- my log2(1 -- Pe 2 ) 
= ( z )  

2 ~  m~ 
vEV 

In the remainder of this paper, unless otherwise indicated, we use regular prob- 
lems with uniform domain size m, exactly pln(n - 1)/2 constraints between the 
variables, each of which has the same tightness p~. These problems are cate- 
gorised by the tuple of parameters (n, ra, pl, p~). We can then simplify n,c to: 

1 
xac = - 7pl  (n - 1) log 2 (1 - p2 m/2) (4) 
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6 Arc consistency phase transition 

To test this new parameter we ran experiments on establishing arc consistency 
with (n, m, Pl, P2) problems with a domain size m = 10 and a varying number of 
variables n. We fix the average degree of problems at 5 by setting P l  = 5 / ( n  - t) 
and at each value of n change P2 in steps of 0.01. In Figure I, we test 1000 
randomly generated problems at each value of P2, measuring the probability of 
establishing AC. 

1 I.  

0.8 

0.6 

0.4 

0.2 

0 
0.4 

_ _ k • 

0.5 0.6 0.7 0.8 0.9 

70 
60 -+--- 
50 -B-- 
4 0 . . x  ...... 
30 .-4~.- 
20 -~ - -  

Fig. 1. Probability of establishing AC (y-axis) against ~a~ (x-axis) for varying 
n 

As with NP-complete problems, a complexity peak for the cost of establishing 
arc consistency is associated with this probability phase transition. In Figure 2 we 
plot the computational cost (in terms of consistency checks) for AC3, establishing 
arc consistency for the same set of problems as in Figure 1. There is a familiar 
easy-hard-easy pattern. For mac << 1, problems are under-constrained and it is 
easy to find an arc consistent state. For mac >) 1, problems are over-constrained 
and it is easy to observe domain wipe out. The hardest problems tend to occur 
in the phase transition in between when mac "~ 1. 

The complexity peak for AC6 can be observed at similar values of nac. 
Bessi~re [2] reports experiments on problems (20, 5, 0.3, P2), with P2 varying in 
steps of 0.05, with 10 problems at each value of P2. In Figure 4 (in [2]) the 
complexity peak for AC3 and AC6 occurs at 0.45 < p2 < 0.5 corresponding 
to 0.6 < ~;ac < 0.8. And in Figure 5 (again in [2]) the complexity peak for 
(12, 16, 0.5,p2) occurs at P2 = 0.8 corresponding to nac = 0.73. 

Schiex e t .  al. established arc consistency with a non-uniform class of problems 
in which domain size varied randomly between 5 and 25, solving 20 problems 
at each value of constraint tightness [18]. They observed that "There is no clear 
"wipe-out" threshold as in the usual [fixed domain size] model" (page 221 of 
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Fig.  2. Median consistency checks used by AC3 (y-axis) against mac (x-axis) for 
varying n. 

[18]). We performed experiments to determine if their observation holds true 
when we classify problems with respect to ~ c .  

24000 

22000 

20000 

18000 

16000 

14000 

12000 

10000 

8000 
0.3 

t t I I I 

0.4 0,5 0.6 0.7 0.8 

~8 

0.6 

0.4 

~2 

. . . . .  0 
0.9 1 1.1 1.2 

Fig.  3. Problems with non-uniform domain sizes. Y-axis on left and bold con- 
tour is computational cost, Y-axis on right and broken contour is probability of 
establishing AC. X-axis is ~ac. 

Problems were generated with n = 20 and Pl = 0.5. Half of the variables were 
randomly chosen to have a domain size of 10, with the rest having a domain size 
of 20. Constraint tightness, p~, was then varied from 0.01 to 0.99 in steps of 0.01, 
with 1000 problems at each point. When a problem was generated its n~c value 
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was then computed and AC3 was applied. Figure 3 shows a clear phase transition 
in this non-uniform problem class, again at ~a~ ~ 1. The reason why this was 
not evident in [18] is due to variation in constrainedness of instances within the 
ensemble. The contribution to ~ac (in Equation (3)) by a single constraint is 
sensitive to the tightness of the constraint and size of the domains involved in 
that constraint. 

