
Understanding the Empirical Hardness of Random Optimisation Problems

Anonymous
An Undisclosed Location
anonymous@anonymous

Abstract

We look at the empirical complexity of the max-
imum clique problem, the graph colouring prob-
lem, and the maximum satisfiability problem, in
randomly generated instances. Although each is
NP-hard, we encounter exponential behaviour only
with certain choices of instance generation param-
eters. To explain this, we link the difficulty of
optimisation to the difficulty of a small number
of decision problems, which are already better-
understood through phenomena like phase transi-
tions with associated complexity peaks. However,
our results show that individual decision problems
can interact in very different ways, leading to dif-
ferent behaviour for each optimisation problem. Fi-
nally, we uncover a conflict between any-time and
overall behaviour in algorithm design, and discuss
the implications for the design of experiments and
of search strategies such as variable- and value-
ordering heuristics.

1 Introduction
The gap between the best theoretical understanding we have
of what makes problems hard and the behaviour witnessed
in practice from modern solvers remains vast. For many de-
cision problems in random instances, we have a good gen-
eral understanding of what happens: as a key parameter is
altered, there is often sharp phase transition from satisfi-
able to unsatisfiable instances, and associated with this is
a complexity peak, where instances near the transition are
much harder to solve than those far from it on either side
[Cheeseman et al., 1991; Mitchell et al., 1992]. (How-
ever, this behaviour is not universal—for example, prob-
lems involving more than one kind of constraint can ex-
hibit much more complicated behaviour [Dudek et al., 2017;
McCreesh et al., 2018]).

This paper looks at optimisation problems. An optimi-
sation problem can be viewed as a sequence of decision
problems—but is that all that is needed to understand their
behaviour? Previous small-scale experiments (e.g. Prosser
[2012], Mann [2018]) have only been able to provide an in-
complete picture. In this paper we perform experiments on

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1

C
liq

ue
si

ze

Edge probability

100

101

102

103

104

105

106

107

108

G(200, x)

G(150, x)

G(100, x)

G(50, x)N
um

be
ro

fc
al

ls

Figure 1: On top, the difficulty of solving the maximum clique
problem in random graphs G(50, x), G(100, x), G(150, x), and
G(200, x). Underneath, the mean size of an optimal solution. Den-
sity is increased in steps of 0.001 with 100,000 samples per step for
the three smaller families, and 1,000 per step for the largest.

N
um

be
ro

fc
al

ls Proportion
SA

T

Edge probability

Sat?
Mean

Mean unsat
Mean sat

100

101

102

103

104

105

106

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 2: Does G(150, x) contains a clique of 20 vertices? Mean
search effort for satisfiable and unsatisfiable instances are also
shown separately. Density is increased in steps of 0.001, with
100,000 samples per step.

tens of billions of problem instances, which is finally suf-
ficient to comprehensively answer the question: yes, there
is a link between individual decision and optimisation prob-
lems, but these decision problems can interact in many dif-
ferent ways, leading to complex emergent behaviour. Along
the way, we uncover interesting implications for the design
of search algorithms, and provide lessons for future experi-
menters. Most interestingly, we identify a trade-off between
anytime behaviour and overall behaviour, which may encour-
age a rethink of the entire branch and bound paradigm.

1.1 Experimental Setup
Our experiments are performed on an Anonymous HPC fa-
cility, on systems with dual Intel Xeon E5-2695 v4 CPUs and
256GBytes RAM, running Centos 7.3.1611, with GCC 7.2.0
as the compiler. These machines are optimised for providing
throughput rather than consistent timing measurements, so
we avoid measuring runtimes, and instead use whichever nat-
ural measure of work each solver provides. Our results there-
fore do not allow for comparisons between different solvers.

In Section 2, we use the Glasgow Subgraph Solver imple-
mentation of Prosser’s [2012] MCSa11. This is a bit-parallel
branch and bound algorithm, which uses a greedy colouring
as its bound [Tomita et al., 2010; Segundo et al., 2013]; it can
easily be modified to solve the decision problem, rather than
the optimisation problem. We measure instance difficulty by
counting the number of recursive calls carried out by the al-
gorithm. In Section 3 we use Trick’s implementation2 of the
classic DSATUR branch and bound algorithm [Brélaz, 1979],
and Zhou et al.’s [2014] Color6 solver3 (which solves only
the decision problem). For the Trick solver we measure the
number of recursive calls made, whilst for Color6 we mea-
sure the number of backtracks. In Section 4 we use the Clasp
solver4 version 3.3.4 [Gebser et al., 2012], and we measure
the number of decisions made.

