
The Constrainedness of Arc Consistency*

Ian P. Gent, Ewan MacIntyre, Patrick Prosser, Paul Shaw, and Toby Walsh

The APES Research Group, Department of Computer Science, University of
Strathclyde, Glasgow G1 1XH, United Kingdom.

Emait { ipg, em, pa t , ps , tw}@cs, s t r a t h , ac. uk

A b s t r a c t . We show that the same methodology used to study phase
transition behaviour in NP-complete problems works with a polynomial
problem class: establishing arc consistency. A general measure of the con-
strainedness of an ensemble of problems, used to locate phase transitions
in random NP-complete problems, predicts the location of a phase tran-
sition in establishing arc consistency. A complexity peak for the AC3
algorithm is associated with this transition. Finite size scaling models
both the scaling of this transition and the computational cost. On prob-
lems at the phase transition, this model of computational cost agrees
with the theoretical worst case. As with NP-complete problems, con-
strainedness - and proxies for it which are cheaper to compute - can be
used as a heuristic for reducing the number of checks needed to establish
arc consistency in AC3.

1 Introduct ion

Following [4] there has been considerable research into phase transit ion behaviour
in NP-complete problems. Problems from the phase transition are now rou-
tinely used to benchmark algorithms for constraint satisfaction, satisfiability and
other NP-complete problems. Phase transition behaviour has even suggested new
heuristics for NP-complete problems [7]. Many interesting questions are raised
by this research. Are phase transitions impor tant in other complexity classes? I f
so, do they behave like phase transitions in NP? Does performance at the phase
transit ion agree with the worst case complexity? Can we use phase transit ion
behaviour to suggest heuristics for problems in these new complexity classes? In
this paper we show that the same techniques used to study phase transitions in
NP-complete problems can be used to study a phase transition in a polynomial
problem class: establishing arc consistency in constraint satisfaction problems.

2 Constraint satisfaction

A binary constraint satisfaction problem consists of a set of variables V and a
set of constraints C. Each variable v E V has a domain of values of size my.

* The authors are supported by EPSRC awards GR/L/24014 and GR/K/65706, and
the EU award EU20603. The authors wish to thank other members of the APES
research group for their help, and Gene Freuder.

328

Each binary constraint c E C rules out some proportion pc of combinations
of values for a pair of variables. We call pc the "tightness" of a constraint.
Two variables are adjacent if a constraint acts between them. The constraint
satisfaction decision problem is then to determine if there exists an assignment
of values to variables such that none of the constraints are violated. Consistency
techniques are often applied to simplify such decision problems either before
or during search. Arc consistency (or AC) is the simplest and most commonly
used such technique. A problem is arc consistent if all values in all variables
are supported. A value i for variable v is supported if, when i is assigned to v,
all variables adjacent to v can be assigned values without violating constraints
on v. Any value which is not supported cannot occur in a solution and can
be removed. An arc consistency algorithm achieves an arc consistent state by
repeatedly removing unsupported values. If it succeeds, we have established AC.
If not, a domain wipe out occurs, where one variable has all values in its domain
removed and the problem is insoluble. Therefore, the arc consistency decision
problem is to determine if there exists a non-empty domain of supported values
for each variable. The arc consistency algorithms studied here are AC3 [t2] and
AC6 [2]. The worst case complexity of AC3 is O(em 3) [13] and of AC6 is O(em2),
where m is the size of the largest domain and e is the number of edges in the
constraint graph.

3 Phase transit ions in N P

Phase transition behaviour has been studied in many NP-complete problems
[4, 14, 9]. To unify such studies, [7] defines the constrainedness, n of an ensemble
of combinatorial problems as,

=def 1 l°g2((S°l)) (1)
N

where N is the base 2 logarithm of the size of the state space, and (Sol> is the
expected number of these states that are solutions. Since 0 < (Sol) < 2 N, ~ lies in
the range [0, co). If x = 0 then (Sol) = N. Problems here are under-constrained
since every state is expected to be a solution. If ~ = ~ then (Sol) = 0. Problems
here are over-constrained since no states are expected to be solutions. If t~ ~ 1
both soluble and insoluble problems can occur. As problems are on the "knife-
edge" between solubility and insolubility, it is often difficult to find solutions or
prove that none exist.