7 Finite size scaling 

In NP-complete problem classes, the technique of finite size scaling has been 
borrowed from statistical mechanics [1] to model the change in the shape of the 
phase transition as problem size increases [11]. Around some critical value, no, 
problems are indistinguishable except for a simple change in scale modelled by 
a power law. Finite-size scaling also works for this polynomial class. Following 
[7], we define a resealed parameter 

- -  ~c  N 1 / ~ ,  7 =def (5) 
Ec 

(~ - ~c)/~c plays the same role as the reduced temperature, ( T  - T c ) / T c  in a 
thermodynamic system whilst N 1IV provides the scaling with problem size. As 
in [7] we define problem size as the number of bits needed to represent a state. 
In this case, we have N = n m .  The values nc and u are found by analysis of the 
empirical data using the methodology outlined in [6]. This gives nc = 0.45 and 

-- 3.0. Figure 4 shows the same data as Figure 1 rescale<] by plotting against 
7. This graph shows that finite size scaling successfully models the AC phase 
transition. 
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The rescaled parameter 3  ̀has been used to model growth of search cost as 
well as changes in probability as size increases in NP-complete problems [19, 6]. 
Rescaling of the number of checks performed by AC3 also gives a simple and 
accurate model of computational cost across the phase transition, even_ though 
AC3 is a polynomial algorithm. Furthermore this model gives close agreement 
with previous theoretical results. As the worst case complexity of AC3 is O(em3), 
and as the number of edges in the constraint graph, e is proportional to n 
in this study and m is fixed, computational cost should grow linearly with n. 
Accordingly we perform linear regression on the median checks performed by 
AC3 from 7 = - 3  to 7 in steps of 0.25, interpolating on observed data  where 
necessary. Figure 5 shows that  this linear model fits the data  of Figure 2 very 
well. Note that  the lines do not join points directly. Instead they join the values 
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Fig.  5. Median consistency checks used by AC3 (y-axis) against 3' (x-axis) for 
varying n. Points represent observed data  while lines join modelled values of the 
data  using linear regression. 

modelled by linear regression. For example at 7 = 0 the model is that  checks 
189n - 167 while at 7 = 2 the model is 297n + 87. The closeness between 

the lines and points indicate how accurately linear scaling models computat ional  
cost. Note that the highest costs occur at 3  ̀~ 2, very close to the point where 50% 
of problems could be made arc consistent and 50% could not. This correlation 
has been noted many times in NP-complete classes. 

We also investigate scaling when we fix the number of variables n : 20 
and vary the domain size. We use a constraint tightness Pl = 1 so that  the 
constraint graphs were cliques, and vary P2 at each value of m. The probability 
of establishing AC shows a clear phase transition as nac varies. We again rescale 
this data  using finite size scaling with N = n m ,  Re = 0.89 and u = 1.5. Figure 
6 shows that  this models the phase transition very well. 

We also modelled the growth in computational cost as the domain size varies. 
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Fig.  6. Probability of establishing AC (y-axis) against 7 for varying m with 
~ = 0.89, ~ = 1.5 (x-axis) 

We no longer expect linear growth because the theoretical worst case is cubic in 
m. Since there are always 190 edges in our graphs, we ignored e in our models. 
We first at tempted to model checks used as a m  b. This gives a reasonable fit 
to the da ta  and the peak values of b are close to 3, suggesting cubic growth. 
To give an explicit comparison between quadratic and cubic growth, we next 
investigated the model a m  2 + b m  3 with least square linear fitting using sin- 
gular value decomposition. This gives a very good fit to the data, as can be 
seen in Figure 7. Throughout the range of 7 shown, our model suggests cubic 
growth. For example for underconstrained problems at 7 = -20  the model is that  
checks ~ 43.1m2 + 2.26m 3. For overconstrained problems at 7 = 20 the model is 
25.8m 2 + 8.37m 3, while for critically constrained problems at 7 = 5 the model is 
60.0m 2 + 10.8m 3. Grant and Smith [10] rule out the model ern 3 but incorrectly 
conclude that  growth is therefore nearer quadratic than cubic. Our model sug- 
gests that,  with an appropriate scaling constant, growth is O ( e m  3) which is the 
theoretical worst case. The coefficient of the cubic term suggests that  problems 
at the phase boundary are significantly harder to solve than problems away from 
the boundary. 

