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Abstract. We present the first complete algorithm for the SMTI
problem, the stable marriage problem with ties and incotelsts.
We do this in the form of a constraint programming encodinghef
problem. With this we are able to carry out the first empirisidy

of the complete solution of SMTI instances. In the stableriage
problem (SM) P] we haven men and: women. Each man ranks the
n women, giving himself a preference list. Similarly each veam
ranks the men, giving herself a preference list. The prokikethen

to marry men and women such that they stablei.e. such that there
is no incentive for individuals to divorce and elope. Thislgem

is polynomial time solvable. However, when preferencesligintain
ties and are incomplete (SMTI) the problem of determininthére

is a stable matching of sizeis then NP-complete, as is the optimisa-
tion problem of finding the largest or smallest stable matgl?, ?].

In this paper we present constraint programming solutiamstte
SMTI decision and optimisation problems, a problem geioertar
random instances of SMTI, and an empirical study of this {enob

1 Introduction

In the stable marriage problen?][we haven men andn women.
Each man ranks the women, giving himself a preference list. Sim-
ilarly each woman ranks the men, giving herself a preferdiste
The problem is then to marry men and women such that thegtare
ble. By stable we mean that there is no incentive for individuals
divorce and elope. For example, a matching would be unstalile
contained the marriages Romeo to Isobel and John to Julietren
Romeo prefers Juliet to Isobel, and Juliet prefers Romeotia,J.e.
Romeo and Juliet would elope. This problem has a long history
an optimal algorithm was proposed by Gale and Shapley ald®st
years ago7]. The algorithm’s complexity i€)(n?), and is linear in
the size of the problem, where size is measured in terms ofithe
people each with a preference list of size

If men or women find some members of the opposite sex unac-

ceptable, preference lists become incomplete. These grebhre
classified as stable marriage problems with incomplets ([[SMI)
and are again solvable in polynomial time. We might also himse
in the preference lists. That is, a man (or a woman) might dé-in
ferent between a number of his (or her) choices. For exangia J
might have a preference such that he prefers Isobel to Jahdahe
ties with Susie. In the extreme when all potential partnarsvith
one another, we are asking only for a matching and stabdlityt an
issue. However, when we combine ties with incompletenessyet
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the stable marriage problem with ties and incomplete |iSte|Tl).

We restrict ourselves in this paper to weak stability: urttdés defi-
nition a marriage is unstable if there is a man and a womanu;,

each of whorrstrictly prefers the other to his/her current partn@j; [
i.e.m; andw; will elope.

No complete algorithm has previously been proposed for SMTI
and no empirical study has been carried out. The questiothéie
a weakly stable matching?” is uninteresting as there alvigyg].
So in this paper we present a constraint programming engdadin
the SMTI decision problem “Is there a stable matching of si2&
and the optimisation problem, to find the largest or smaktable
matching. These questions are NP-compl@te]l We also propose a
problem generator for random instances of SMTI. We thenystiuel
SMTI investigating what features of the problem appear fioémce
the hardness and size of stable matchings.

The paper is organised as follows. In the next section wesptes
problem generator for SMTI. We then present constraint i@anog
ming solutions for the SMTI decision problem and optimisati
problem. These are the first complete algorithms for thesblpms.
We then discuss the constrainedness of SMTI. The empiticdy $s
then presented and the paper concludes.

2 Random Instance Generation

A class of randomly generated instance of SMTI is represehte
a triple (n, p1, p2) wheren is the number of men and women in
the problem,p; is the probability of incompleteness apd is the
probability of ties. Problems are generated as follows

1. A random preference list of sizeis produced for each man and

each woman.

2. We iterate over each man’s preference list as follows.aForan

m; and for all womenw; in his preference list, we generate a
random numbef) < p < 1. If p < p1 we deletew; from m;’s
preference list and delete; from w;’s preference list.

3. If any man or woman has an empty preference list, discaed th

problem and go to step 1.