This definition of constrainedness captures parameters used to study phase
transitions in a wide variety of NP-complete problems including constraint satis-
faction [6], satisfiability [14], graph colouring [4] and number partit ioning [9]. As
we vary problem size, the location of the phase transition tends to occur over a
small range of ~. Other parameters can be less stable. For example, the expected
number of solutions, which is used to predict the location of the phase transition
in constraint satisfaction in [20], can grow exponentially with problem size. In
random 3-SAT problems, (Sot) at the phase transition grows as 2 °18N [8].

329

In this paper, it will be convenient to express ~ as,

log p
= (2)

where p -- (Sol)~2 N is the solution density. That is, the probability that an
arbitrarily chosen candidate in the ensemble is a solution.

4 Phase transit ions in P

The same methodology developed to study phase transitions in NP-complete
problems can be applied to polynomial problems. This yields several immediate
results. First, the measure of constrainedness of a particular polynomial prob-
lem is the same as that for NP-complete problems. Consequently we are able
to observe experimentally scaling of computational cost, and this is consistent
with the theoretical worst-case complexity. Finally we use the definition of con-
strainedness to design new heuristics and explain the performance of existing
heuristics.

There is an obvious complexity peak in graphs of the performance for the
AC3 and AC6 algorithms in [2]. However, the phase transition in arc consistency
was not systematically studied till [10]. For example, in Figure 1 of [10] we see a
transition from a region where problems do not benefit from arc consistency, to
one which can be proved insoluble by applying arc consistency. In between is a
region of problems whose domains get smaller when arc consistency is applied,
and which tend to be the hardest to make arc consistent. Graphs in [10] are
plotted against ~csp, the constrainedness of the constraint satisfaction decision
problem.

Unlike NP-complete problems, the location of the phase transition in estab-
lishing arc consistency does not occur around some fixed vMue of ~c,v close
to 1. For example, Table 1 of [10] reports the location of the phase transition
shifting from ~,p ~ 1.08 to ~c,p ~ 3.68. This might suggest a different ap-
proach is needed to locate phase transitions in polynomial problems compared
to NP-complete problems.

In the rest of the paper, we show that the phase transition in establishing arc
consistency is in fact very similar to that in NP-complete problems. The problem
with the presentation of results in [10] is that ~c,v is the constrainedness of the
NP-complete decision problem: Is there a consistent assignment of values to
variables? But we are merely solving a polynomial problem, establishing arc
consistency, and ~csp does not measure the constrainedness of this problem. As
soon as we compute the constrainedness of establishing arc consistency, we see
very similar phase behaviour in P as in NP.

5 C o n s t r a i n e d n e s s o f arc c o n s i s t e n c y

To compute the constrainedness of establishing arc consistency, ~¢~c, we need to
decide what the state space, S, and a solution within it look like. A solution

330

is a constraint satisfaction problem with arc consistent domains. Each point
in the state space represents a constraint satisfaction problem with variables
that have domains that are some subset of the original domains. The number of
possible subsets of the domain of v is 2 m~. The size of the state space is therefore
H~ev 2rn~, and hence N = ~veV my.

We next calculate the probability q that a candidate state is arc consistent.
Assume that a constraint c between variables x and y is represented by a con-

by ~ The candidate is arc consistent if there is at least flict matr ix of size m , my.
one allowable value in each row and each column of every conflict matrix. To
simplify the computat ion of the probability, q we assume independence between
the probability that there is an allowable value in each row and the probability
that there is an allowable value in each column. Whilst such an assumption is
strictly false, similar independence assumptions have proved very successful in
predicting the location of phase transitions in NP-complete problems. For ex-
ample, in number partitioning, assuming independence between the binary digit
positions predicts the location of the phase transition to within a 4% accuracy

[9].
When we know the tightness of each constraint, it is easy to calculate if

there is at least one allowable value. Our ensemble of problems has random in-
dependent constraints, of tightness Pc. Note that, on average, all arc consistency
candidates for this problem class have constraints that are the same tightness as
the corresponding constraints in the original problem. Thus, the values of Pc for
each constraint c in the original problem can be used when assessing candidates.
It follows that,

q = H(1 -pcm ')m '~ (1 -pcm '~)m '~
cEC

To derive p, we need the mean value of q over the state space: p = 2 - ~ ~-':.s~s q,"
Due to variations in domain sizes over each candidate, this is not a simple cal-
culation. Instead, we estimate p using a mean field approximation, and assume
that all candidates have an equal value of q, derived from an "average" candidate
with domain sizes half that of the original problem. This gives,

