
Limited Discrepancy Search Revisited

PATRICK PROSSER and CHRIS UNSWORTH, Glasgow University

Harvey and Ginsberg’s limited discrepancy search (LDS) is based on the assumption that costly heuristic
mistakes are made early in the search process. Consequently, LDS repeatedly probes the state space, going
against the heuristic (i.e., taking discrepancies) a specified number of times in all possible ways and attempts
to take those discrepancies as early as possible. LDS was improved by Richard Korf, to become improved LDS
(ILDS), but in doing so, discrepancies were taken as late as possible, going against the original assumption.
Many subsequent algorithms have faithfully inherited Korf ’s interpretation of LDS, and take discrepancies
late. This then raises the question: Should we take our discrepancies late or early? We repeat the original
experiments performed by Harvey and Ginsberg and those by Korf in an attempt to answer this question.
We also investigate the early stopping condition of the YIELDS algorithm, demonstrating that it is simple,
elegant and efficient.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems—Computations on discrete structures; G.2.1 [Discrete Mathematics]:
Combinatorics—Combinatorial algorithms

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Heuristic mistakes, limited discrepancy search, performance improve-
ment

ACM Reference Format:
Prosser, P. and Unsworth, C. 2011. Limited discrepancy search revisited. ACM J. Exp. Algor. 16, 1, Article 1.6
(August 2011), 18 pages.
DOI = 10.1145/1963190.2019581 http://doi.acm.org/10.1145/1963190.2019581

1. INTRODUCTION

In tree-based search, such as depth first search, performance is heavily dependent on
variable and value ordering heuristics. Heuristics advise the search process as to what
decision to make next, for example, what variable to consider and what value to assign
to that variable. If a bad decision is made early on in a search, a large subtree may be
explored before this decision can be reversed. It is commonly believed that heuristics
tend to be less reliable at the top of search than deep in search where many decisions
have been made and inferencing has taken place. Limited discrepancy search (LDS)
[Harvey and Ginsberg 1995] attempts to address this. Initially, the search process goes
with heuristic advice, traversing the left branch of the search tree. If this fails, then
search is restarted and the process is allowed to take a single discrepancy (i.e., it is
allowed to go against heuristic advice at most once, but in all possible ways). If one
discrepancy fails to find a solution, then two are allowed in all

(n
2

)
ways, then three in

all
(n

3

)
ways, and so on, up to a maximum number. In LDS, discrepancies are taken as

early as possible, high up in search where it is assumed costly errors have been made.

Author’s address: Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland; email:
Patrick.Prosser@glasgow.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1084-6654/2011/08-ART1.6 $10.00

DOI 10.1145/1963190.2019581 http://doi.acm.org/10.1145/1963190.2019581

ACM Journal of Experimental Algorithmics, Vol. 16, No. 1, Article 1.6, Publication date: August 2011.

1.6:2 P. Prosser and C. Unsworth

Fig. 1. Harvey and Ginsberg’s limited discrepancy search (LDS).

When taking k discrepancies, LDS revisits search states with k − 1 discrepancies
and less. This lead Korf [1996] to propose an improved version of LDS, namely ILDS.
However, in Korf ’s description of LDS and ILDS, discrepancies are taken as late as
possible, contrary to the motivation behind LDS (and we believe that many subsequent
version of LDS have faithfully reproduced this error). Therefore, we ask the following
question: Does it matter if we take discrepancies late or early? We put this to the test by
replicating Korf ’s experiments, using ILDS over number partitioning problems, taking
discrepancies late and early. We then repeat Harvey and Ginsberg’s [1995] experiments
over job shop scheduling problems, and the job shop experiments in Karoui et al. [2007],
again taking discrepancies late and early. Finally, we examine randomly generated
independent set decision problem. In all cases, we restrict ourselves to problems where
the decision variables have binary domains, allowing us to preserve the simplicity of
LDS and ILDS.

LDS and ILDS perform poorly when problems are unsatisfiable. This is due to the
search process performing redundant probes. In Karoui et al. [2007], an early stopping
condition was proposed in the YIELDS algorithm. We present this stopping condition
in isolation, prove that it is sound, and show how it can be easily incorporated into
ILDS. We call this YLDS, a lite version of the YIELDS algorithm. We show empirically
that the YIELDS stopping condition has a significant effect on unsolvable problems,
with no measurable penalty when problems are solvable.

We now present again LDS and ILDS, and in the section after that, we describe the
experiments performed and present our results. We then revisit the YIELDS stopping
condition and demonstrate the performance improvements due to this. Finally, we
conclude.

2. LIMITED DISCREPANCY SEARCH

Harvey and Ginsberg’s [1995] LDS is described in Figure 1. In LDS(node,n), the integer
n is the maximum number of discrepancies that can be made, and it is typically the
number of decision variables, assuming binary domains. The parameter node is the

ACM Journal of Experimental Algorithmics, Vol. 16, No. 1, Article 1.6, Publication date: August 2011.

Limited Discrepancy Search Revisited 1.6:3

Fig. 2. Cartoon of the LDS search process. Going left with the heuristic, right against.

current search state. LDS then calls LDSProbe with increasing number of discrepancies
k until a solution is found or maximum discrepancies have been taken. LDSProbe
makes a limited discrepancy search with k discrepancies. In line 1, if we have reached
our goal, then the current state is returned, and in line 2, if the current state cannot be
extended, nil is delivered. It is assumed that the search can then go left or right. Going
left means going with the heuristic, and going right against the heuristic while taking
a discrepancy. In LDSProbe, the call left(node) delivers a new node resulting from
going with the heuristic from the current node, and the call right(node) delivers a new
node resulting from going against the heuristic from the current node. If there are no
discrepancies allowed (line 3), search goes with the heuristic (line 4). If discrepancies
are allowed (lines 5 to 10), then search takes a discrepancy and goes against the
heuristic (line 6), and if this fails, then search does not take a discrepancy and goes
with the heuristic (line 8).

The LDS search process is shown graphically in the cartoon of Figure 2, taken from
Harvey and Ginsberg [1995]. It is assumed that we have three zero/one decision vari-
ables. When going with the heuristic, search goes left, and going right against the
heuristic. The broken lines and lightly colored nodes represent decisions that are not
backtracked over. The first row corresponds to a call to LDSProbe with zero discrepan-
cies, the second row with one discrepancy, the third row with two discrepancies, and
the fourth row with the maximum of three discrepancies.

There are a number of points to note about LDS. First, and most significantly, when
a discrepancy can be taken, it is taken as soon as possible (i.e., it is taken early).
Consequently, the first discrepancy is taken at the top of search. This is consistent with
the assumption that weak heuristic decisions are made early on in search. Second,
a call to LDSProbe(node,k) will explore all leaf nodes with k or less discrepancies,
consequently LDS re-explores leaf nodes, and this is shown graphically in Figure 2.
This redundancy was addressed by Korf ’s [1996]. improved limited discrepancy search
(ILDS). Pseudocode for improved ILDSProbe is given in Figure 3.

