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Abstract. In the stable roommates (SR) problem we have n agents,
where each agent ranks all other agents in strict order of preference. The
problem is then to match agents into pairs such that no two agents prefer
each other to their matched partners, and this is a stable matching. The
stable marriage (SM) problem is a special case of SR, where we have
two equal sized sets of agents, men and women, where men rank only
women and women rank only men. Every instance of SM admits at least
one stable matching, whereas for SR as the number of agents increases
the number of instances with stable matchings decreases. So, what will
happen if in SM we allow men to rank men and women to rank women,
i.e. we relax gender separation? Will stability abruptly disappear? And
what happens in a stable roommates scenario if agents do not rank all
other agents? Again, is stability uncommon? And finally, what happens
if there are an odd number of agents? We present empirical evidence to
answer these questions.

1 Introduction

In the Stable Roommates (SR) problem [6,7,9] we have n agents, where each
agent ranks all n − 1 other agents in strict order of preference. The problem is
then to match pairs of agents in a one-one correspondence (bijection) such that
the matching is stable. A matching is stable if there does not exist a blocking pair
of agents (agenti and agentj) in the matching such that agenti and agentj find
each other acceptable (i.e. they rank each other) and (a) agenti is unmatched or
prefers agentj to his matched partner and (b) agentj is unmatched or prefers
agenti to his matched partner (see [9], 1.4.2).

The Stable Marriage problem (SM) [3,4,6,9,16,17] is a specialized instance
of SR where agents have gender, such that we have two sets of agents, namely
men and women, both the same cardinality. A stable matching is a one-one
correspondence between the men and women such that the matching admits no
blocking pair (as defined above, also see [9] 1.3.4). Figure 1 shows (on the left)
an instance of SR with 6 agents (sr6), and (in the middle) an instance of SM
with three men and three women (sm3).

SM instance sm3 can be represented as an instance of the Stable Roommates
Problem with Incomplete lists (SRI), i.e. we have incomplete lists where some
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agents find each other unacceptable (see [9], 1.4.2). This is shown on the right
of Fig. 1 (sri6), where agents 1 to 3 represent the men in sm3, and agents 4 to
6 represent the women in sm3. Therefore the matching {(1, 1), (2, 2), (3, 3)} in
sm3 corresponds to the matching {(1, 4), (2, 5), (3, 6)} in sri6.

1: 6 3 5 2 4
2: 3 5 1 6 4
3: 2 6 1 5 4
4: 5 1 2 3 6
5: 6 1 2 3 4
6: 4 2 5 1 3

1: 1 2 3 1: 1 2 3
2: 2 3 1 2: 1 3 2
3: 1 3 2 3: 3 1 2

1: 4 5 6
2: 5 6 4
3: 4 6 5
4: 1 2 3
5: 1 3 2
6: 3 1 2

Fig. 1. A Stable Roommates (SR) instance on the left sr6, with 6 agents. In the
middle an instance of Stable Marriage (SM) with three men and three women,
sm3. On the right, sm3 is represented as an instance of Stable Roommates with
Incomplete lists (SRI), instance sri6. Instance sr6 has two stable matchings, namely
{(1, 5), (2, 3), (4, 6)} and {(1, 4), (2, 3), (5, 6)}. Instance sm3 has a single stable match-
ing {(1, 1), (2, 2), (3, 3)}. Instance sri6 has only one stable matching {(1, 4), (2, 5), (3, 6)}
and this corresponds to the stable matching for sm3.

The underlying structure of SR is a simple graph [10], where an edge cor-
responds to a pair of agents who find each other acceptable. The SR graph is
therefore a clique Kn and preference lists of agents are permutation of their
adjacency lists. The SM graph is a complete biclique, with two sets of vertices
(men and women), each of size n/2 with n2/4 edges. In SRI the underling graph
is again a simple graph, but not complete. Every instance of SM admits at
least one stable matching [3], but this is not the case for SR [7], where some
instances admit no stable matching (the same is true of SRI). As the number
of agents increase the proportion of SR instances with stable matchings falls
[7,11,12,14,15].