P = H (1 - pcm=/2)m~/2(1 - pomP~2) m~/2
cEC

That is,
m ~ m a z

-- ~ c e c rn= log2(1 -- Pc ~) q- my log2(1 -- Pe 2)
= (z)

2 ~ m~
vEV

In the remainder of this paper, unless otherwise indicated, we use regular prob-
lems with uniform domain size m, exactly pln(n - 1)/2 constraints between the
variables, each of which has the same tightness p~. These problems are cate-
gorised by the tuple of parameters (n, ra, pl, p~). We can then simplify n,c to:

1
xac = - 7pl (n - 1) log 2 (1 - p2 m/2) (4)

331

6 Arc consistency phase transition

To test this new parameter we ran experiments on establishing arc consistency
with (n, m, Pl, P2) problems with a domain size m = 10 and a varying number of
variables n. We fix the average degree of problems at 5 by setting P l = 5 / (n - t)
and at each value of n change P2 in steps of 0.01. In Figure I, we test 1000
randomly generated problems at each value of P2, measuring the probability of
establishing AC.

1 I.

0.8

0.6

0.4

0.2

0
0.4

_ _ k •

0.5 0.6 0.7 0.8 0.9

70
60 -+---
50 -B--
4 0 . . x
30 .-4~.-
20 -~ - -

Fig. 1. Probability of establishing AC (y-axis) against ~a~ (x-axis) for varying
n

As with NP-complete problems, a complexity peak for the cost of establishing
arc consistency is associated with this probability phase transition. In Figure 2 we
plot the computational cost (in terms of consistency checks) for AC3, establishing
arc consistency for the same set of problems as in Figure 1. There is a familiar
easy-hard-easy pattern. For mac << 1, problems are under-constrained and it is
easy to find an arc consistent state. For mac >) 1, problems are over-constrained
and it is easy to observe domain wipe out. The hardest problems tend to occur
in the phase transition in between when mac "~ 1.

The complexity peak for AC6 can be observed at similar values of nac.
Bessi~re [2] reports experiments on problems (20, 5, 0.3, P2), with P2 varying in
steps of 0.05, with 10 problems at each value of P2. In Figure 4 (in [2]) the
complexity peak for AC3 and AC6 occurs at 0.45 < p2 < 0.5 corresponding
to 0.6 < ~;ac < 0.8. And in Figure 5 (again in [2]) the complexity peak for
(12, 16, 0.5,p2) occurs at P2 = 0.8 corresponding to nac = 0.73.

Schiex e t . al. established arc consistency with a non-uniform class of problems
in which domain size varied randomly between 5 and 25, solving 20 problems
at each value of constraint tightness [18]. They observed that "There is no clear
"wipe-out" threshold as in the usual [fixed domain size] model" (page 221 of

332

22000

20000

18000

16000

14000

12000

10000

8000

600O

4000

2000

i i = i '

o4 0'7 o:.

7 0 - 0 - -
6 0 - 4 - - ,
5 0 ,B-*
4 0 . ~
30 - ~ - -
20 - ~ . -

Fig. 2. Median consistency checks used by AC3 (y-axis) against mac (x-axis) for
varying n.

[18]). We performed experiments to determine if their observation holds true
when we classify problems with respect to ~ c .

24000

22000

20000

18000

16000

14000

12000

10000

8000
0.3

t t I I I

0.4 0,5 0.6 0.7 0.8

~8

0.6

0.4

~2

. 0
0.9 1 1.1 1.2

Fig. 3. Problems with non-uniform domain sizes. Y-axis on left and bold con-
tour is computational cost, Y-axis on right and broken contour is probability of
establishing AC. X-axis is ~ac.

Problems were generated with n = 20 and Pl = 0.5. Half of the variables were
randomly chosen to have a domain size of 10, with the rest having a domain size
of 20. Constraint tightness, p~, was then varied from 0.01 to 0.99 in steps of 0.01,
with 1000 problems at each point. When a problem was generated its n~c value

333

was then computed and AC3 was applied. Figure 3 shows a clear phase transition
in this non-uniform problem class, again at ~a~ ~ 1. The reason why this was
not evident in [18] is due to variation in constrainedness of instances within the
ensemble. The contribution to ~ac (in Equation (3)) by a single constraint is
sensitive to the tightness of the constraint and size of the domains involved in
that constraint.