Korf ’s ILDSProbe (see Figure 3) takes an additional parameter, rDepth, the remain-
ing depth over which discrepancies can be taken. In Figure 3 (line 4), the remaining
depth is greater than the number of discrepancies k; consequently, the search delays
taking those discrepancies (line 5) and goes with the heuristic. If the probe in line
5 fails or there is insufficient remaining depth to delay taking discrepancies, then
search makes a probe with a discrepancy, that is, search goes against the heuristic
(line 7). If rDepth was not used and the probe of line 5 was performed unconditionally,

ACM Journal of Experimental Algorithmics, Vol. 16, No. 1, Article 1.6, Publication date: August 2011.

1.6:4 P. Prosser and C. Unsworth

Fig. 3. Korf ’s improved limited discrepancy search (ILDS).

Fig. 4. Paths with 0, 1, 2, and 3 discrepancies. Going left with the heuristic, right against.

search would re-explore states with less than k discrepancies and behave like LDS.
Note that when k is zero and no discrepancies are allowed, the condition of line 4 is sat-
isfied and we get a left-only search. LDS becomes ILDS by substituting the call to LD-
SProbe(node,k) in line 3 of the top half of Figure 1 with the call to ILDSProbe(node,k,n).

Again, there are a number of points of interest in ILDSProbe. First, and most obvi-
ously, the redundancy in LDS is removed. However, as Korf [1996] notes, if the search
process performs constraint propagation, the calculation of the opportunity for future
discrepancies may be optimistic and redundancy may creep in. Finally, and most sig-
nificant for our study, ILDS delays its discrepancies, taking its first discrepancy at
maximum depth (i.e., it takes its discrepancies late, and this is graphically shown in
Figure 4) [Korf 1996]. This is contrary to Harvey and Ginsberg’s original motivation
for LDS.

Subsequent reported enhancements to LDS, such as Walsh’s [1997] depth-bounded
discrepancy search, Meseguer and Walsh’s [1998] interleaved and discrepancy-based
search, and Beck and Perron’s [2000] discrepancy-bounded depth first search either
take discrepancies in the same order as Korf, or are not specific about the order that
discrepancies are taken. Furcy and Koenig [2005] introduce limited discrepancy beam
search over nonbinary domains, a search that combines beam search with LDS and
takes discrepancies early, but does not incorporate Korf ’s improvement. Most recently,
the YIELDS algorithm [Karoui et al. 2007] addresses nonbinary domains, taking i
discrepancies for the ith value in the ordered domain of a variable (the first value being
in position zero). YIELDS incorporates a learning scheme that dynamically reorders
variable instantiations based on past conflicts and has a simple and elegant early
stopping condition when problems are unsolvable. However, YIELDS takes the first
discrepancy at maximum depth, the same as ILDS. This then raises the question,
should discrepancies be taken late or early, and if it makes no difference, why is
that so?

3. EXPERIMENTAL STUDY

We perform three sets of experiments, the first over number partitioning problems
(the problem domain studied in Korf [1996]) and the second on job shop scheduling

ACM Journal of Experimental Algorithmics, Vol. 16, No. 1, Article 1.6, Publication date: August 2011.

Limited Discrepancy Search Revisited 1.6:5

Fig. 5. Java code to generate n numbers uniformly at random to precision d.

problems (the problem domain studied in Harvey and Ginsberg [1995]). The third
set of experiments is over randomly generated independent set decision problems.
The purpose of the experiments is to determine if there is an advantage in taking
discrepancies early (as in Harvey and Ginsberg [1995]) or late (as in Korf [1996]).

3.1. Number Partitioning

We replicate Korf ’s [1996] experiments on number partitioning, using ILDS and tak-
ing discrepancies late and early. In the number partitioning problem, we are given a
multiset (bag) containing n positive integers. The problem is then to partition the bag
into two bags such that their sums differ by at most 1. This problem is NP-complete.

This problem can be addressed by incorporating the Karmarkar Karp (KK) heuristic
[Karmarkar and Karp 1982] into backtracking search. The KK heuristic works as
follows: Initially, the input data is sorted into a list L in nonincreasing order (i.e.,
largest element first). The first two numbers in the list, X and Y , are removed from
the front of the list. There are then two possible choices: (i) insert in order into L the
difference X−Y , corresponding to placing the numbers in different bags, or (ii) push the
sum X+ Y onto the front of L, corresponding to placing both numbers in the same bag.
Of the two choices, option (i) is preferred (i.e., it is the heuristic choice. There are then
three possible outcomes resulting from a choice: (1) length(L) = 1 and head(L) ∈ {0, 1},
or (2) head(L) − sum(tail(L)) ≤ 1, or (3) head(L) − sum(tail(L)) > 1. In case (1), a perfect
partition exists; in case (2), we can continue making choices; and in case (3), no perfect
partition exists. In our model, we use the Choco constraint programming toolkit [Choco
2011], and have n 0/1 constrained integer decision variables, v0 to vn−1, and the list L
as a reversible structure. The KK heuristic is encoded as a specialized constraint. If
a variable vi is assigned the value 0, we go with the heuristic, making choice (i), and
if assigned the value 1, we go against the heuristic making choice (ii). If this results
in outcome (1) search terminates successfully, outcome (2) search proceeds, outcome
(3) search fails, and backtracking takes place.

Problem datasets were generated using the Java program segment given in Figure 5.
Problem size n was varied from 25 to 100, in steps of 5, and for each value of n 100,
problem instances were produced containing n numbers drawn uniformly at random
from the range 1 to 10d − 1. In replicating Korf ’s experiments, d was set to 10, and of
the numbers generated, about 90% were 10 digits long and about 10% were 9 digits
long or less, as expected.

Experiments were run as background jobs and farmed over 10 processors, taking
7 days elapsed time, with most processor time spent on problems in the range 30 ≤ n
≤ 45. Since a variety of processors were used, we do not report runtimes. Figure 6(left)

ACM Journal of Experimental Algorithmics, Vol. 16, No. 1, Article 1.6, Publication date: August 2011.

1.6:6 P. Prosser and C. Unsworth

 10,000

 100,000

 1e+06

 1e+07

 1e+08

 1e+09

 20 30 40 50 60 70 80 90 100

no
de

s

number of numbers

Mean Nodes Visited

early mean
late mean

 0

 10

 20

 30

 40

 50

 60

 70

 20 30 40 50 60 70 80 90 100

fr
eq

ue
nc

y

number of numbers

Beats

early beats late
late beats early

Fig. 6. On the left, log of average search effort (nodes visited) against problem size, solid contour for ILDS-
early and broken contour for ILDS-late. On the right, the number of times ILDS-early beat ILDS-late (solid
contour) and number of times ILDS-late beat ILDS-early (broken contour) against problem size.

shows, on a log scale, the average number of search nodes1 explored against problem
size n for ILDS taking discrepancies early (solid contour) and late (broken contour).