4. We iterate over each person’s (men and women’s) preferksic

as follows. For a mamn; and for his choices; ranging from his
second to his last, we generate a random nurbsrp < 1. If

p < p» then the preference for hig" choice is the same as his
¢" | choice, otherwise hig!" choice is one greater than hig"
choice.

An instance generated &g, 0.0,0.0) will be a stable marriage
problem with a stable matching of sime An instancgn, 0.0, 1.0} is
a stable matching problem with complete indifference, dmud are
n! matchings. An instancgr, 1.0, p2) is a problem with empty pref-
erence lists, and is obviously unsolvable. FigePshows a randomly



Men’s lists Women's lists two redundantllDif f constraints P] to detect when there are in-
1:2 (6 4) 1:(53)6 sufficient values to allow all men and all women to be marriadhe
2:(25)6 2:2516 empirical study we will investigate the behaviour of thisluadant
3:136 3:(34) constraint.

4:63 4:61 When no complete stable matching can be found we might then be
5:215 5:526 interested in finding the largest or the smallest stable hiadgi.e we
6:6(42)51| 6:1(46)23 have an optimisation problem. The above encoding is therifradd

as follows. We add a virtual perser+ 1 to every man and woman'’s
domain with a preference value of+ 1, i.e.pref(mi;,n + 1) =
Figurel. A randomly generated SMTI instance with 6 men and 6 women, nl. Q_()nsequently, _a person prefers to pe married than to biesing
generated with parametegs, 0.5, 0.25). The instance has a largest stable In addition we associate g zerofone variable to each man mm e
matching of size 6 namely (4,2,1,3,5,6), and a smallestestahtching of women. The zero/one variable takes a value of one if the pdsso
size 5, namely (4,2,-,3,1,6) married, otherwise it is zero. Thatiam; = 0 < m; = n+ 1

andwm; = 0 ¢ w; = n + 1, wheremm; andwm; are in{0, 1},
andmm; = 1 (wm; = 1) can be read amanm; (womanwj;) is
married and< is the biconditional. To find a largest stable matching
we maximise the sum of them variables, and to find the smallest
stable matching we minimise the sum.

There aren variables each with domain size There is a binary
constraint from each man to all women, i€ binary constraints,
and each of these constraints contai@:?) nogood pairs. There-
fore the size of the encodings@¥(n*). The complexity of arc con-
sistency isO(e.d") wheree is the number of constraintg, is the
domain size, and is the arity of the constraint®[?]. Consequently
the cost of enforcing arc consistency in our encodin@{s*). The
O(n?) encoding proposed ir?] has not yet been extended to handle
ties.

For the above encodings the search process uses a variable an
value ordering heuristic. Only person variables are sete¢te. the
zero/one variables are not selected for instantiatiorgfgoence be-
ing given to the variable with the least remaining valuessmibmain
i.e. theminimum remaining valuesariable ordering heuristic. Values
are then selected in preference order, such that a perssmptt to
marry his or her most preferred partner. This value ordehiegristic
guarantees a failure free enumeration of solutions in 3M [

When presented with an instance of SMI, i.e. problems géegra
as(n, p1,0.0), the above encoding for the decision problem reverts
to polynomial performance, and with the value ordering regiarwe
are guaranteed failure free enumeration of all stable niragsh This
is because the encoding reduces to the SMI encodirg] &d{which
search is polynomial.

generated SMT{6, 0.5, 0.25). Preferences that tie are in braces. The
largest stable matching is of size 6 and the smallest is ef5iz

3 A Constraint Programming Representation
Two representations are presented, the first being for tieesida
problemls there a stable matching of siz€, and the second for the
optimisation problenWhat is the size of the largest (smallest) stable
matching?