2 Maximum Clique
We begin by looking at the maximum clique problem. A
clique in a graph is a subset of vertices, each of which is
adjacent to every other within the subset, and a maximum
clique is one with as many vertices as possible. For random
graphs, we use the Erdős-Rényi model: by G(n, p) we mean
a graph with n vertices, and an edge between every distinct
pair of vertices with probability p. Clique-finding in Erdős-
Rényi graphs is known to be exponentially difficult for any
resolution-type solver [Atserias et al., 2018].

Maximum cliques in random graphs. In Figure 1 we
show the difficulty of solving the maximum clique problem
as we vary the edge probability in Erdős-Rényi graphs with a
fixed number of vertices, as well the mean size of an optimal
solution. In extremely sparse and extremely dense graphs, the
algorithm finds all instances extremely easy, whilst at around
densities of 0.8 to 0.96, instances are particularly hard—and

1https://github.com/ciaranm/glasgow-subgraph-solver
2https://mat.gsia.cmu.edu/COLOR/color.html
3https://home.mis.u-picardie.fr/˜cli/EnglishPage.html
4https://potassco.org/clasp/

unsurprisingly, as the number of vertices increases, all densi-
ties get exponentially harder.

These rough trends match up with those presented by
Prosser [2012]. However, we are using a much larger number
of instances: we increase density in steps of 0.001, and take
100,000 samples per density step. This scale of experiments
reveals a new interesting feature of the plots: the lines are, for
lack of a better term, wiggly. This is most readily apparent
towards the left of the graph, where several slight peaks and
troughs are easily visible by eye, but in fact the wiggles are
present throughout the entire plot, with a decreasing “wave-
length” as density increases. The remainder of this section
shows that these wiggles are not an experimental artifact or
sampling error, but instead illustrate an important aspect of
the algorithm’s behaviour.
The clique decision problem. To understand what is going
on, we first revert to the clique decision problem. In Figure 2
we ask whether G(150, x) contains a clique of twenty ver-
tices. For very sparse graphs, the answer is obviously no, and
the solver can establish this with no search effort. For very
dense graphs, the answer is obviously yes, and the solver
similarly finds all instances easy. For densities in between
0.691 and 0.782, there is a mix of satisfiable and unsatisfi-
able instances, but these instances are hard for the solver. For
unsatisfiable instances, the higher the density the harder the
instance, and the hardest density is 0.780, where all but one of
the 100,000 instances sampled are satisfiable. Unexpectedly,
for satisfiable instances, we do not get a hard—easy curve,
but rather a medium—hard—easy peak, with the hardest den-
sity being 0.756 where 62,587 instances were satisfiable. In-
stances in the “medium” region are extremely rare, however.
Decision and optimisation. In Figure 3 we simultaneously
plot the difficulty of every decision problem, and show how
this correlates with the total search effort seen in Figure 1.
The “total” line is usually only slightly above whichever de-
cision line is the hardest at a particular density—even at the
hardest density of 0.905, the mean gap between the hardest
decision problem and the overall cost of solving is only a fac-
tor of 2.2. This explains the wiggly lines: they are the result
of the gaps between the complexity peaks of different deci-
sion problems.
Time to find versus prove optimality. Figure 3 also breaks
down the runtimes to show the mean time to find an optimal
solution but not prove its optimality, and the time to prove
optimality once an optimal solution has already been found.
These two lines are perfectly out of phase with each other:
densities where finding a solution is relatively easy are the
hardest for proving optimality, and vice-versa.
Difficulty by actual solution size. Another way of group-
ing results is presented in Figure 4. Alongside a plot of mean
search effort, we also show mean search effort only consid-
ering instances where the maximum clique has ω vertices,
for each value of ω. The darkness of each line indicates the
relative sample size. The plot shows that at any given den-
sity, there are several common solution sizes, and the diffi-
culty varies considerably depending upon what the optimal
solution size actually is. It also shows that, for any particu-
lar maximum clique size ω, there are unusually low densities

https://github.com/ciaranm/glasgow-subgraph-solver

100

101

102

103

104

105

106

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fc
al

ls

Edge probability

Total
Find

Proof
Decision

Figure 3: A more detailed picture of difficulty of solving the clique optimisation problem for G(150, x). Also plotted is the mean search
effort to find the optimal solution but not prove its optimality, and the mean search effort needed to prove optimality after the optimal solution
is found. Finally, each light line shows the mean search effort for a single decision problem. For each line, density is increased in steps of
0.001, with 100,000 samples per step.