7 Finite size scaling

In NP-complete problem classes, the technique of finite size scaling has been
borrowed from statistical mechanics [1] to model the change in the shape of the
phase transition as problem size increases [11]. Around some critical value, no,
problems are indistinguishable except for a simple change in scale modelled by
a power law. Finite-size scaling also works for this polynomial class. Following
[7], we define a resealed parameter

- - ~c N 1 / ~ , 7 =def (5)
Ec

(~ - ~c)/~c plays the same role as the reduced temperature, (T - T c) / T c in a
thermodynamic system whilst N 1IV provides the scaling with problem size. As
in [7] we define problem size as the number of bits needed to represent a state.
In this case, we have N = n m . The values nc and u are found by analysis of the
empirical data using the methodology outlined in [6]. This gives nc = 0.45 and

-- 3.0. Figure 4 shows the same data as Figure 1 rescale<] by plotting against
7. This graph shows that finite size scaling successfully models the AC phase
transition.

1

0.8

0.6

0.4

0.2

0

A

! I

-2 0

E]

2 4 6

60 +
50
40 x
30 A
20

Fig. 4. Probability of establishing AC (y-axis) against */ for varying n with
~c = 0.45, u = 3.0 (x-axis)

20000

The rescaled parameter 3 ̀has been used to model growth of search cost as
well as changes in probability as size increases in NP-complete problems [19, 6].
Rescaling of the number of checks performed by AC3 also gives a simple and
accurate model of computational cost across the phase transition, even_ though
AC3 is a polynomial algorithm. Furthermore this model gives close agreement
with previous theoretical results. As the worst case complexity of AC3 is O(em3),
and as the number of edges in the constraint graph, e is proportional to n
in this study and m is fixed, computational cost should grow linearly with n.
Accordingly we perform linear regression on the median checks performed by
AC3 from 7 = - 3 to 7 in steps of 0.25, interpolating on observed data where
necessary. Figure 5 shows that this linear model fits the data of Figure 2 very
well. Note that the lines do not join points directly. Instead they join the values

15000

10000

5000,

0
-3

I I I I I I I f I

-2 -1 0 1 2 3 4 5 6

334

70 <>
60 +
50 D
40 x
30 ,~
20

Fig. 5. Median consistency checks used by AC3 (y-axis) against 3' (x-axis) for
varying n. Points represent observed data while lines join modelled values of the
data using linear regression.

modelled by linear regression. For example at 7 = 0 the model is that checks
189n - 167 while at 7 = 2 the model is 297n + 87. The closeness between

the lines and points indicate how accurately linear scaling models computat ional
cost. Note that the highest costs occur at 3 ̀~ 2, very close to the point where 50%
of problems could be made arc consistent and 50% could not. This correlation
has been noted many times in NP-complete classes.

We also investigate scaling when we fix the number of variables n : 20
and vary the domain size. We use a constraint tightness Pl = 1 so that the
constraint graphs were cliques, and vary P2 at each value of m. The probability
of establishing AC shows a clear phase transition as nac varies. We again rescale
this data using finite size scaling with N = n m , Re = 0.89 and u = 1.5. Figure
6 shows that this models the phase transition very well.

We also modelled the growth in computational cost as the domain size varies.

335

1

0,8

0.6

0.4

0.2

0
-20

i i i I

-15 -10 -5 0

+

¢ .

x

5 10 15 20 25 30

30 ¢,
25 +
22 o
20 x
17 ~.
15
12 o
10 +

Fig. 6. Probability of establishing AC (y-axis) against 7 for varying m with
~ = 0.89, ~ = 1.5 (x-axis)

We no longer expect linear growth because the theoretical worst case is cubic in
m. Since there are always 190 edges in our graphs, we ignored e in our models.
We first at tempted to model checks used as a m b. This gives a reasonable fit
to the da ta and the peak values of b are close to 3, suggesting cubic growth.
To give an explicit comparison between quadratic and cubic growth, we next
investigated the model a m 2 + b m 3 with least square linear fitting using sin-
gular value decomposition. This gives a very good fit to the data, as can be
seen in Figure 7. Throughout the range of 7 shown, our model suggests cubic
growth. For example for underconstrained problems at 7 = -20 the model is that
checks ~ 43.1m2 + 2.26m 3. For overconstrained problems at 7 = 20 the model is
25.8m 2 + 8.37m 3, while for critically constrained problems at 7 = 5 the model is
60.0m 2 + 10.8m 3. Grant and Smith [10] rule out the model ern 3 but incorrectly
conclude that growth is therefore nearer quadratic than cubic. Our model sug-
gests that, with an appropriate scaling constant, growth is O (e m 3) which is the
theoretical worst case. The coefficient of the cubic term suggests that problems
at the phase boundary are significantly harder to solve than problems away from
the boundary.