The encoding is a simple extension of the SMI encoding ptegen
in Section 2 of P] and use2n variables, where the domain of a
variable corresponds to a preference list. For#ffeman (woman)
we have the variableq; (w;). If there is a valugj € domain(m;)
then womarnwy; is in the man’s preference list. The man has a pref-
erencepre f(m;, j) for womanw;, wherel < pref(m;,j) < n.
A stable marriage constraint exists between marand womanu;
whenj € domain(m;) andi € domain(w;). The stable mar-
riage constraint is represented extensionally as aSset infeasi-
ble pairs (nogoods). A nogooh, b) is in S if it corresponds to
a blocking pair or a relationship which is not a marriage. tTisa
(a,d) is a blocking pair ifm; prefersw; to w, andw; prefersm;
tom, i.e.a € domain(m;) ANb € domain(w;) A pref(m;,a) <
pref(ms, j) A pref(w;,b) < pref(w;,i). (Note that the strict in-
equalities correspond to the definition of weak stabilifjhle pair
(a,b) € Sis not a marriage ifn; marries womanu; but womanw;
marries someone else, or womapn marries mann; butm; marries
someone else, i.e. € domain(m;) Ab € domain(w;) A (a =
JAb#i V a#jAb=1i).

4 TheConstrainedness of SMTI

1 4 6 2 3
6 X X X In [?] a measure of constrainedness was proposed. The measure of
4 X X X constrainedness (kappa) is definedsas= 1 — % where
2 X X X (Sol) is the expected number of solutions, a4 is the size of the
5 X X X state spaces is defined for an ensemble of problems. When every
1 X X X state is a solutiofSol) = |S| andx = 0, and problems are easy and

soluble. When no state is a solutitwy({Sol)) = —oo andk = oo,
and problems are again easy but unsolvable. When on avesabe e
Figure2. The conflict matrix for constraint’s ¢ from the problem in problem has one solutidiog((Sol)) = 0 andx = 1, problems will

Figure?? be on the knife edge of constrainedness, where we expect&0% t

soluble and most to be hard.

For a constraint satisfaction problem is defined to be
Figure ?? shows the conflict matrix corresponding to the stable ZFEC log(1—pe)
marriage constraint acting between mag and womanws in the B ZUEV log(ma)

problem of Figure??. The domain values of the variables have beenof variablesp. is the tightness of a constraint, and, is the size of

listed in preference order, exposing the structure firstiified in [?]. the domain of the variable. Given a constrain€ involving a set of
When preference lists are incomplete it might not be posdibl  variables, the tightness of that constragintcan be calculated as the

find a matching of sizex. Therefore, it might be worthwhile adding number of infeasible tuples divided by the number of possibples

, where(C is the set of constraintd/ is the set



for those variables.

By representing SMTI as a constraint satisfaction problesrcan
measure: for each instance generated. This will give us some indica-
tion of what ensemble such an instance most likely belongdda/-
ever, we can make some conjectures as to how the difficultyvflS
will vary as we vary the problem generation parametersp:, p2).
When we increas@, we should expect each stable marriage con-
straint to become looser, i.e. the number of infeasiblecwmiplill fall.
Thereforex should be inversely related fo. When we increasg;
this will increase the amount of incompleteness in prefeselists.
Consequently domain sizes will fall, and we should expet rise.
However, as domain sizes fall so too does the number of stahie
riage constraints. Therefore, it is not immediately cldathis fall
in the number of constraints will win out against the fallidgmain
sizes. Willx fall or rise withp; ? And what will happen as we vary
p1 andp» together? Will these be opposing forces, wheréends to
drive problems towards insolubility, wherepstends to make prob-
lems looser? We will investigate these questions in the sestion.