The contours generally agree with Korf ’s [1996]. Although not shown, search effort
was plotted against constrainedness [Gent and Walsh 1998; Gent et al. 1996] κ =
log2(l)/n, where numbers are drawn uniformly and at random from (0,l). The complexity
peak occurred at κ = 0.95 and problem satisfiability about 50%, as expected, that is,
where half of our problem instances had perfect partitions.2 Figure 6 (right) shows how
often ILDS-early beat ILDS-late, and vice versa. If on a problem instance ILDS-early
took less nodes than ILDS-late, then ILDS-early scores 1 point, if ILDS-late takes less
nodes than ILDS-early, then ILDS-late scores 1 point; and if they both take the same
number of nodes, there are no points.

From Figure 6, we can see that when problems are hard (25 ≤ n ≤ 60), it appears
that it is better to take discrepancies early, and when problems are easy (70 ≤ n ≤ 100),
late. However, Figure 6 shows that when problems are hard, the difference between
late and early is relatively insignificant, and that when problems are easy, the absolute
difference is insignificant. Therefore, it appears that there is nothing to choose between
taking discrepancies late or early, and this raises the question, why should that be?

When using a static variable ordering, ILDS-early and ILDS-late must take the same
number of discrepancies, to find a solution or prove that none exists. Furthermore, in
a static variable ordering, if search terminates after k discrepancies, then both ILDS-
late and ILDS-early must have explored the same states in all probes less than k.
Consequently, the difference in the number of nodes visited can only be due to the final
probe, and that is of cost O(

(n
k

)
). When problems are unsatisfiable, ILDS must explore

all discrepancies and call ILDSProbe n+ 1 times, with 0 ≤ k ≤ n. Each probe attempts
to take k discrepancies in all possible ways; therefore, search effort for unsatisfiable
instances will be O(

∑k=n
k=0

(n
k

)
), and this is O(2n). Consequently, ILDS-late and ILDS-

early should have very similar search efforts when problems are mostly unsatisfiable,
and identical search efforts when all instances are unsatisfiable, and this is what we
see with 25 ≤ n ≤ 35. But what happens when problems are mostly satisfiable?

Figure 7 shows the average number of discrepancies taken by ILDS-late and ILDS-
early to find a solution or show that none exists. When problems have solutions (n ≥ 40),
we see that the number of discrepancies falls with problem size, in our instances, from

1A node corresponds to a decision made by the search process, that is, assigning a value to a variable.
2Table V tabulates κ against n with l = 1010 − 1, that is, the largest integer allowed in our datasets.

ACM Journal of Experimental Algorithmics, Vol. 16, No. 1, Article 1.6, Publication date: August 2011.

Limited Discrepancy Search Revisited 1.6:7

 0

 5

 10

 15

 20

 25

 30

 35

 20 30 40 50 60 70 80 90 100

di
sc

re
pa

nc
ie

s

number of numbers

Discrepancies

max
median

min

Fig. 7. The number of discrepancies taken by ILDS against problem size.

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 20 30 40 50 60 70 80 90 100

no
de

s

number of numbers

Mean Nodes Visited

ILDS-early mean
BT mean

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 2 3 4 5 6 7 8 9 10

no
de

s

digits in a number

Mean Nodes Visited

lds-early mean
lds-late mean

bt mean

Fig. 8. On the left, log of average number of nodes against problem size: ILDS-early (solid contour) and BT
(broken contour). On the right, log of average number of nodes against number of digits in a number, for BT
and LDS late and early.

about seven discrepancies at n = 40 down to two when n = 100. The data was analyzed
to determine how much search was devoted to this last probe. The percentage of search
effort in the last probe (for late and early) at n = 40 was approximately 44%, steadily
increasing to about 76% when n = 100. This came as a surprise. Although O(

(n
k

)
)

increases up to the point where k = n/2, we were expecting that the last probe would
be relatively small when problems were satisfiable and hard 40 ≤ n ≤ 60, and most
search effort would be attributed to the sum of the previous probes. For our number of
partitioning problems, this was not the case, and the majority of search was in the last
probe. We tabulate this data in Table V, along with all of our number partition results.

Therefore, in our number partitioning experiments, it appears that it does not mat-
ter if we take discrepancies early or late, but this must be put in context. If it makes
no difference if we take discrepancies early or late-does that mean we should give up
on discrepancy-based search? We, therefore, compare ILDS-early against chronologi-
cal backtracking (BT) over the same datasets (Figure 8). The left of Figure 8 shows
that in the region where problems are mostly unsatisfiable (25 ≤ n ≤ 35) chrono-
logical BT is almost one order of magnitude better than ILDS, but when instances

ACM Journal of Experimental Algorithmics, Vol. 16, No. 1, Article 1.6, Publication date: August 2011.

1.6:8 P. Prosser and C. Unsworth

are satisfiable (n ≥ 40), ILDS is the algorithm of choice, and this agrees remarkably
well with the results in Korf [1996].

We also performed experiments holding n constant and varying the number of digits
in numbers. This allows us to vary problem constrainedness while holding the problem
size constant, where we measure problem size as the number of decision variables. This
is shown on the right side of Figure 8. We again see that when problems are hard (9-
and 10-digit numbers), BT is best, but when problems are satisfiable and easy, ILDS is
the algorithm of choice. We should note that we get 1 point where ILDS-late appears to
be significantly better than ILDS-early (five-digit numbers). This is due to a single data
point skewing the mean, and in fact, ILDS-early and ILDS-late are not significantly
different in this set of experiments.

3.2. Job Shop Scheduling Problems

Harvey and Ginsberg [1995] demonstrated the performance of LDS on job shop schedul-
ing problems (JSSP), and we now do the same using ILDS-early and ILDS-late. In the
JSSP, we are given a set of n jobs and a set of m resources. Each job is made up of a
sequence of m operations, where each operation has an uninterrupted processing time
on a single resource. Each job, and consequently each operation in a job, has a release
date and a due date. Resources can only perform one operation at a time. The goal is
then, given an overall completion time (i.e., make span), that all operations of jobs be
sequenced on resources such that the make span is met, and there is an optimization
variant where the make span is minimized.

Experiments were performed on 15 of the Lawrence [1984] JSSP instances, la01
to la15, available at ORLIB. The instances la01 to la05 are 10 × 5 (i.e., 10 jobs and 5
resources), la06 to la10 are 15×5, and la11 to la15 are 20×5. Further experiments were
then performed over 40 of Sadeh’s [1991] job shop satisfaction problems, each being
10 jobs and 5 resources with varying bottleneck resources. The scheduling problems
were represented as a disjunctive graph, using the Choco constraint programming
toolkit. That is, for a job shop instance with n jobs and mresources, there are m.n(n−1)/2
zero/one variables to decide the order of operations on resources and (n.m+ 1) bound
integer variables to represent operation start times. Therefore, we have two distinct
sets of variables: the set of zero/one variables that control disjunctive precedence
constraints between pairs of operations that share a resources and the set of start times
attached to operations. The slack-based heuristics of Smith and Cheng [1993] were
implemented as a dynamic variable ordering heuristic and as a dynamic value ordering
heuristic. That is, given a decision variable dij associated with an ordering between
the pair of operations opi and opj on a shared resource, a slack value was computed
for dij as the maximum slack remaining in the start times for operations opi and opj if
opi was sequenced before opj or if opj was sequenced before opi. The zero/one decision
variables were then ordered dynamically in nondecreasing order of slack, and values
were ordered dynamically in nonincreasing order of slack. Consequently, an attempt
is made to instantiate the most constrained variable with its least constraining value.
After each decision, the search process establishes arc-consistency,3 that is, constraint
propagation takes place through process plans, updating operation start times, and
possibly enforcing sequencing decisions. Making a decision against the value ordering
heuristics counts as a discrepancy. At the start of each probe, the decision variables

3Arc-consistency is at the heart of constraint programming. Arc-consistency is a polynomial-time process that
filters out from the domains of variables values that cannot occur in any solution. Typically, arc-consistency
is established after the instantiation of a variable. The first arc-consistency algorithms were proposed by
Mackworth [1977]. For more details, see Rossi et al. [2006].