As the theoretical worst case behaviour seems to be attained, random prob-
lems appear to be able to contribute significantly to the study of the performance
of polynomial algorithms like AC3. Interestingly, we observe scaling consistent
with the theoretical worst case using just the median cost. This would suggest
that the worst cases are not confined to rare and pathological examples. Problems
at the phase transition may therefore be a valuable testbed for algorithms for
AC and other polynomial problems, just as they are for NP-complete problems.

336

I ; I I e ! i ! a

350000

300000

250000

200000

15O000

100000

50000

0
-20 -15 -10 -S 0 5 10 15 20 25 30

30
25 +
22 o
20 ×
17 +~
15
12 <~
10 +

Fig. 7. Median consistency checks used by AC3 (y-axis) against 7 (x-axis) for
varying m. Points represent observed data while lines join modelled values.

8 C o n s t r a i n t O r d e r i n g H e u r i s t i c s

At the heart of the AC3 algorithm is a set of directed constraints (often called
arcs) waiting to be revised. The main loop of AC3 deletes an arc from this set
and revises it: depending on the result other arcs may be added to the set if not
already in it. This set of arcs is typically presented as a queue [12, 13, 21], such
that arcs are removed in the order they were added, and propagation proceeds
breadth first. For finite domains, we may use any other method for selecting the
next arc to revise, and this opens up the scope for constraint ordering heuristics
in AC3.

Wallace and Freuder performed a study on a number of heuristics based
upon an intuitive ASAP (as soon as possible) principle where one at tempts to
prune domain values early [23]. They introduced heuristics based upon choosing
(i) the arc with greatest constraint tightness, (ii) the arc for which the variable
being checked for support has smallest domain size, (iii) an arc that will update a
node which is involved in the most constraints. Heuristics (i) and (ii) worked well,
reducing the number of checks by up to a factor of two over random selection or
using a queue. Heuristic (iii) did not significantly reduced the number of checks
over using a queue or random selection.

For NP-complete problems, the heuristic of making a choice that minimises
the constrainedness of the resulting subproblem can reduce search over standard
heuristics [7]. The intuition is that we want to branch on the most constrained
variable into the least constrained and therefore most soluble subproblem. Simi-
larly, for a polynomial problem like AC, we can use ~¢ac as a constraint ordering
heuristic in AC3. Here, the set of choices is the arcs in the current set maintained
by AC3. We consider the remaining subproblem to have the same set of variables
as the original problem, but with only those arcs still remaining in the set. We
select the arc whose removal minimises the value of nac of the remaining sub-

337

problem, ignoring the fact that subsequent revision of this arc may lead to new
arcs being added to the set. By Equation (3), we choose the directed constraint
c from variable x to variable y which has the maximal value of:

- m = log2(1 - pc '~y/2)

Even though this heuristic can significantly reduce the number of constraint
checks need to establish arc consistency, it may not reduce runtimes. As with
NP-complete problems, there are proxies for the heuristic of minimising con-
strainedness that are cheap to compute and that offer good performa~uce. For
instance, heuristics (i) and (ii) from [23] can be viewed as surrogates of the
minimise-~ac heuristic, and we should expect them to perform well. Heuristic (i)
chooses c such that Pc is maximised. Heuristic (ii) chooses c from z to y such
that my is minimised. Everything else being equal, both these decisions reduce

Using the minimise-n~c heuristic, we performed experiments on the prob-
lem class (20, 10, 0.5) with P2 varied from 0 to 1 in steps of 0.01. Each point
in figures 8 and 9 is the median value of 100 samples. For comparison with the
minimise-nac heuristic, we also implemented five variants of AC3 using a queue, a
stack 2, picking a random element of the current set with no heuristic, and heuris-
tics (i) and (ii) of [23]. We also report the number of revisions, i.e. the number

10000

6000

6000

4000

2000

i+£~ ~:& _ mack "~''"