5 TheEmpirical Study

We performed our experiments using the choco constrairgrpro-
ming toolkit [?]. The study is mostly of problems of size 10. Prob-
lems were generated with incompletengsvarying from 0.1 to 0.8

in steps of 0.1. Whem; > 0.9 problems have empty preference
lists, and are rejected from this study. For each valug;ofve vary
tiesps from 0.0 to 1.0 in steps of 0.01, with a sample size of either
100 or 50 at each data point. Experiments were run on machiities
either 733MHz or 1GHz processors, with between 256MB and 1GB
of RAM. The experiments reported here took in excess of 2 hsont
CPU time. We also coded an independent implementationtenrit
by a different author in Eclipse, and obtained consistesiilts with
those presented here. In our experiments we first investigaw pa-
rametersp; andp- influence the decision problem “Is there a sta-
ble matching of sizex?”. We then explore the optimisation problem
“What is the size of the largest and the smallest stable rivagsh”.

5.1 TheDecision Problem

In the decision problem we determine if there is a stable hiagc

of sizen. This is a feature of the problem, and is algorithm indepen-
dent. Figure?? shows for each value gf; the proportion of soluble
instances as we vary the amount of figsWe see that as the amount

of ties p, increases the proportion of soluble instances increases.

This suggests that as we increase ties the constraints &etmen
and women become looser, consequently we should expece ta se
fall in the constrainedness of problems. We also observeatha,
increases, i.e. preference lists get shorter, solubiktgreases. This
might at first appear unsurprising. However, as prefereigte et
shorter the number of stability constraints fall. This falhot enough

to prevent a fall in solubility due to falling domain size.

In Figure?? we plot solubility against the average constrainedness
of the problem instances, i.g.is on the x-axis. We see the familiar
phase transition behaviour as observed?].

The allDiff constraint makes no difference. The number afrsk
nodes was the same with and without this redundant consteaid
there was no significant difference in run times. FigePeshows the
average cost of answering the decision problem, measurenrits
of search nodes, fafl0, p1, p2) plotted againsp,. Search costs in-
creases as we increase ties This is because constraints get looser
as ties increase, consequently the problem is less detedrbinprop-
agation. Therefore at each instantiation a choice has tcagenNev-
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Figure6. The average cost of decision problem, plotted against



ertheless, search effort is small, never more than 9 nodesldition
we see that search cost decreases as we increase incorappten
Figure ?? re-plots the above data, this time against the average
value ofk, rather tharp.. The contour is somewhat surprising, with
search effort falling with increasing constrainednessrélis no sign
of a complexity peak normally associated with the solupiihase
transition.
Our final figure in this section, Figur®, shows how search effort
varies as we vary problem size. There are 6 contourérfpd.5, p2),
with n equal to 10 to 60 in steps of 10. The median search cost in
nodes is plotted againgt. We plot againsp, rather thans because
we observed a systematic bias in the values sihce the degree of a
variable is proportional tap; . It would be interesting future work to
define a specialised value effor SMTI, not based on the constraint

6.5

encoding, to avoid this problem. It appears that mediarcbkesifort Figure8. The

increases polynomially with problem size. However, we obeseé oc-
casional hard problems. For example, an instanc@f0.5, 0.61)
took 15438 nodes.

average size of the smallest and largest stable magcfong
<107 0.5, p2>

for high p», the large number of ties leads to many candidate match-

- ings to explore. In the region of high, we see noisy behaviour in
_'_ the search cost. As yet, we have no explanation of why we aiage
- these occasionaly hard problems.
- - Figure ?? shows the cost of finding (and proving optimal) the
il smallest matching. Here, search cost (again shown on a kig)sc

30

25

increases exponentially with,, with numbers of nodes in the mil-
lions forp; = 0.1, p» = 1. This is because of the factorial number

2 Dm%"qwj.f.';ﬁi” - of matching required to be eliminated as possible minimaictna
" mfmf d@“ﬂ;‘jw '&*:;w e ings when verifying minimality. Remembering that when= 1 the
o (| ;;TBEA'DF o X % problem is a simple matching problem and is in P, it is disapupwy

o LN L T il that the search has this property. Clearly, some new conisisare-
’ iﬁw WW quired to eliminate this thrashing if SMTI instances withglep» are
° 02 04 o6 o8 1 found in practice.