ACM Journal of Experimental Algorithmics, Vol. 16, No. 1, Article 1.6, Publication date: August 2011.

Limited Discrepancy Search Revisited 1.6:9

Table I. Lawrence Job Shop Scheduling Instances, la01 to la15

ILDS-early ILDS-late BT
Instance make span nodes disc time nodes disc time nodes time
la01 666 42 0 0.05 42 0 0.05 42 0.04
la02 655 2,648 3 0.43 5,248 3 0.60 35,132 1.7
la03 597 53,552 6 4.1 42,345 6 3.3 6,103 0.67
la04 590 1,798 3 0.38 2,431 3 0.44 310 0.21
la05 593 91 0 0.06 91 0 0.06 91 0.05
la06 926 958 1 0.36 306 1 0.17 − −
la07 890 3,660 2 1.1 8,024 2 2.5 1,044,950 41
la08 863 5,794 1 1.6 2,409 1 0.71 5,17,990 20
la09 951 760 1 0.32 6,616 1 1.6 − −
la10 958 1,045 1 0.34 485 1 0.20 39,201,106 1,294
la11 1,222 2,090 1 2.0 757 1 0.79 − −
la12 1,039 36,987 2 32 22,096 2 19 − −
la13 1,150 4,117 1 3.4 14,669 1 9.4 − −
la14 1,292 1,352 1 1.1 11,142 1 6.2 399 0.13
la15 1,207 11,1067,002 4 6743 7,194,189 3 431 − −

Minimum make span (Second column) is posted as a constraint resulting in a decision problem.
Tabulated is number of decisions (nodes), discrepancies taken, and runtime in seconds. Slack-based
dynamic variable and value ordering heuristics were used. Results are reported for chronological
backtracking (BT). The best results between ILDS-early and ILDS-late are in bold. A table entry
of—corresponds to search termination after 100 million nodes (although 200 million nodes were
allowed for la15).

are returned to index order. It should also be noted that we have kept our model
relatively simple and that we did not exploit edge finding constraints [Vilim 2009].

3.2.1. Lawrence Benchmarks. The results of our experiments are shown in Table I. The
Lawrence job shop instances were posed as decision problems, that is, the minimum
make span (tabulated) was posted as a constraint, and the search process finds an
ordering of operations on resources that satisfied that constraint. Table I shows the
number of decisions made by the search process (nodes), the number of discrepancies
required to find a solution, and the runtime in seconds.4 All experiments were done in
a safe mode. That is, each decision variable was initialized with a unique identification
number and prior to applying the heuristic to select the ith variable, all uninstantiated
variables were sorted with respect to their identification number. That way, there is
no residual effect caused by previous variable orderings when backtracking. Unfortu-
nately, this is costly to do and was suppressed for our hardest instance la15.

We also tabulate results for chronological backtracking (BT). BT was allowed 100 mil-
lion nodes before search was terminated (tabulated as −) and 200 million nodes on la15.
The most obvious thing of note is that ILDS is generally much faster than BT. How-
ever, what is less obvious is that ILDS-early and ILDS-late do not always take the
same number of discrepancies to find a solution (see instance la15), and this is due to
the dynamics of the variable ordering heuristic.

THEOREM 3.1. The order of instantiation of variables can influence the number of
probes required to find a solution.

PROOF. We use an existence proof. Assume we have a problem with three constrained
integer variables x ∈ {1, 3}, y ∈ {1, 2}, and z ∈ {1, 2} with the constraints x �= y,
x �= z, and y �= z. Furthermore, assume that the value ordering heuristic selects the
first value in the domain of a variable, that after instantiation of a variable, arc-
consistency is established [Rossi et al. 2006], and that the current probe has exhausted

4Note that all experiments were run on the same processor so we can reliably compare run times.

ACM Journal of Experimental Algorithmics, Vol. 16, No. 1, Article 1.6, Publication date: August 2011.

1.6:10 P. Prosser and C. Unsworth

its discrepancies. The instantiation order (x, y, z) will fail, that is, x will take the value
1 and constraint propagation will remove that value 1 from the domains of y and z, y
is then instantiated to 2 and propagation wipes out the domain of z, and search fails.
Another probe will be required with an additional discrepancy, such that x takes the
value 3, y the value 1, and z the value 2. However, the instantiation order (z, y, x) will
succeed, with z taking the value 1, y the value 2, and x the value 3.

Clearly, the previously mentioned gadget (the mini-problem used in the proof) can be
incorporated into any ILDS probe, where the variables x, y, and z are the last variables
in the instantiation order, and these variables are reached when discrepancies have
been exhausted. But this raises the question, how can the dynamic instantiation order
change by going left and then right (i.e., take a discrepancy late) compared with going
right and then left (i.e., take a discrepancy early)? This is due to the residual effect
of our dynamic variable ordering. To select the variable with least slack, we compare
decision variable di with dj (where i < j), and if the slack associated with dj is less
than the slack of di, we swap di with dj and then continue, comparing di with dj+1,
eventually terminating when j = n − 1. This residual disorder can then influence the
subsequent search effort. Our safe mode avoids this, but it should only be used for
empirical comparisons.

Returning to Table I, we note that there are six problems where ILDS-early is faster
than ILDS-late (la02, la04, la07, la09, la13, la14) and seven problems where ILDS-
late is faster than ILDS-early (la03, la06, la08,la10, la11, la12, la15). However, only
la015 produces a significant difference in runtimes between ILDS-late and ILDS-early.
Problem la15, is of size 20 × 5 and has 950 zero/one variables. ILDS-early took one
more discrepancy than ILDS-late to solve la15, and this resulted in ILDS-early taking
nearly 2 hours of CPU time and ILDS-late taking just over 7 minutes. But this is a
single unsafe instance, and Table I shows no clear trend and no clear winner. That is,
it appears that there is little to choose between taking discrepancies early and taking
discrepancies late.