where occasionally this is the optimum, and these instances
are very easy. There are also rare unusually high densities
where this is the optimum, and these instances are very hard.
Finally, for densities in the middle, instances with solution
size ω are common, and are of moderate difficulty. Alter-
natively, for a given instance, if the maximum clique size is
unexpectedly large, the instance will be relatively easy, whilst
if it is unexpectedly small, it will be unusually hard.

How common are optimal solutions? Recall that typi-
cally, proving optimality is many times harder than finding
an optimal solution. If an instance has an unusually large op-
timal solution, this should make the proof of optimality much
easier. But what about finding this unusually large optimum?
We might expect that there will only be one optimal solution,
if the optimum is unusually large, whilst if the optimum is
unusually small, perhaps there are many witnesses to choose
from?

In the top plot of Figure 5 we show that this is the case,
looking only at instances where twenty is the optimal solu-
tion. We plot the frequency of optimal solutions (how com-
mon they are, by density), as well as the effort required to
find a first optimal solution but not prove its optimality, and
the effort to both find and prove optimality. Finally, we also
solve the maximum clique enumeration problem, and count
how many such optimal solutions exist.

Towards the left of this plot, with densities up to 0.72, in-
stances with a maximum clique size of twenty are rare. Fur-
thermore, the total number of optimal solutions (witnesses)
in any given instance is very low, often being one or only a
few—and nearly all of our search effort is spent finding the
optimal, with optimality proofs being easy. As the density
rises, the typical number of optimal solutions per instance
also rises, and the time to find but not prove optimality makes
up smaller and smaller portions of the overall runtime.

Interestingly, the instances with the higher solution counts
are not the instances where the time taken to find a solution is
lowest. Rather, finding the unique optimal solution in a lower
density graph is somewhat easier than finding any one of sev-
eral optimal solutions in a medium density graph, and it is not
until much higher densities that finding becomes easier again.
This is similar to the “medium–hard–easy” complexity peak
seen in Figure 2. One might think that this is because higher
densities are harder overall than lower densities. However,
the second plot of Figure 5 looks at instances where sixty is
the optimal solution, with densities between 0.94 and 0.975.
At this stage, higher densities are easier overall—but the same
pattern occurs.

Anytime behaviour. To explain this behaviour, we now
demonstrate that the algorithm is in fact not optimised for
anytime behaviour, but rather aims to make the proof of op-
timality as short as possible. McCreesh and Prosser [2014]
observe that the branching strategy used by this algorithm
approximates “smallest domain first” [Haralick and Elliott,
1980], and that (contrary to the claims of the algorithm’s de-
signers) it is not good at finding a strong incumbent quickly.
So what if we reverse the branching strategy used by the algo-
rithm? Figure 6 compares the behaviour of the heuristic and
the anti-heuristic, showing that the anti-heuristic performs
much worse except on the easiest of instances. However, in
Figure 7, we plot the mean size of the first solution found by
both heuristics, as a proportion of the optimal: despite be-
ing much worse overall, the anti-heuristic finds a better first
solution in nearly all cases.

To understand this seemingly contradictory behaviour, we
compare the size of the incumbent as a function of time for
the two algorithms. In Figure 8 we select all the instances
of G(150, x) where the optimal solution had twenty vertices,
and for both heuristics, record a timepoint for each time the

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fc
al

ls

Edge probability

53
54
55
56
57
58
59
60
61
62
63
6465
66
6768

697071
72
7374
7576

16
17

18

19

20

21

22

23

Figure 4: The mean difficulty of solving the clique optimisation
problem for G(150, x), also showing the search effort for each ac-
tual optimal size. On each of the individual value lines, darker
colours represent exponentially larger sample sizes. Density is in-
creased in steps of 0.001, with 100,000 samples per step.