Figure7. The median cost of the decision problem fer, 0.5, p2),
plotted againsps.

Figures?? and ?? show how these search costs scale as we in-
creasen with p; = 0.5. We could not test high values p$ at larger
n because of the large runtimes mentioned above. We see isbaila

haviour to that we noted at = 10, with noise in the search cost for

largest size, and clear exponential growth in the cost falkast size.

Itis less clear, because of the noise, whether the cost toHenthax-
5.2 Optimisation imal matching is growing polynomially or exponentially. i©&nly

We now investigate the size of the largest and smallestestabtch-
ings. Stability is an ‘interpolating invariant?[: that is, there is stable
matching of every intermediate size between the min and Miag.
maximum sized matching is never more than twice the size ®f th
minimum [?].

Throughout this section we plot againstinstead ofx, since con-
strainedness is defined for the decision problem, not thengsa-
tion question. Figur@? shows the average size of the minimum and
maximum stable matchings for varying andp: = 0.5. These are
initially the same size, as they must be, for = 0, but the differ-
ence increases wighy until for p» = 1 there is an average difference
in size of more than 3. At complete indifference this cormgjs to
the difference in size of maximal matchings. We observeadralai
pattern at different values @f;. At complete indifference the largest
mean difference is of 3.5 at; = 0.7, after which the shortening
preference lists reduces the size of the maximum matching.

We now examine the computational cost (measured as search
nodes explored) of finding the minimum and maximum stablehat
ings. These were computed in separate runs. Fig@reshows the
cost of finding the largest matching and verifying its maxitgafor
varyingp:, p2. Notice that we have used a log scale for cost. Cost in-
creases as we incregsefor givenp: . We explain this by noting that

4

100

we do not see strong evidence of the median growing expaibnti
It may be polynomial, as our better evidence for the decipioblem
showed.
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The average cost, in nodes, of finding the largest stable
matchings for(10, p1,p2)
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6 Conclusions and Further Work

We have reported on a notable success for constraint progirsgn
(CP). We have been able to implement a complete algorithrthéor
SMTI problem and perform an empirical study using “off thel$h
CP technology. It was with this general technology that weeed
our results, rather than develop special purpose code fostouly

of SMTI. Our study has shown how the size of stable matchings

and the decision and optimisation costs vary as we vary thgora
generation parameters. Our random instances show sigrtifite
ferences in size between smallest and largest, an impdeatuire of
the SMTI problem.

We have opened many interesting avenues for further rdsearc
First, why did we fail to observe a complexity peak at the solu
bility phase transition? Might this emerge when we look afger
instances? Second, why was the cost of finding the smallgistest
matching considerably harder than finding the largest stafatch-
ing? Might a better encoding of SMTI result in a reduction ost
for the minimisation problem? Thirdly, determining if tleeis a sta-
ble matching of size is polynomial time solvable for SM, SMI, and
SMT, yet it is NP-Complete for SMTI. Consequently, there trhes
a phase transition from P to NP-completness when pothnd p-
are greater than zero. When will we start to see problemsveshs
if they are NP-Complete? We are faced with the same scerawi@a
move from weak to strong stability. As we mix weak and strorag s
bility will we also see a transition from polynomal behaviaiAnd
can a good definition of constrainedness be found for SMTiRdpes

1le+06

100000

Lo
[ ] -l.’ EIEE ,M f
,“# % ¥ *
10000 g 5 P
&x‘* 85§ ﬂgﬁ%J#x
1000 i

100

0.1

0 0.2 0.4 0.6 08 1

Figure12. The average cost, in nodes, of finding the smallest stable
matchings forn, 0.5, p2)

the most important future work is practical applicatiorr, édample
to the real-life hospital residents problem. To do so, it rhayeces-
sary to use encodings which take less time thin*) to establish
consistency. We are actively examining one such encodiagdan
0/1 variables which will take only)(n?) time: this should speed
up run time per node while not necessarily reducing the nurabe
search nodes.
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