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Abstract. We present the first complete algorithm for the SMTI
problem, the stable marriage problem with ties and incomplete lists.
We do this in the form of a constraint programming encoding ofthe
problem. With this we are able to carry out the first empiricalstudy
of the complete solution of SMTI instances. In the stable marriage
problem (SM) [?] we haven men andn women. Each man ranks then women, giving himself a preference list. Similarly each woman
ranks the men, giving herself a preference list. The problemis then
to marry men and women such that they arestablei.e. such that there
is no incentive for individuals to divorce and elope. This problem
is polynomial time solvable. However, when preference lists contain
ties and are incomplete (SMTI) the problem of determining ifthere
is a stable matching of sizen is then NP-complete, as is the optimisa-
tion problem of finding the largest or smallest stable matching [?, ?].
In this paper we present constraint programming solutions for the
SMTI decision and optimisation problems, a problem generator for
random instances of SMTI, and an empirical study of this problem.

1 Introduction
In the stable marriage problem [?] we haven men andn women.
Each man ranks then women, giving himself a preference list. Sim-
ilarly each woman ranks the men, giving herself a preferencelist.
The problem is then to marry men and women such that they aresta-
ble. By stable we mean that there is no incentive for individualsto
divorce and elope. For example, a matching would be unstableif it
contained the marriages Romeo to Isobel and John to Juliet, where
Romeo prefers Juliet to Isobel, and Juliet prefers Romeo to John, i.e.
Romeo and Juliet would elope. This problem has a long history, and
an optimal algorithm was proposed by Gale and Shapley almost40
years ago [?]. The algorithm’s complexity isO(n2), and is linear in
the size of the problem, where size is measured in terms of then
people each with a preference list of sizen.

If men or women find some members of the opposite sex unac-
ceptable, preference lists become incomplete. These problems are
classified as stable marriage problems with incomplete lists (SMI)
and are again solvable in polynomial time. We might also haveties
in the preference lists. That is, a man (or a woman) might be indif-
ferent between a number of his (or her) choices. For example John
might have a preference such that he prefers Isobel to Jane, but Jane
ties with Susie. In the extreme when all potential partners tie with
one another, we are asking only for a matching and stability is not an
issue. However, when we combine ties with incompleteness, we get1 This work was supported by EPSRC research grant GR/M90641.2 School of Computer Science, University of St. Andrews, North Haugh, St.
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the stable marriage problem with ties and incomplete lists (SMTI).
We restrict ourselves in this paper to weak stability: underthis defi-
nition a marriage is unstable if there is a manmi and a womanwj ,
each of whomstrictly prefers the other to his/her current partner [?],
i.e.mi andwj will elope.

No complete algorithm has previously been proposed for SMTI
and no empirical study has been carried out. The question “Isthere
a weakly stable matching?” is uninteresting as there alwaysis [?].
So in this paper we present a constraint programming encoding for
the SMTI decision problem “Is there a stable matching of sizen?”
and the optimisation problem, to find the largest or smalleststable
matching. These questions are NP-complete [?, ?]. We also propose a
problem generator for random instances of SMTI. We then study the
SMTI investigating what features of the problem appear to influence
the hardness and size of stable matchings.

The paper is organised as follows. In the next section we present a
problem generator for SMTI. We then present constraint program-
ming solutions for the SMTI decision problem and optimisation
problem. These are the first complete algorithms for these problems.
We then discuss the constrainedness of SMTI. The empirical study is
then presented and the paper concludes.

2 Random Instance Generation
A class of randomly generated instance of SMTI is represented by
a triple hn; p1; p2i wheren is the number of men and women in
the problem,p1 is the probability of incompleteness andp2 is the
probability of ties. Problems are generated as follows

1. A random preference list of sizen is produced for each man and
each woman.

2. We iterate over each man’s preference list as follows. Fora manmi and for all womenwj in his preference list, we generate a
random number0 � p < 1. If p � p1 we deletewj from mi’s
preference list and deletemi from wj ’s preference list.