100

101

102

103

104

105

106

0.68 0.7 0.72 0.74 0.76 0.78 0.8

C
ou

nt
/N

um
be

ro
fc

al
ls

Edge probability

Total search
Search to find

Solutions
Frequency

100

101

102

103

104

105

106

0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975

C
ou

nt
/N

um
be

ro
fc

al
ls

Edge probability

Total search
Search to find

Solutions
Frequency

Figure 5: Above, looking at only instances where the maximum
clique has twenty vertices in G(150, x), and showing the mean
search effort, mean time to find but not prove optimality, the fre-
quency of such instances, and the mean number of times a clique
of that size occurs in any selected instance. Below, the same, for a
maximum clique of sixty vertices. Density is increased in steps of
0.001 (twenty) or 0.00001 (sixty), with 100,000 samples per step.

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fc
al

ls

Edge probability

Total
Find

Proof
Total, Anti
Find, Anti

Proof, Anti

Figure 6: The mean difficulty of solving the clique optimisation
problem for G(150, x), using both the standard search heuristic or-
der for the algorithm, and the opposite search order. For each line,
density is increased in steps of 0.001, with 100,000 samples per step.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fi
rs

ts
ol

ut
io

n
qu

al
ity

Edge probability

Default
Anti

Figure 7: The mean size of the first solution found expressed as a
proportion of the optimal, for G(100, x), using both the standard
search heuristic order for the algorithm, and the opposite search
order. For each line, density is increased in steps of 0.001, with
100,000 samples per step.

N
um

berofcalls

Incumbent

Good Heuristic

10 15 20
100
101
102
103
104
105
106

N
um

berofcalls

Incumbent

Anti Heuristic

10 15 20
100
101
102
103
104
105
106

Figure 8: Comparing the solution quality over time for the two dif-
ferent search orders. We look at instances of G(100, x) where the
maximum clique has twenty vertices. Each time a new incumbent is
found, we record the search effort so far; each grid point shows the
relative frequency of new incumbents of that size during that time
window, with darker colours being exponentially more common. We
also show termination time, in the final column. Instances drawn
from a run with density increased in steps of 0.001, with 100,000
samples per step.

incumbent is improved. We also record when the algorithm
terminates, representing this as an incumbent of twenty-one.
We then convert this to a heatmap by bucketing, using darker
colours to represent exponentially larger buckets. The plot
shows us that with the good heuristic, the initial solution size
is lower (most commonly fourteen or fifteen) compared to the
anti-heuristic (most commonly sixteen to eighteen), but that
the anti-heuristic then becomes slower to advance, and slower
still to finally prove optimality. This suggests that the anti-
heuristic’s branching choices cause it to become trapped in
larger subproblems before it can advance to a better region of
the search space. In contrast, the good heuristic tries to elimi-
nate as many subproblems as possible, even at the expense of
much less favourable anytime behaviour.

This observation also explains Figure 5: the algorithm does
not spend nearly all of its time attempting to find an unusu-
ally large optimal solution in a sparser instance because this
solution is rare, but rather because it is instead spending all
of its time eliminating the remaining portions of the search
space. As density increases, the remaining portion of the
search space increases, explaining the increase in difficulty
despite the higher solution counts.

Implications for future algorithms. These results show
that the algorithm has been optimised for proofs of optimal-
ity, at the expense of worse anytime behaviour—and also
that, if the algorithm were better at finding strong solutions
quickly, then its performance would improve considerably on
certain instances. It is therefore worth considering whether
it is possible to modify the algorithm for both good anytime
behaviour, and good overall performance. However, adapt-
ing its search order heuristics does not appear to help: al-
though doing so can help it find stronger solutions faster, it
then quickly becomes stuck in a subproblem that is hard to
eliminate.

Other alternatives may be possible. For example, Maslov
et al. [2014] apply an iterated local search (ILS) heuristic
to generate an initial solution, rather than starting from zero.
This technique was also adopted by Tomita et al. [2016], who
use a different form of local search to prime the incumbent.
Both papers describe this as assistance, rather than recognis-
ing that their exact algorithms are not optimised for finding
strong solutions quickly; both papers also have difficulties
selecting a principled amount of time to spend running local
search before starting the exact algorithm. Both papers also
claim large successes (sometimes being thousands or millions
of times faster), particularly on certain families from the stan-
dard DIMACS benchmark suite. However, a close inspection
of the instances where this happens shows that all come from
crafted families that are designed to have unusually large
hidden optimal solutions [Brockington and Culberson, 1993;
Sanchis, 1992; Sanchis, 1995], rather than from application
instances.