3.2.2. Sadeh Benchmarks. Experiments were performed over Sadeh’s [1991] job shop
scheduling satisfaction problems. There are four classes of instance: e0ddr1, e0ddr2,
enddr1, and ewddr2.5 Each instance has 10 jobs and 5 resources, and individual jobs
within an instance have specified release and due dates. The problem is then to satisfy
resource and temporal constraints. The same model and slack-based heuristics were
used in these experiments. Search nodes are tabulated for each instance in Table II,
comparing ILDS-early against ILDS-late, both using the dynamic slack-based variable
and value ordering heuristics. Experiments were performed on the same machine as
described earlier, again in safe mode. A table entry in bold corresponds to a search that
took at least one discrepancy, and a nonbold entry corresponds to a search that took no
discrepancies, that is, the search process find a solution without making a mistake, and
ILDS-early and ILDS-late take the same number of nodes. Only 6 of the 40 instances
require discrepancies to be taken, and in 5 of those instances, ILDS-early beats ILDS-
late. However, the relative difference is only significant in 3 of the 40 cases (e0ddr1-3,
e0ddr1-8, enddr1-8), but with regard to runtimes, the differences are insignificant.

Experiments were then performed over the Sadeh benchmarks to explore the sen-
sitivity of ILDS-early and ILDS-late to the slack-based heuristics (i.e., what would be
the effect of turning the value and variable ordering heuristics off and on?). For each

5NOTE: These are the complete sets available from Sadeh’s Web site, each complete set containing 10 in-
stances. These instances should not be confused with the set at Christophe Lecoutre’s benchmark page
[Roussel and Lecoutre 2008]. Roussel and Lecoutre’s instances are binary constraint satisfaction represen-
tations of Sadeh’s originals, therefore some of the structural information is lost in translation.

ACM Journal of Experimental Algorithmics, Vol. 16, No. 1, Article 1.6, Publication date: August 2011.

Limited Discrepancy Search Revisited 1.6:11

Table II. Sadeh’s Job Shop Scheduling Satisfaction Problems

e0ddr1 e0ddr2 enddr1 ewddr2
id early late early late early late early late
1 111 111 108 108 122 122 143 143
2 137 137 1,175 1,231 133 133 75 75
3 222 1,282 106 106 110 110 123 123
4 125 125 144 144 105 105 141 141
5 128 128 141 141 136 136 104 104
6 141 141 141 141 154 154 153 153
7 101 101 104 104 107 107 147 147
8 220 801 197 224 161 445 108 108
9 144 144 78 78 158 158 97 97
10 297 148 123 123 114 114 156 156

There are four complete classes (e0ddr1, e0ddr2, enddr1, ewddr2) with 10
instances in each class. Tabulated are nodes explored to find a solution.
The bold entries correspond to instances where search took discrepancies.
In all other cases, solutions were found merely by following the slack-
based heuristic.

instance, we have eight possibilities: (take discrepancies early or late) and (use the
dynamic slack-based value ordering or the static ordering 0 then 1) and (use the dy-
namic slack-based variable ordering or the static index order of the zero/one decision
variables). The results of these experiments are shown in Table III, with a table en-
try of “–” corresponding to a trivial instance where no discrepancies were taken and
ILDS-early and ILDS-late take the same number of search nodes.

Looking at Table III columns E-1-1 and L-1-1 (early versus late, using the dynamic
value and variable ordering heuristic, essentially Table II), we see that absolute differ-
ences tend to be small, measured in hundreds of nodes. In fact, over all instances, late
and early, runtimes were in the range 52 to 271 milliseconds. Looking at columns E-1-0
and L-1-0 (using the dynamic value ordering, but selecting variables in index order)
ILDS-late is terrible, suggesting that value ordering heuristic error is significant high
up in the search tree close to the root when we disable variable ordering and that
taking discrepancies late is costly. Columns E-0-1 and L-0-1 (selecting value 0 before
value 1, but using dynamic variable ordering) shows that there is a less reliable dis-
tinction between ILDS-early and ILDS-late, with ILDS-late being significantly worse
on two instances (e0ddr1-3, e0ddr2-1). The final columns, E-0-0 and L-0-0, should be
considered as a “straw man” where no heuristic information is exploited. We can see
the result is a lottery with ILDS-late and ILDS-early both performing atrociously, and
our choice is then between the lesser of two evils. In conclusion, Table III suggests
that, over Sadeh’s benchmarks, the slack-based value ordering heuristic in isolation
(columns *-1-0) is less reliable at top of search than deep in search and that taking
discrepancies early is preferable to late. When we ignore value ordering heuristic infor-
mation (columns *-0-*), there is little to choose between late and early, as both perform
equally poorly, and when we exploit all available heuristic information (columns *-1-1)
again, there is little to choose between late and early, as they both behave extremely
well. Therefore, it appears that the only time the choice between late and early is
significant (over Sadeh’s benchmarks) is when we have heuristic information but it is
unreliable, and this supports the LDS hypothesis.

3.3. Independent Set

We now present results on randomly generated problems, similar to experiments on
random binary constraint satisfaction problems [Prosser 1996; Gent et al. 2001]. We
choose independent set because we can model this exclusively with binary variables
and do not have to complicate the algorithms with the burden of dealing with high

ACM Journal of Experimental Algorithmics, Vol. 16, No. 1, Article 1.6, Publication date: August 2011.

1.6:12 P. Prosser and C. Unsworth

Table III. Sadeh’s Job Shop Scheduling Satisfaction Problems

Instance E-1-1 L-1-1 E-1-0 L-1-0 E-0-1 L-0-1 E-0-0 L-0-0
e0ddr1-1 — — 788 1,722 201 98 448 200
e0ddr1-2 — — — — 267 150 3968 1427
e0ddr1-3 222 1,282 4,190 64,855 6,06,229 15,63,201 3,58,049 4,38,228
e0ddr1-4 — — 222 2,664 207 93 3,015 2,140
e0ddr1-5 — — — — — — 743 445
e0ddr1-6 — — — — — — 1,824 2,612
e0ddr1-7 — — 231 1,157 — — 239 114
e0ddr1-8 220 801 — — — — 697 158
e0ddr1-9 — — 254 1,383 — — 698 123
e0ddr1-10 297 148 — — 123 125 190 616
e0ddr2-1 — — 8,782 7,359 1,326 8,997 4,56,864 1,00,969
e0ddr2-2 1,175 1,231 1,76,616 5,67,904 94 256 — —
e0ddr2-3 — — — — 96 96 — —
e0ddr2-4 — — 281 1,246 — — 174 306
e0ddr2-5 — — — — — — — —
e0ddr2-6 — — 243 3,752 — — 2,386 2,164
e0ddr2-7 — — 6,415 23,015 — — 1,214 166
e0ddr2-8 197 224 — — 120 76 — —
e0ddr2-9 — — 312 2,004 5,911 4,226 56,991 10,976
e0ddr2-10 — — — — — — — —
enddr1-1 — — — — — — 9,581 31,246
enddr1-2 — — — — — — 234 752
enddr1-3 — — — — 1,007 534 685 1,458
enddr1-4 — — 281 1,694 — — 39,468 1,24,717
enddr1-5 — — — — — — — —
enddr1-6 — — — — — — 1,625 1,143
enddr1-7 — — — — — — 3,179 2,182
enddr1-8 161 445 308 2254 929 491 3,488 8,128
enddr1-9 — — — — — — 351 212
enddr1-10 — — — — 239 772 2,521 13,478
ewddr2-1 — — — — — — 600 1,162
ewddr2-2 — — 247 4,971 — — 12,025 3,879
ewddr2-3 — — — — 118 131 613 957
ewddr2-4 — — — — — — — —
ewddr2-5 — — — — — — 1,946 254
ewddr2-6 — — 655 4,658 — — 1,097 211
ewddr2-7 — — 227 4,776 — — 2,882 2,776
ewddr2-8 — — — — 93 112 8,800 2,258
ewddr2-9 — — — — — — 61,419 5,69,337
ewddr2-10 — — — — 123 161 1,397 661