Therefore, we have a spectrum of stable matching problems. At one extreme
we have SM, highly structured (a biclique), always with stable matchings and
at the other extreme we have SR, unstructured, with a falling number of stable
matchings as the number of agents increases [3,6,7,9]. Therefore, what happens
as we replace some of the structure in SM with randomness from SR, i.e. what
happens when we blend SM and SR? Will there be an abrupt change in behav-
iour, where the average number of instances with stable matchings falls, or will
it be smooth and gradual with stability declining slowly?

There is also a spectrum of stable roommates problems. At one extreme we
have SRI instances with empty preference lists, where every agent finds every
other agent unacceptable, and corresponds to the edgeless graph. This instance
has one stable matching, where every agent is happy to be unmatched1. At the
other extreme we have SR, where every agent finds every other agent acceptable,
1 We assume that every agent ranks himself in last position and can potentially be

self-matched.
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not always admitting a stable matching, and this corresponds to the complete
graph. Therefore we can move across this spectrum, gradually increasing the
number of acceptable pairs (edges in the graph). As we do so, will the proportion
of instances with stable matchings fall gradually, or will it fall abruptly?

And finally, it is tacitly assumed that the number of agents is even. Why
should that be so? Imagine we had a conference where delegates share rooms
in the students’ halls of residence, two to a room. Would it be possible to limit
attendance to only an even number of delegates? And if delegates rank one
another in order of preference, is it more likely to be an unstable scenario when
the number of delegates is odd? We investigate this also.

In the following section we describe how we can mix SM and SRI in a con-
trolled manner (problem generation). We then present empirical results for mix-
ing SM and SRI followed by experiments on gradually moving from SRI with
no acceptable pairs to SR, where the number of agents is even and when the
number of agents is odd.

2 Problem Generation

Given a graph G = (V,E), where V is the set of vertices and E the set of edges, we
can create a stable matching problem from G as follows. The set of vertices corre-
spond to the set of agents and an edge (i, j) is in E if and only if agenti and agentj
are an acceptable pair (i.e. they rank each other). Assume vertex neighbourhood
is represented as an adjacency list. Given an edge (u, v) ∈ E, add u to the list
adjacent[v] and add v to the list adjacent[u]. Once this has been done for all edges,
perform a Knuth shuffle2 [2] on each adjacency list and treat these as preference
lists. This is essentially the technique used in Sect. 2 of [10].

We now describe two techniques for creating a blended graph, with m edges,
from two input graphs. Consider simple graphs G1 and G2, both of the same
order n (number of vertices), where G1 is the complete bipartite graph Kn/2,n/2

and G2 is the clique Kn. Assume we have a mixing proportion p, where 0 ≤ p ≤ 1.
We can mix these two graphs to produce a new graph G3 with (1 − p)m edges
taken from G1 and p.m edges taken from G2. This can be done in two ways.
The first is similar to the rewiring technique of Watts and Strogatz [8]. This
is presented in Algorithm 1 and will be refered to as model A. The algorithm
returns a set of edges E, i.e. acceptable pairs, where that set is of size m = n2/4,
the same size as the biclique.

Algorithm 2 corresponds to the type-B morph described in [5], where again
m = n2/4 edges are to be produced (line 3). The set E1 contains m randomly
selected edges from Kn, the set E2 contains all edges in Kn/2,n/2 and set E is
the intersection of these two sets (lines 4, 5 and 6). The remaining number of
edges to be added to E is δ = m − |E|, where p.δ edges are randomly selected

2 To permute an array of n elements, vary i from n down to 2, randomly select j in the
range i to 1 inclusive, then swap the ith and jth array elements.
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Algorithm 1. modelA: select m.(1− p) from biclique and m.p from clique
1 Set〈Edge〉 modelA(int n, real p)
2 begin
3 int m ← n2/4
4 E1 ← {(i, j) | 1 ≤ i < j ≤ n}
5 E2 ← {(i, j) | 1 ≤ i ≤ n/2 , n/2 < j ≤ n}
6 E ← select((1 − p).m, E2)
7 E ← E ∪ select(p.m, E1 \ E)
8 return E