3 Graph Colouring
Having looked in detail at the maximum clique problem, we
now repeat some of our experiments using solvers for the
graph colouring problem: we must give a colour to each ver-
tex in a graph, giving adjacent vertices different colours, and

N
um

be
ro

fd
ec

is
io

ns Proportion
SA

T

Edge probability

Satisfiable?
Mean

Mean unsat
Mean sat

100

101

102

103

104

105

106

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28
0

0.2

0.4

0.6

0.8

1

Figure 9: The five-colouring phase transition in G(60, x), using the
color6 solver. Density is increased in steps of 0.001, with 100,000
samples per step.

100

101

102

103

104

105

106

0 0.2 0.4 0.6 0.8 1

3

4

5

6

7
8

9
10

11 12 13 1415161718
1920

N
um

be
ro

fd
ec

is
io

ns

Edge probability

DSATUR
Color6

Figure 10: The difficulty of each colouring decision problem in
G(60, x), using Color6. Outliers removed. For each line, density
is increased in steps of 0.001, with 100,000 samples per step. The
top line is the minimisation problem, using Trick’s DSATUR.

100

101

102

103

104

105

106

107

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fb
ac

kt
ra

ck
s

Edge probability

4 5

6

7

Figure 11: The difficulty of the minimum colouring problem in
G(60, x), using the Trick solver, also showing the means only for
instances with each individual optimal solution. Density is increased
in steps of 0.001, with 100,000 samples per step.

using as few colours as possible.

A phase transition, and outliers. In Figure 9 we show the
difficulty of five-colouring G(60, x), for varying values of
x, using the Color6 solver. For densities in between 0.16
and 0.23, we encounter a mix of satisfiable and unsatisfi-
able instances, and the solver finds the instances more dif-
ficult than those outside of this density range. However, at
much lower densities, comfortably inside the “satisfiable” re-
gion, the mean search effort is extremely variable, and is
sometimes far higher than at the complexity peak. Look-
ing more closely at the data shows that for densities between
0.11 and 0.15, between one in ten thousand and one in a
hundred thousand instances that we generate are tens of mil-
lions of times harder than typical (and this rarity explains
why Mann’s [2018] experiments did not uncover them). Fur-
thermore, rather than being entirely satisfiable, these in-
stances are a mix of satisfiable and unsatisfiable. Such in-
stances also occur for other values of the decision problem,
although it appears to be even less common as the objec-
tive value increases. A similar phenomenon occurs with
other random satisfaction problems [Smith and Grant, 1997;
Achlioptas et al., 2001], and it could potentially be alleviated
by the use of restarts and randomisation [Gomes et al., 1998].

Branch and bound. In Figure 10 we plot the difficulty of
each decision problem together, but exclude these outliers
from calculating the means. As for the clique problem, we
observe wiggles, with the problem getting easier then harder
then easier then harder and so on as we pass successive com-
plexity peaks. The Color6 solver only supports the decision
problem. Thus, we also plot the classic DSATUR branch
and bound algorithm (whose performance is somewhat worse
overall). As with the maximum clique algorithm, the mean
complexity line goes from easy to hard to easy over the full
range of densities, but this peak has wiggles that line up with
the objective values changing.

We also break down the behaviour of the DSATUR solver
by optimal solution size: we show this in Figure 11, in the
same style as Figure 4. Because we are dealing with a min-
imisation problem, instances that are relatively sparse for
their solution size are now found to be harder, rather than
easier. And, as with Color6, DSATUR also occasionally finds
very sparse instances very hard.

4 Maximum Satisfiability
We finish with a brief look at random maximum satisfiability,
or MaxSAT. To generate random MaxSAT instances, we use
40 variables, and a varying number of clauses. Each clause
contains three distinct variables chosen uniformly at random,
and the polarity of each variable in each clause is also set uni-
formly at random; all clauses are soft with equal weight. We
plot our results in Figure 12, showing both Clasp’s default
branch and bound mode, and core-guided optimisation [An-
dres et al., 2012], which performs better. Although harder to
see, the mean search effort lines for both configuration do ex-
hibit wiggles. Interestingly, the relative difficulty of different
instances depends upon the search strategy used—we believe
this warrants further experimentation.