As the theoretical worst case behaviour seems to be attained, random prob- 
lems appear to be able to contribute significantly to the study of the performance 
of polynomial algorithms like AC3. Interestingly, we observe scaling consistent 
with the theoretical worst case using just the median cost. This would suggest 
that  the worst cases are not confined to rare and pathological examples. Problems 
at the phase transition may therefore be a valuable testbed for algorithms for 
AC and other polynomial problems, just as they are for NP-complete problems. 
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Fig.  7. Median consistency checks used by AC3 (y-axis) against 7 (x-axis) for 
varying m. Points represent observed data  while lines join modelled values. 

8 C o n s t r a i n t  O r d e r i n g  H e u r i s t i c s  

At the heart of the AC3 algorithm is a set of directed constraints (often called 
arcs) waiting to be revised. The main loop of AC3 deletes an arc from this set 
and revises it: depending on the result other arcs may be added to the set if not 
already in it. This set of arcs is typically presented as a queue [12, 13, 21], such 
that  arcs are removed in the order they were added, and propagation proceeds 
breadth first. For finite domains, we may use any other method for selecting the 
next arc to revise, and this opens up the scope for constraint ordering heuristics 
in AC3. 

Wallace and Freuder performed a study on a number of heuristics based 
upon an intuitive ASAP (as soon as possible) principle where one at tempts  to 
prune domain values early [23]. They introduced heuristics based upon choosing 
(i) the arc with greatest constraint tightness, (ii) the arc for which the variable 
being checked for support has smallest domain size, (iii) an arc that  will update a 
node which is involved in the most constraints. Heuristics (i) and (ii) worked well, 
reducing the number of checks by up to a factor of two over random selection or 
using a queue. Heuristic (iii) did not significantly reduced the number of checks 
over using a queue or random selection. 

For NP-complete problems, the heuristic of making a choice that  minimises 
the constrainedness of the resulting subproblem can reduce search over standard 
heuristics [7]. The intuition is that  we want to branch on the most constrained 
variable into the least constrained and therefore most soluble subproblem. Simi- 
larly, for a polynomial problem like AC, we can use ~¢ac as a constraint ordering 
heuristic in AC3. Here, the set of choices is the arcs in the current set maintained 
by AC3. We consider the remaining subproblem to have the same set of variables 
as the original problem, but with only those arcs still remaining in the set. We 
select the arc whose removal minimises the value of nac of the remaining sub- 
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problem, ignoring the fact that  subsequent revision of this arc may lead to new 
arcs being added to the set. By Equation (3), we choose the directed constraint 
c from variable x to variable y which has the maximal value of: 

- m =  log2(1 - pc '~y/2) 

Even though this heuristic can significantly reduce the number of constraint 
checks need to establish arc consistency, it may not reduce runtimes. As with 
NP-complete problems, there are proxies for the heuristic of minimising con- 
strainedness that  are cheap to compute and that  offer good performa~uce. For 
instance, heuristics (i) and (ii) from [23] can be viewed as surrogates of the 
minimise-~ac heuristic, and we should expect them to perform well. Heuristic (i) 
chooses c such that  Pc is maximised. Heuristic (ii) chooses c from z to y such 
that  my is minimised. Everything else being equal, both these decisions reduce 

Using the minimise-n~c heuristic, we performed experiments on the prob- 
lem class (20, 10, 0.5) with P2 varied from 0 to 1 in steps of 0.01. Each point 
in figures 8 and 9 is the median value of 100 samples. For comparison with the 
minimise-nac heuristic, we also implemented five variants of AC3 using a queue, a 
stack 2, picking a random element of the current set with no heuristic, and heuris- 
tics (i) and (ii) of [23]. We also report the number of revisions, i.e. the number 
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Fig.  8. Median number of checks performed by AC3 (y-axis) using various heuris- 
tics, against ~ac (x-axis) for (20, 10, 0.5) problems 

of times an arc is taken out of the set. The number of revisions is important,  
since for problems involving structured (for instance arithmetic) constraints, or 

2 The results reported in previous sections used a stack and corresponds to a depth 
first propagation of constraints. 
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when domains are represented as intervals, arc revisions may take constant time. 
In this situation, checks is a poor measure of computational effort. 