Algorithm 2. modelB: a type B morph
1 Set〈Edge〉 modelB(int n, real p)
2 begin
3 int m ← n2/4
4 E1 ← select(m, {(i, j) | 1 ≤ i < j ≤ n})
5 E2 ← {(i, j) | 1 ≤ i ≤ n/2 , n/2 < j ≤ n}
6 E ← E1 ∩ E2

7 δ ← m − |E|
8 E ← E ∪ select(p.δ, E1 \ E) ∪ select((1 − p).δ, E2 \ E)
9 return E

from E1 \ E and (1 − p).δ edges are randomly selected from E2 \ E. Therefore
when p = 0 both models deliver an instance of SM, and when p = 1 both deliver
an instance of SRI with p.n2/4 edges drawn at random from Kn.

3 The Empirical Study

The majority of the study used a constraint programming formulation of the
stability constraint proposed in [15]. In all our models each agent ranks himself
in last position. Consequently an agent can self-match, if and only if this results
in stability. The exp eriments were run on an Intel Xeon CPU E5-2660 processor
at 2.2 GHz with 20 Mb of cache and 128 Gb of RAM. In many of the studies
the control parameter is p (as an edge probability or mixing proportion), and is
varied in steps of 0.001 with a sample size of 1,000.

3.1 Morphing from SM to SRI

The first experiment investigates what happens as we morph from SM to SRI using
models A and B, and what happens as we increase the number of agents. This is
shown in Fig. 2. On the x axis we have p, the mixing parameter, and when p = 0
all instances are bipartite and when p > 0 instances are non-bipartite. On the y
axis we have the average percentage of instances that admit a stable matching, i.e.
the percentage that were satisfiable. On the left we have two contours, both for
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n = 100, one for model A the other for model B. This shows that there is only
a small difference in the behaviours of the two models, i.e. they produce similar
behaviour, with model B preserving the SM properties (bipartite) slightly longer
than model A.

On the right are contours for n varying from 50 to 400, using only model
A. At p = 0 all instances are satisfiable, as expected, but what is surprising
is how rapidly behaviour changes with a small degree of mixing and that this
becomes more abrupt as the number of agents increases. Although not shown,
as p increases, the number of stable matchings per instance falls rapidly. In
summary, a small degree of within-gender acceptability results in a rapid loss of
stability.3

Fig. 2. Morphing from SM to SRI. The x-axis is p, the mixing proportion, and the
y-axis is the percentage of instances admitting a stable matching. On the left, model
A and model B with n = 100. On the right, contours for a variety of n, 50 to 400.

3.2 Morphing Between SR and SRI

In [10] Mertens empirically investigated SR (measuring Pn, the probability of
a stable matching existing in Kn), SRI where agents exist on a grid (and rank
only their Moore neighbourhood) and SRI on graphs with a given average degree
(where random graphs were generated with increasing order but with an average
degree of only 35, 45 or 60). We now investigate what happens in the stable
roommates problem as we vary the amount of acceptability between agents,
i.e. we vary average degree. Again, viewing the problem as a simple graph, we
vary the edge probability p and with that the degree of the graph, and this
corresponds to the average length of preference lists. When edge probability is
one every agent finds every other agent acceptable and problem instances are
SR, when p is zero every agent finds every other agent unacceptable and agents
are happy to be alone (i.e. self-matched), and when 0 < p < 1 preference lists
are incomplete and we have SRI instances. Figure 3 shows, on the left, contours
for n = 100 and n = 101, with probability of acceptability on the x axis and

3 We leave any social interpretation of these observations to others.
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percentage of stable instances on the y axis. On the right is the average size
of a stable matching when one exists4, and it should be noted that for a given
instance all its matchings are the same size [16].