0 ' ' 0 ' 6 ' ' ' ' ' ' 0 0.2 04 08 1 1.2 14 1.6 1.8

Fig. 8. Median number of checks performed by AC3 (y-axis) using various heuris-
tics, against ~ac (x-axis) for (20, 10, 0.5) problems

of times an arc is taken out of the set. The number of revisions is important,
since for problems involving structured (for instance arithmetic) constraints, or

2 The results reported in previous sections used a stack and corresponds to a depth
first propagation of constraints.

338

600

500

4 0 0

300

200

100

o ' oi, o'.o o'.s ; o , i s / . s

I I I i i ! I I I

Random -a--
Stack -B--'

Queue -+.-
Smallest supp. ,..~-

Tightest -.~.~:-.~

%

Fig. 9. Median number of revisions performed by AC3 using various heuristics
(y-axis) against ~ac (x-axis) for (20, 10, 0.5) problems

when domains are represented as intervals, arc revisions may take constant time.
In this situation, checks is a poor measure of computational effort.

At the phase transition, the ~ac heuristic beats the other heuristics, whilst a
random choice is always worst. What is important is that if we ignore the cost of
the ~ac heuristic we see that it performs well. If we then have to compromise the
heuristic to bring down its cost we might very well have rediscovered Wallace and
Freuder's heuristics. Heuristics like these deserve further attention, for example
within search algorithms like maintaining arc consistency [17].

9 R e l a t e d W o r k

There exist several polynomial problems in which phase transition behaviour
has been seen. For example, random 2-SAT problems have a phase transition in
satisfiability at a ratio of clauses to variables, L/N of 1 [5], and it has long been
known that random graphs display sharp thresholds in properties like graph
connectivity at critical values of the average degree [3].

Evidence for a phase transition in establishing arc consistency can be found
in [2]. Bessi~re's graphs show clear peaks in the complexity of AC3 and AC6.
Bessi~re's results suggest that AC4 [15], although of lower complexity, can per-
form poorly away from the complexity peaks of AC3 and AC6. An empirical
study by Wallace reaffirms this; AC3 was nearly always better than AC4 [22].

The phase transition in arc and path consistency was first studied in depth
in [10] with problems from the class (20, 10,pt,p2). Using data from Table 1 in
[10], we can calculate values for ~ac for this phase transition. Unlike ncsp at the
phase transition which varied from 1.08 to 3.68, the phase transition occurs from
~ac ~-" 0.6 to nac ~ 1. In NP-complete problem classes, the phase transition in
solubility usually occurs over a similar range of n [7].

339

Wallace and Freuder studied a number of constraint ordering heuristics for
AC3, two of which we have shown to be proxies for the minimise g:c heuristic
[23]. Nudel derived theoretically 8 constraint ordering heuristics, to maximise
the detection of dead ends in forward checking [16]. These heuristics are similar
to combinations of those of [23], selecting a constraint with minimum m, (1 -pc) ,
where v is a future variable and c is incident on the current variable.

There appears to be scope for ordering heuristics within AC6. AC6 maintains
a set, the Waiting-List, of unsupported values waiting to be propagated. Each
element of Waiting-List is a pair (j, b), where b is a value removed from the
domain of the j th variable. Associated with (j, b) is the set of values Sjb that are
immediately supported by (j, b) and require new support. One possible heuristic
may be to select (j, b) from Waiting-List such that [Sjb[is maximised. At present
we are unsure what decisions within AC6 wilt tend to minimise constrainedness,
but we think this is worth further investigation.

10 C o n c l u s i o n s

We have shown that the same methodology used to study phase transition be-
haviour in NP-complete problems works with a polynomial problem class, estab-
lishing arc consistency in constraint satisfaction problems. The same measure for
the constrainedness of an ensemble of problems that locates the phase transitions
in random NP-comptete problems identifies the location of a phase transition in
establishing arc consistency. A complexity peak for the cost of the AC3 and
AC6 algorithms is associated with this transition. Finite size scaling of this con-
strainedness parameter models both the scaling of the probability transition and
of the search cost for AC3. This model of search cost agrees with the theoretical
cubic worst case for AC3 on problems at the phase transition. This measure of
constrainedness and proxies for it can then be used as the basis for constraint
ordering heuristics that can reduce the number of checks and revisions performed
by AC3.