Columns E-*-* are ILDS-early.
Columns L-*-* are ILDS-late.
Columns *-1-* use slack-based value ordering.
Columns *-0-* use the static value ordering, select 0 then select 1.
Columns *-*-1 use the slack-based variable ordering.
Columns *-*-0 select variables in index order.
A table entry of - signifies a trivial instance solved with zero discrepancies (see Table II).

arity domains and the difficulties associated with attributing discrepancies to values
deep in those domains (as in Karoui et al. [2007] and Furcy and Koenig [2005]).

We are given a simple undirected graph G = (V, E) and an integer k, and the problem
is to determine if there is an independent set of size k or more in G, where a set of
vertices V ′ ⊆ V is an independent set if ∀{i, j}∈V ′ : {i, j} �∈ E, where E is the set of edges
in G. The independent set decision problem is NP-complete.

The problem is again modeled in Choco. For each vertex vi, we have a zero-one
constrained integer variable xi. If the variable xi takes the value 1, then the vertex vi
is selected, and if xi takes the value 0, the corresponding vertex is rejected. For every

ACM Journal of Experimental Algorithmics, Vol. 16, No. 1, Article 1.6, Publication date: August 2011.

Limited Discrepancy Search Revisited 1.6:13

Table IV. Random Independent Set

ILDS-early ILDS-late
problem count mean max mean max

〈40, 0.20, 12〉 35 4,684 83,980 10,932 2,49,580
〈40, 0.20, 13〉 45 29,259 5,85,202 92,563 2,097,341
〈40, 0.20, 14〉 29 10,750 1,41,903 14,373 1,31,707
〈40, 0.30, 9〉 22 3,060,207 67,143,322 9,473,309 2,08,197,948
〈40, 0.30, 10〉 65 80,743 1,667,078 1,29,100 1,939,869
〈40, 0.30, 11〉 34 66,060 9,78,348 1,48,775 1,691,877
〈50, 0.15, 16〉 41 4,32,339 13,953,481 1,733,097 62,287,221
〈50, 0.15, 17〉 60 7,838,786 4,08,722,788 10,139,148 4,81,195,132
〈50, 0.15, 18〉 40 1,099,694 35,821,344 1,814,667 60,617,755

Given a random graph Gn,p and an integer k, is there an independent set of size k or
more? Only counted are instances, out of 100, where there was an independent set of
size k or more and search took discrepancies.

edge {i, j} ∈ E, we constrain xi + xj ≤ 1. The instance is solvable if
∑i=n

i=1 xi ≥ k, where
n = |V |. The decision variables x are sorted into nondecreasing degree order such
that the first variable to be instantiated corresponds to the vertex of lowest degree
and the last variable instantiated corresponds to the vertex of maximum degree. This
ordering is done at the top of search and is used as a static variable ordering. A static
value ordering is also used such that the value 1 is considered as the heuristic choice,
selecting a vertex of low degree and as a consequence rejecting a relatively small
number of adjacent vertices. The value 0 is then a discrepancy corresponding to the
rejection of a vertex of low degree.

All experiments were run on a machine with 8 Intel Zeon E5420 processors running
at 2.50GHz, 32GB of RAM, with version 5.2 of linux. Experiments were performed over
Erdos-Renyi random graphs, Gn,p, where n is the number of vertices and p is the edge
probability. We present results for instances where search required discrepancies and
those instances where solvable. The reason for this restriction is that if an instance
can be solved with no discrepancies, then ILDS-late and ILDS-early must take exactly
the same path to a solution and must have identical costs. Similarly, if an instance
is insoluble, ILDS-early and ILDS-late will take n discrepancies to prove insolubility,
and since a static variable ordering is used, it will take the same number of search
nodes. Therefore, we exclude these instances from our results in Table IV. We classify
problems with the triple 〈n, p, k〉, where n is the number of vertices, p is edge probability
and, k is the size of the independent set. One hundred graphs were generated at each
value of n and p. In Table IV, the column headed count gives the number of graphs
that meet our restriction of solubility and discrepancies taken. These instances are
soluble instances close to the phase transition, where we expect to find hard instances
[Cheeseman et al. 1991; Prosser 1996; Gent et al. 1996].

In almost all cases, the mean is dominated by the maximum (maximums of hundreds
of millions of nodes in some cases). Nevertheless, looking at the raw data, it is evident
that even if we ignore these hard instances, ILDS-late is consistently worse than ILDS-
early. This suggests that early heuristic mistakes are costly and should be corrected
quickly. Independent set appears to fit Harvey and Ginsberg’s initial hypothesis.

3.4. Summary of Results

In number partitioning, it did not matter if we took discrepancies late or early. In the
Lawrence job shop problems, it was the same, with little to choose between ILDS-late
and ILDS-early. Sadeh’s benchmarks showed that when heuristic information was very
good or very bad, it did not make any difference if we took discrepancies late or early.
It was only when we had incomplete and unreliable heuristic information that it really

ACM Journal of Experimental Algorithmics, Vol. 16, No. 1, Article 1.6, Publication date: August 2011.

1.6:14 P. Prosser and C. Unsworth

mattered, and in that case, we should take discrepancies early, as recommended by
Harvey and Ginsberg. In the random independent set problems, ILDS-early was the
algorithm of choice, and this might suggest that our heuristics were indeed unreliable
high up in search.

4. IMPROVING PERFORMANCE ON UNSATISFIABLE INSTANCES

In Section 3, we have seen that chronological backtracking dominates limited dis-
crepancy search when problems are unsatisfiable. One of the reasons for this is that
LDS and ILDS repeatedly probe the search space with discrepancies k, from 0 to n, to
prove unsatisfiability, but this is unnecessary. Assume a probe is made with a quota
of k discrepancies and this returns nil, and that the next probe with a quota of k + 1
discrepancies also delivers nil, but that probe never managed to take more than k
discrepancies. In that case, the problem is unsatisfiable and search can terminate.

This observation was made in the YIELDS algorithm of Karoui et al. [2007]. To quote
from their paper (page 103): “In contrast, if the allowed discrepancies are not consumed,
it is not necessary to continue to reiterate LDS with a greater number of discrepancies
even if no solution has been found.” This is incorporated into the YIELDS algorithm via
detecting that “The process of learning comes to an end”, that is, a YIELDS-iteration
terminated and the weight vector used in learning was not updated. The YIELDS
stopping condition is both simple and elegant, and we now prove that is correct, show
how it can be easily incorporated into LDS and ILDS, and empirically investigate the
benefits to be had from this.