0
0.2
0.4
0.6
0.8
1

120 140 160 180 200 220 240 260 280 300

0
1 2 3 4 5 6

So
lu

tio
n

fr
eq

ue
nc

y

Number of clauses

7
8
9. . . 12

100
101
102
103
104
105
106
107
108
109

N
um

be
ro

fd
ec

is
io

ns
(B

&
B

)

mean6
7

8

0, 1, 2
3, 4, 5

100
101
102
103
104
105
106
107
108
109

N
um

be
ro

fd
ec

is
io

ns
(C

or
e)

mean

0
1
2
3
4
5
6
7
8
9
10
11
12

Figure 12: The difficulty of the maximum 3-satisfiability problem
in random instances with 40 variables using Clasp in branch and
bound mode (top) and in core-guided mode (middle). The number
of clauses is increased in steps of one, and there are 100,000 samples
per step; the core-guided plot omits six instances with 290 or more
clauses that timed out after one day. Results only for each particu-
lar objective value (i.e. the number of unsatisfiable clauses) are also
shown as smaller lines in both plots. On the bottom, we show how
common each objective value is.

5 Discussion and Conclusion
By using very large sample sizes, we have demonstrated that
the behaviour of solvers on hard optimisation problems is
indeed influenced by the behaviour on individual decision
problems—but that these decision problems can interact in
many different ways. We also uncovered several interesting
phenomena that happened only for one in every ten thousand
instances (or even fewer). We therefore encourage future ex-
periments to use similarly large sample sizes if possible, and
to consider running many relatively easy experiments instead
of a small number of experiments on instances that are as
large as possible.

We also uncovered a conflict between designing search or-
der heuristics for anytime behaviour or for overall perfor-
mance in branch and bound algorithms, which explains why
recent exact clique algorithms are using priming with local
search algorithms, and which has implications for the design
of future solvers. This conflict should also be recognised by
experimenters when comparing algorithms in the future.

References
[Achlioptas et al., 2001] Dimitris Achlioptas, Paul Beame,

and Michael S. O. Molloy. A sharp threshold in proof com-
plexity. In Proceedings on 33rd Annual ACM Symposium
on Theory of Computing, July 6-8, 2001, Heraklion, Crete,
Greece, pages 337–346, 2001.

[Andres et al., 2012] Benjamin Andres, Benjamin
Kaufmann, Oliver Matheis, and Torsten Schaub.
Unsatisfiability-based optimization in clasp. In Technical
Communications of the 28th International Conference on
Logic Programming, ICLP 2012, September 4-8, 2012,
Budapest, Hungary, pages 211–221, 2012.

[Atserias et al., 2018] Albert Atserias, Ilario Bonacina, Su-
sanna F. de Rezende, Massimo Lauria, Jakob Nordström,
and Alexander A. Razborov. Clique is hard on average
for regular resolution. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC
2018, Los Angeles, CA, USA, June 25-29, 2018, pages
866–877, 2018.

[Brélaz, 1979] Daniel Brélaz. New methods to color vertices
of a graph. Commun. ACM, 22(4):251–256, 1979.

[Brockington and Culberson, 1993] Mark Brockington and
Joseph C. Culberson. Camouflaging independent sets in
quasi-random graphs. In Cliques, Coloring, and Sat-
isfiability, Proceedings of a DIMACS Workshop, New
Brunswick, New Jersey, USA, October 11-13, 1993, pages
75–88, 1993.

[Cheeseman et al., 1991] Peter C. Cheeseman, Bob Kanef-
sky, and William M. Taylor. Where the really hard prob-
lems are. In Proceedings of the 12th International Joint
Conference on Artificial Intelligence. Sydney, Australia,
August 24-30, 1991, pages 331–340, 1991.

[Dudek et al., 2017] Jeffrey M. Dudek, Kuldeep S. Meel,
and Moshe Y. Vardi. The hard problems are almost ev-
erywhere for random CNF-XOR formulas. In Proceed-
ings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI 2017, Melbourne, Australia,
August 19-25, 2017, pages 600–606, 2017.

[Gebser et al., 2012] Martin Gebser, Benjamin Kaufmann,
and Torsten Schaub. Conflict-driven answer set solving:
From theory to practice. Artif. Intell., 187:52–89, 2012.