At the phase transition, the ~ac heuristic beats the other heuristics, whilst a 
random choice is always worst. What is important is that if we ignore the cost of 
the ~ac heuristic we see that it performs well. If we then have to compromise the 
heuristic to bring down its cost we might very well have rediscovered Wallace and 
Freuder's heuristics. Heuristics like these deserve further attention, for example 
within search algorithms like maintaining arc consistency [17]. 

9 R e l a t e d  W o r k  

There exist several polynomial problems in which phase transition behaviour 
has been seen. For example, random 2-SAT problems have a phase transition in 
satisfiability at a ratio of clauses to variables, L/N of 1 [5], and it has long been 
known that random graphs display sharp thresholds in properties like graph 
connectivity at critical values of the average degree [3]. 

Evidence for a phase transition in establishing arc consistency can be found 
in [2]. Bessi~re's graphs show clear peaks in the complexity of AC3 and AC6. 
Bessi~re's results suggest that AC4 [15], although of lower complexity, can per- 
form poorly away from the complexity peaks of AC3 and AC6. An empirical 
study by Wallace reaffirms this; AC3 was nearly always better than AC4 [22]. 

The phase transition in arc and path consistency was first studied in depth 
in [10] with problems from the class (20, 10,pt,p2). Using data from Table 1 in 
[10], we can calculate values for ~ac for this phase transition. Unlike ncsp at the 
phase transition which varied from 1.08 to 3.68, the phase transition occurs from 
~ac ~-" 0.6 to nac ~ 1. In NP-complete problem classes, the phase transition in 
solubility usually occurs over a similar range of n [7]. 
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Wallace and Freuder studied a number of constraint ordering heuristics for 
AC3, two of which we have shown to be proxies for the minimise g:c heuristic 
[23]. Nudel derived theoretically 8 constraint ordering heuristics, to maximise 
the detection of dead ends in forward checking [16]. These heuristics are similar 
to combinations of those of [23], selecting a constraint with minimum m, (1 -pc) ,  
where v is a future variable and c is incident on the current variable. 

There appears to be scope for ordering heuristics within AC6. AC6 maintains 
a set, the Waiting-List, of unsupported values waiting to be propagated. Each 
element of Waiting-List is a pair (j, b), where b is a value removed from the 
domain of the j th  variable. Associated with (j, b) is the set of values Sjb that are 
immediately supported by (j, b) and require new support. One possible heuristic 
may be to select (j, b) from Waiting-List such that [Sjb[ is maximised. At present 
we are unsure what decisions within AC6 wilt tend to minimise constrainedness, 
but we think this is worth further investigation. 

10  C o n c l u s i o n s  

We have shown that the same methodology used to study phase transition be- 
haviour in NP-complete problems works with a polynomial problem class, estab- 
lishing arc consistency in constraint satisfaction problems. The same measure for 
the constrainedness of an ensemble of problems that locates the phase transitions 
in random NP-comptete problems identifies the location of a phase transition in 
establishing arc consistency. A complexity peak for the cost of the AC3 and 
AC6 algorithms is associated with this transition. Finite size scaling of this con- 
strainedness parameter models both the scaling of the probability transition and 
of the search cost for AC3. This model of search cost agrees with the theoretical 
cubic worst case for AC3 on problems at the phase transition. This measure of 
constrainedness and proxies for it can then be used as the basis for constraint 
ordering heuristics that can reduce the number of checks and revisions performed 
by AC3. 

What general lessons might be learnt from this study? First, we can iden- 
tify and locate phase transitions in polynomial problem classes using the same 
constrainedness parameter developed to study NP-complete problems. Second, 
problems at the phase transition in polynomial problem classes can be more 
difficult to solve than over- or under-constrained problems away from the phase 
boundary. Indeed, our empirical model of median search cost for problems at 
the phase transition agrees with the theoretical worst case. Problems from the 
phase transition might therefore be useful for suggesting worst case asymptotes 
or, as in NP-complete domains, for benchmarking competing algorithms. Third, 
algorithms for polynomial problems can benefit from heuristics to reduce search. 
As with NP-complete problems, minimising constrainedness (and proxies for it 
which are cheap to compute) may provide the basis of useful heuristics. Finally, 
other polynomial problems (for example, path consistency, Horn satisfiability 
and polynomial approximation procedures for NP-complete problems) as well as 
other complexity classes might benefit from similar phase transition analysis. 
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