THEOREM 4.1. If a probe terminates without consuming its quota of discrepancies, the
problem is unsatisfiable and search can terminate.

PROOF. Assume that a probe with a quota of k − 1 discrepancies returns nil. Fur-
thermore, assume that the next probe with a quota of k discrepancies also returns
nil but never manages to take more than k − 1 discrepancies. All subsequent probes
with a quota of δ discrepancies, for k < δ ≤ n, will also be unable to take more than
k − 1 discrepancies and, therefore, must also return nil. Consequently, we can termi-
nate search after a probe if that probe returned nil and failed to take its full quota of
discrepancies.

We now present YLDS, a simplified version of the YIELDS algorithm. YLDS is based
on ILDS, takes discrepancies early, deals only with binary domains, and incorporates
the YIELDS early stopping condition. To describe YLDS, we introduce a global boolean
variable adt, for all discrepancies taken. The variable adt is set to false in the calling
procedure YLDS, line 3. Procedure Probe sets adt to true if the full quota of k discrep-
ancies have been consumed, in line 3 of Probe. On returning from the call to Probe, in
line 5 of YLDS, if a solution has been found (result �= nil) or the Probe failed to take all
discrepancies, search terminates.

If we allow a probe to set adt to true unconditionally, YLDS then behaves as ILDS-
early. Furthermore, if a problem instance is satisfiable, YLDS will behave identically to
ILDS-early. That is, we only see our improvement on unsatisfiable instances, and that
is where LDS and ILDS perform badly. YLDS was applied to the number partitioning
problems of Section 3. Table V shows the performance of all the algorithms over these
problems. We show, in thousands, the average number of nodes visited to find a solution
or show that none exists and in brackets the average number of discrepancies taken.
We also show the percentage of search effort devoted to the last probe in YLDS, the
percentage of instances that were satisfiable, and the measure of constrainedness κ. It
should be noted that, as expected, YLDS performs identically to ILDS-early over the
satisfiable instances n ≥ 40. YLDS should be compared against ILDS-early. When all

ACM Journal of Experimental Algorithmics, Vol. 16, No. 1, Article 1.6, Publication date: August 2011.

Limited Discrepancy Search Revisited 1.6:15

Table V. Average Search Effort in Thousands of Nodes, for the Number Partitioning Problems

n ILDS-early ILDS-late BT YLDS last probe % sat κ

25 1,959 (25) 1,959 (25) 342 1,252 (9) 21% 0 1.329
30 42,958 (28) 42,986 (28) 7,714 29,482 (11) 18% 5 1.107
35 5,13,745 (21) 5,16,082 (21) 1,08,759 3,86,013 (11) 26% 52 0.949
40 48,087 (6) 52,291 (6) 92,720 48,087 (6) 44% 100 0.830
45 14,100 (5) 14,820 (5) 37,674 14,100 (5) 57% 100 0.738
50 5,467 (4) 5,040 (4) 20,281 5,467 (4) 60% 100 0.664
55 2,374 (4) 2,865 (4) 15,406 2,374 (4) 60% 100 0.604
60 1,171 (3) 1,319 (3) 10,984 1,171 (3) 67% 100 0.554
65 788 (3) 841 (3) 5,705 788 (3) 65% 100 0.511
70 631 (3) 561 (3) 3,778 631 (3) 69% 100 0.475
75 405 (2) 321 (2) 1,824 405 (2) 73% 100 0.443
80 281 (2) 216 (2) 1,216 281 (2) 71% 100 0.415
85 230 (2) 182 (2) 746 230 (2) 65% 100 0.391
90 141 (2) 116 (2) 408 141 (2) 71% 100 0.369
95 141 (2) 104 (2) 352 141 (2) 74% 100 0.350

100 76 (2) 67 (2) 222 76 (2) 76% 100 0.332

In brackets, we have average number of discrepancies. Column “last probe” gives the average
percentage of search effort devoted to the last probe for YLDS (and ILDS-early when n ≥ 40).
Column “%sat” is percentage of instances at that size that were satisfiable, and last column is
kappa for number partitioning [Gent and Walsh 1998].

Fig. 9. YLDS: improving performance on unsatisfiable instances by stopping when the required number of
discrepancies k cannot be taken.

problems are unsatisfiable, YLDS shows a clear advantage over ILDS-early, being about
36% faster when n = 25. When instances are a mix of satisfiable and unsatisfiable,
YLDS is about 31% faster at n = 30 and 25% faster when n = 35, where percentage
satisfiable is 52%. The reason for these gains is due to the reduction in discrepancies
required to prove unsatisfiability (shown in brackets): Typically, YLDS uses less than
half of the discrepancies required by ILDS. On the satisfiable instances at n = 35,
on average, eight discrepancies were taken, and 70,237 nodes were visited by both
ILDS-early and YLDS. On the unsatisfiable instances at n = 35, ILDS-early took all

ACM Journal of Experimental Algorithmics, Vol. 16, No. 1, Article 1.6, Publication date: August 2011.

1.6:16 P. Prosser and C. Unsworth

35 discrepancies and, on average, 994,213 nodes, whereas YLDS took, on average, 14
discrepancies and 728,103 thousand nodes, about a 27% speed-up.

YLDS was also applied to the Lawrence job shop scheduling problems, where the
goal was to prove optimality. That is, the problem is to show that no schedule exists
with a make span less than the optimal (i.e, the search process must show that the
problem is unsatisfiable). Unfortunately, these problems are far too hard for limited
discrepancy search and our relatively simple model. Considering instance la01, our
easiest instance, ILDS would require 225 probes (the number of decision variables) to
prove unsatisfiability, and we expect this would correspond to an astronomical amount
of search effort. However, YLDS, proved optimality of la01 in 383 million nodes, taking
29 discrepancies, and 2 hours and 45 minutes of CPU time (but this compares poorly
with BT’s 29.6 million nodes and 11 minutes CPU time). YLDS was used in all the
random independent set decision problem experiments in Table IV. Without YLDS,
proof that an instance was unsatisfiable would take hours, and in some cases, days.
YLDS reduced these runtimes to manageable amounts. Furthermore, in all of our ex-
periments, when problems were solvable, the difference in runtime between YLDS and
ILDS was minuscule (i.e., the YIELDS stopping condition incurs negligible overhead).

5. CONCLUSION

In moving from LDS to ILDS, we have inadvertently lost the assumption underpin-
ning limited discrepancy search (i.e., that costly heuristic errors are made early on
in the search process). We have put this assumption to the test with two variants of
ILDS, one taking discrepancies early and one taking discrepancies late. In our number
partitioning experiments, we see clear regions were early beats late, and that is when
problems are hard and satisfiable, suggesting that Harvey and Ginsberg’s assumption
holds in that region. Conversely, late beats early when number partitioning problems
are easy and satisfiable, refuting Harvey and Ginsberg’s assumption in that region.
However, in both regions, the improvements in performance are either relatively small
or absolutely small. Since a static variable ordering is imposed, both versions must
take the same number of discrepancies to find a solution, and thus the gain can only
be found in the last probe. An analysis of the data revealed that in soluble instances,
the majority of search effort occurs in the last probe. This was somewhat surprising.