Fig. 3. Increasing the proportion p of agents found to be acceptable in stable room-
mates. On the x axis p, probability that two agents find each other acceptable. On the
left, the y axis is percentage of instances that admit a stable matching. On the right,
y axis is average size of stable matching when one exists. Note that when an instance
admits a stable matching, all its stable matchings are the same size [6]. Contours are
shown for even (n = 100) and odd (n = 101) number of agents.

The shape of these curves are surprising. All instances are stable when p = 0
(i.e. all agents are happy to be alone) and this then falls away. Tabulated results
for SRI predict that this will happen [7,11–15]. But what was not predictable
was the shape of the n = 100 contour: falling sharply, climbing abruptly and
then tapering off to its final value when SRI becomes SR. Note that the “knee”
in the contour on the left of Fig. 3 comes some time after the point where random
graphs G(n, p) become a single component. Therefore the “knee” is not due to
the emergence of a giant component.

When n is odd there are indeed stable matchings in our model (an odd
number of agents must self-match), but these stable matchings are typically
either small or rare. However, the shape of the odd contour on the left is perhaps
not so surprising. For n = 101, suppose all preference lists are complete, and
without loss of generality suppose that agent 101 is unmatched. Then for agent
101 not to block the matching, every other agent must have a better partner
than him, which is unlikely to be satisfied in general. Obviously the longer the
preference lists in general, the more chances agent 101 has to block the matching,
hence the shape of the n = 101 contour (on the left)5.

Figure 4 separates even (contours on the left) from odd (contours on the
right) for various number of agents. This time the x axis is n.p and that is the
average degree of the underlying graph, and is then the average size of preference
lists. For compactness, the x-axis is shown on a log scale.

4 The x axis is cut short due to small sample size for odd n and large p.
5 We thank David Manlove for this explanation.
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Fig. 4. Percentage of SRI instances with stable matchings as we vary probability that
agents find each other acceptable. On the left n is even and on the right n is odd. The
x-axis is a logscale of n.p, i.e. average degree.

Fig. 5. Increasing the proportion p of agents found to be acceptable. On the x axis the
log of average degree (p.n), the y axis is percentage of instances that admit a stable
matching. The red contour is for an even number of agents n and the blue contour for
odd number of agents n + 1.

The experiments were then repeated for larger values of even n and odd n+1.
Graphs were generated using the algorithm of Batagelj and Brandes [1], which
allows much faster generation of large, sparse graphs than simple quadratic-
time methods. Each instance was solved using both Irving’s algorithm [7] and a
simple SAT encoding using MiniSat, to verify correctness of our implementation.
Sample size varied from 2,000 to 1,000,000. We ran our program for values of
np up to 896; these results are shown in Fig. 5. In addition, for large even values
of n the figure shows results for p = 1 from [12]; these appear as the rightmost
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points. It appears that when n is even and n increases, its odd partner hugs onto
it for longer and longer, leading us to expect that in the limit both curves will
be indistinguishable. That is, when there are a large number of agents it will not
matter if that number is odd or even.

4 Conclusion

Stable marriage problems always admit a stable matching but this is not true for
stable roommates. In our experiments, a certain amount of disorder was added to
SM such that we permit within-gender matching. This brought about an abrupt
change in the behaviour of the problem, with an abrupt fall in the proportion of
instances with stable matchings.

In the roommates problem, with a small number of agents, it appears to
matter if the number of agents is odd or even. If the number of agents is odd,
stable matchings tend to be small or scarce. When the number of agents is
even, the proportion of instances with stable matchings falls as acceptability
increases then abruptly climbs, and this climb then gradually tapers off as the
instances tend to SR with complete preference lists. However, when n is large,
we conjecture that behaviour will tend to be that observed when n is odd.

Acknowledgements. We would like to thank David Manlove, Augustine Kwanashie,
Rob Irving, Ian Gent and Craig Reilly.
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