[Gomes et al., 1998] Carla P. Gomes, Bart Selman, and
Henry A. Kautz. Boosting combinatorial search through
randomization. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence and Tenth Innovative
Applications of Artificial Intelligence Conference, AAAI
98, IAAI 98, Madison, WI., USA., pages 431–437, 1998.

[Haralick and Elliott, 1980] Robert M. Haralick and Gor-
don L. Elliott. Increasing tree search efficiency for con-
straint satisfaction problems. Artif. Intell., 14(3):263–313,
1980.

[Mann, 2018] Zoltán Ádám Mann. Complexity of coloring
random graphs: An experimental study of the hardest re-
gion. ACM J. of Experimental Algorithmics, 23, 2018.

[Maslov et al., 2014] Evgeny Maslov, Mikhail Batsyn, and
Panos M. Pardalos. Speeding up branch and bound algo-
rithms for solving the maximum clique problem. J. Global
Optimization, 59(1):1–21, 2014.

[McCreesh and Prosser, 2014] Ciaran McCreesh and Patrick
Prosser. Reducing the branching in a branch and bound
algorithm for the maximum clique problem. In Principles
and Practice of Constraint Programming - 20th Interna-
tional Conference, CP 2014, Lyon, France, September 8-
12, 2014. Proceedings, pages 549–563, 2014.

[McCreesh et al., 2018] Ciaran McCreesh, Patrick Prosser,
Christine Solnon, and James Trimble. When subgraph iso-
morphism is really hard, and why this matters for graph
databases. J. Artif. Intell. Res., 61:723–759, 2018.

[Mitchell et al., 1992] David G. Mitchell, Bart Selman, and
Hector J. Levesque. Hard and easy distributions of SAT
problems. In Proceedings of the 10th National Conference
on Artificial Intelligence, San Jose, CA, USA, July 12-16,
1992., pages 459–465, 1992.

[Prosser, 2012] Patrick Prosser. Exact algorithms for max-
imum clique: A computational study. Algorithms,
5(4):545–587, 2012.

[Sanchis, 1992] Laura A. Sanchis. Test case construction for
the vertex cover problem. In Computational Support for
Discrete Mathematics, Proceedings of a DIMACS Work-
shop, Piscataway, New Jersey, USA, March 12-14, 1992,
pages 315–326, 1992.

[Sanchis, 1995] Laura A. Sanchis. Generating hard and di-
verse test sets for NP-hard graph problems. Discrete Ap-
plied Mathematics, 58(1):35–66, 1995.

[Segundo et al., 2013] Pablo San Segundo, Fernando Matı́a,
Diego Rodrı́guez-Losada, and Miguel Hernando. An im-
proved bit parallel exact maximum clique algorithm. Op-
timization Letters, 7(3):467–479, 2013.

[Smith and Grant, 1997] Barbara M. Smith and Stuart A.
Grant. Modelling exceptionally hard constraint satisfac-
tion problems. In Principles and Practice of Constraint
Programming - CP97, Third International Conference,
Linz, Austria, October 29 - November 1, 1997, Proceed-
ings, pages 182–195, 1997.

[Tomita et al., 2010] Etsuji Tomita, Yoichi Sutani, Takanori
Higashi, Shinya Takahashi, and Mitsuo Wakatsuki. A sim-
ple and faster branch-and-bound algorithm for finding a
maximum clique. In WALCOM: Algorithms and Com-
putation, 4th International Workshop. Proceedings, pages
191–203, 2010.

[Tomita et al., 2016] Etsuji Tomita, Kohei Yoshida, Takuro
Hatta, Atsuki Nagao, Hiro Ito, and Mitsuo Wakatsuki.
A much faster branch-and-bound algorithm for finding a
maximum clique. In Frontiers in Algorithmics, 10th Inter-
national Workshop, FAW 2016, Qingdao, China, June 30-
July 2, 2016, Proceedings, pages 215–226, 2016.

[Zhou et al., 2014] Zhaoyang Zhou, Chu Min Li, Chong
Huang, and Ruchu Xu. An exact algorithm with learn-
ing for the graph coloring problem. Computers & OR,
51:282–301, 2014.

	Introduction
	Experimental Setup

	Maximum Clique
	Graph Colouring
	Maximum Satisfiability
	Discussion and Conclusion