In our job shop scheduling experiments, we used a dynamic variable ordering heuris-
tic, and we observed that this can influence the number of probes required to find a
solution. Over the Lawrence dataset, there was only one instance where there was a
significant difference between taking discrepancies early or late and that was when
search resulted in ILDS-early taking one more discrepancy than ILDS-late. However,
over the instances examined, there was no clear trend and no clear winner. Sadeh’s
benchmarks succumbed to ILDS when using the variable and value slack-based heuris-
tics combined, with no significant difference between taking discrepancies late or early.
By turning heuristics off and on, we observed that there was no significant difference
between ILDS-late and ILDS-early when we used both heuristics combined or none at
all. It was only when using partial and unreliable heuristic information that there was
a significant difference, and in that case, we should go back to Harvey and Ginsberg’s
original hypothesis and take discrepancies early.

The random independent set decision problems lend weight to our observations on
Sadeh’s benchmarks that our heuristic was unreliable at the top of search and that
ILDS should take discrepancies early.

The observation was made in Karoui et al. [2007] that if a probe fails to take all
of its quota of discrepancies, all subsequent probes will do likewise; consequently,
search can be stopped early on unsatisfiable instances. A small modification was made
to ILDS to reflect this giving us YLDS, a stripped-down version of YIELDS. This

ACM Journal of Experimental Algorithmics, Vol. 16, No. 1, Article 1.6, Publication date: August 2011.

Limited Discrepancy Search Revisited 1.6:17

algorithm performs like ILDS-early on satisfiable instances, but terminates sooner on
unsatisfiable instances. Our experiments (in number partitioning, job shop scheduling
optimization, and random independent set decision problems) have demonstrated that
this modification leads to significant reductions in probes to prove unsatisfiability and
this significantly reduces search effort.

Are there any simple “take home messages”? First, if you are using limited discrep-
ancy search, take your discrepancies early (it never seems to hurt). Second, incorporate
Korf ’s improvement into your limited discrepancy search (it is surprising that some
people do not). Third, make sure that you use the YIELDS stopping condition (it is
simple, elegant, cheap, and effective). And finally, do some experiments. If those exper-
iments show that there is a significant difference between taking discrepancies late
and early, maybe your heuristic is really dumb. And even worse, if there is no difference
between late and early, is your heuristic nothing more than a lottery?

ACKNOWLEDGMENTS

We would like to thank Richard Korf, Wafa Karoui, Toby Walsh, Chris Beck, Derek Long, Ian Gent, Alice
Miller, Neil Moore, Matt Stallmann, and our reviewers.

REFERENCES

BECK, J. C. AND PERRON, L. 2000. Discrepancy-bounded depth first search. In Proceedings of the Constraint
Programming, Artificial Intelligence and Operations Research.

CHEESEMAN, P., KANEFSKY, B., AND TAYLOR, W. M. 1991. Where the really hard problems are. In Proceedings of
the International Joint Conference on Artificial Intelligence. Morgan Kaufmann, 331–337.

CHOCO. CHOCO Solver. http://www.emn.fr/x-info/choco-solver/.
FURCY, D. AND KOENIG, S. 2005. Limited discrepancy beam search. In Proceedings of the International Joint

Conference on Artificial Intelligence. Morgan Kaufmann.
GENT, I. P., MACINTYRE, E., PROSSER, P., SMITH, B. M., AND WALSH, T. 2001. Random constraint satisfaction:

Flaws and structure. J. Constraints 6, 345–372.
GENT, I. P., MACINTYRE, E., PROSSER, P., AND WALSH, T. 1996. The constrainedness of search. In Proceedings of

the 14th National Conference on Artificial Intelligence. AIII, Menlo, CA, 246–252.
GENT, I. P. AND WALSH, T. 1998. Analysis of heuristics for number partitioning. Comput. Intell. 14, 3, 430–451.
HARVEY, W. D. AND GINSBERG, M. L. 1995. Limited discrepancy search. In Proceedings of the 13th International

Joint Conference on Artificial Intelligence. Morgan Kaufmann.
KARMARKAR, N. AND KARP, R. M. 1982. The differencing method of set partitioning. Tech. rep. UCB/CSD/82/113,

Computer Science Division, University of California, Berkeley.
KAROUI, W., HUGUET, M.-J., LOPEZ, P., AND NAANAA, W. 2007. YIELDS: A yet improved limited discrepancy

search for CSPs. In Proceedings of the Constraint Programming, Artificial Intelligence and Operations
Research.

KORF, R. 1996. Improved limited discrepancy search. In Proceedings of the 14th National Conference on
Artificial Intelligence (AAAI’96). AIII, Menlo, CA.

LAWRENCE, S. 1984. Resource constrained project scheduling: an experimental investigation of heuristic
scheduling techniques. Graduate School of Industrial Administration, Carnegie Mellon University, Pitts-
burgh, PA.

MACKWORTH, A. K. 1977. Consistency in networks of relations. Artif. Intell. 8, 99–118.
MESEGUER, P. AND WALSH, T. 1998. Interleaved discrepancy based search. In Proceedings of the 13th European

Conference on Artificial Intelligence. John Wiley and Sons, Hoboken, NJ.
PROSSER, P. 1996. An empirical study of the phase transition in binary constraint satisfaction problems. Artif.

Intell. 81, 81–109.
ROSSI, F., VAN BEEK, P., AND WALSH, T. 2006. Handbook of Constraint Programming. Elsevier, Amsterdam, The

Netherlands.
ROUSSEL, O. AND LECOUTRE, C. 2008. XML representation of constraint networks, format XCSP 2.1. Universite

Lille-Nord de France, Artois, CIRL-CNRS UMIR 8188.
SADEH, N. 1991. Look-ahead techniques for micro-opportunistic job shop scheduling. PhD thesis CMUCS-91-

102, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA.

ACM Journal of Experimental Algorithmics, Vol. 16, No. 1, Article 1.6, Publication date: August 2011.

1.6:18 P. Prosser and C. Unsworth

SMITH, S. F. AND CHENG, C.-C. 1993. Slack-based heuristics for constraint satisfaction scheduling. In Proceed-
ings of the 11th National Conference on Artificial Intelligence. AIII, Menlo, CA, 139–144.

VILIM, P. 2009. Edge finding filtering algorithm for discrete cumulative resources in O(knlogn). In Proceedings
of the 15th International Conference on Principles and Practice of Constraint Programming. Springer,
Berlin, 802–816.

WALSH, T. 1997. Depth-bounded Discrepancy Search. In Proceedings of the 15th International Joint Conference
on Artificial Intelligence. Morgan Kaufmann.

Received June 2010; revised March 2011; accepted May 2011

ACM Journal of Experimental Algorithmics, Vol. 16, No. 1, Article 1.6, Publication date: August 2011.