What general lessons might be learnt from this study? First, we can iden-
tify and locate phase transitions in polynomial problem classes using the same
constrainedness parameter developed to study NP-complete problems. Second,
problems at the phase transition in polynomial problem classes can be more
difficult to solve than over- or under-constrained problems away from the phase
boundary. Indeed, our empirical model of median search cost for problems at
the phase transition agrees with the theoretical worst case. Problems from the
phase transition might therefore be useful for suggesting worst case asymptotes
or, as in NP-complete domains, for benchmarking competing algorithms. Third,
algorithms for polynomial problems can benefit from heuristics to reduce search.
As with NP-complete problems, minimising constrainedness (and proxies for it
which are cheap to compute) may provide the basis of useful heuristics. Finally,
other polynomial problems (for example, path consistency, Horn satisfiability
and polynomial approximation procedures for NP-complete problems) as well as
other complexity classes might benefit from similar phase transition analysis.

340

References
1. Michael N. Barber. Finite-size scaling. In Phase Transitions and Critical Phenom-

ena, Volume 8, pages 145-266. Academic Press, 1983.
2. C. Bessi~re. Arc-consistency and arc-consistency again. Artificial Intelligence,

65:179-190, 1994.
3. B. Bollobas. Random Graphs. Academic Press, 1985.
4. P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard problems

are. In Proceedings of IJCAI-91, pages 331-337, 1991.
5. V. Chvatal and B. Reed. Mick gets some (the odds are on his side). In Proceedings

of the 33rd Annual Symposium on Foundations of Computer Science, pages 620-
627. tEEE, 1992.

6. I.P. Gent, E. Maclntyre, P. Prosser, and T. Walsh. Scaling effects in the CSP
phase transition. In Principles and Practice of Constraint Programming (CP-95),
pages 70-87. Springer, 1995.

7. I.P. Gent, E. Maclntyre, P. Prosser, and T. Walsh. The constrainedness of search.
In Proceedings of AAAI-96, pages 246-252, 1996.

8. I.P. Gent, E. Maclntyre, P. Prosser, and T. Walsh. The scaling of search cost. In
Proceedings of AAA1-97, 1997.

9. I.P. Gent and T. Walsh. Phase transitions and annealed theories: Number parti-
tioning as a case study. In Proceedings of ECAI-96, pages 170-174, 1996.

10. S.A. Grant and B.M. Smith. The arc and path consistency phase transitions.
Report 96.09, Research Report Series, School of Computer Studies, University of
Leeds, March 1996.

11. S. Kirkpatrick and B. Selman. Critical behavior in the satisfiability of random
boolean expressions. Science, 264:1297-1301, May 27 1994.

12. A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8:99-118, 1977.

13. A.K. Mackworth and E.C. Freuder. The complexity of some polynomial network
consistency algorithms for constraint satisfaction problems. Artificial Intelligence,
25:65-74, 1985.

14. D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SAT
problems. In Proceedings of AAAI-92,pages 459-465. AAAI Press/The MIT Press,
1992.

15. R. Mohr and T.C. Henderson. Arc and path consistency revisited. Artificial In-
telligence, 28:225-233, 1986.

16. B. Nudel. Consistent-labeling problems and their algorithms: Expected-
complexities and theory-based heuristics. Artificial Intelligence, 21:135-178, 1983.

17. D. Sabin and E.G. Freuder. Contradicting conventional wisdom in constraint sat-
isfaction. In Proceedings of ECAI-94, pages 125-129, 1994.

18. T. Schiex, J-C. R~gin, C. Gaspin and G. Verfaille. Lazy Arc Consistency. In
Proceedings of AAAI-96, pages 216-221, 1996.

19. B. Selman and S. Kirkpatrick. Critical behavior in the computational cost of sat-
isfiability testing. Artificial Intelligence, 81:273-295, 1996.

20. B.M. Smith and M.E. Dyer. Locating the phase transition in binary constraint
satisfaction problems. Artificial Intelligence, 81:155-181, 1996.

21. E.P.K. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.
22. R.J, Wallace. Why AC-3 is almost always better than AC-4 for establishing arc

consistency in CSPs. In Proceedings of IJCAI-93, pages 239-245, 1993.
23. R.J. Wa~ace and E.C. Freuder. Ordering heuristics for arc consistency algorithms.

In Proc. Ninth Canad. Conf. on AI~ pages 163-169, 1992.