3. If any man or woman has an empty preference list, discard the
problem and go to step 1.

4. We iterate over each person’s (men and women’s) preference list
as follows. For a manmi and for his choices
i ranging from his
second to his last, we generate a random number0 � p < 1. Ifp � p2 then the preference for his
thi choice is the same as his
thi�1 choice, otherwise his
thi choice is one greater than his
thi�1
choice.

An instance generated ashn; 0:0; 0:0i will be a stable marriage
problem with a stable matching of sizen. An instancehn; 0:0; 1:0i is
a stable matching problem with complete indifference, and there aren! matchings. An instancehn; 1:0; p2i is a problem with empty pref-
erence lists, and is obviously unsolvable. Figure?? shows a randomly



Men’s lists Women’s lists
1: 2 (6 4) 1: (5 3) 6
2: (2 5) 6 2: 2 5 1 6
3: 1 3 6 3: (3 4)
4: 6 3 4: 6 1
5: 2 1 5 5: 5 2 6
6: 6 (4 2) 5 1 6: 1 (4 6) 2 3

Figure 1. A randomly generated SMTI instance with 6 men and 6 women,
generated with parametersh6; 0:5; 0:25i. The instance has a largest stable
matching of size 6 namely (4,2,1,3,5,6), and a smallest stable matching of

size 5, namely (4,2,-,3,1,6)

generated SMTIh6; 0:5; 0:25i. Preferences that tie are in braces. The
largest stable matching is of size 6 and the smallest is of size 5.

3 A Constraint Programming Representation
Two representations are presented, the first being for the decision
problemIs there a stable matching of sizen?, and the second for the
optimisation problemWhat is the size of the largest (smallest) stable
matching?.

The encoding is a simple extension of the SMI encoding presented
in Section 2 of [?] and uses2n variables, where the domain of a
variable corresponds to a preference list. For theith man (woman)
we have the variablemi (wi). If there is a valuej 2 domain(mi)
then womanwj is in the man’s preference list. The man has a pref-
erencepref(mi; j) for womanwj , where1 � pref(mi; j) � n.
A stable marriage constraint exists between manmi and womanwj
when j 2 domain(mi) and i 2 domain(wj). The stable mar-
riage constraint is represented extensionally as a setS of infeasi-
ble pairs (nogoods). A nogood(a; b) is in S if it corresponds to
a blocking pair or a relationship which is not a marriage. That is,(a; b) is a blocking pair ifmi preferswj to wa andwj prefersmi
toma i.e.a 2 domain(mi) ^ b 2 domain(wj) ^ pref(mi; a) <pref(mi; j) ^ pref(wj ; b) < pref(wj; i). (Note that the strict in-
equalities correspond to the definition of weak stability.)The pair(a; b) 2 S is not a marriage ifmi marries womanwj but womanwj
marries someone else, or womanwj marries manmi butmi marries
someone else, i.e.a 2 domain(mi) ^ b 2 domain(wj) ^ (a =j ^ b 6= i _ a 6= j ^ b = i).

1 4 6 2 3
6 x x x x
4 x x x
2 x x x
5 x x x
1 x x x

Figure 2. The conflict matrix for constraintC6;6 from the problem in
Figure??

Figure ?? shows the conflict matrix corresponding to the stable
marriage constraint acting between manm6 and womanw6 in the
problem of Figure??. The domain values of the variables have been
listed in preference order, exposing the structure first identified in [?].

When preference lists are incomplete it might not be possible to
find a matching of sizen. Therefore, it might be worthwhile adding

two redundantallDiff constraints [?] to detect when there are in-
sufficient values to allow all men and all women to be married.In the
empirical study we will investigate the behaviour of this redundant
constraint.

When no complete stable matching can be found we might then be
interested in finding the largest or the smallest stable matching, i.e we
have an optimisation problem. The above encoding is then modified
as follows. We add a virtual personn+1 to every man and woman’s
domain with a preference value ofn + 1, i.e. pref(mi; n + 1) =n+1. Consequently, a person prefers to be married than to be single.
In addition we associate a zero/one variable to each man and each
women. The zero/one variable takes a value of one if the person is
married, otherwise it is zero. That ismmi = 0 $ mi = n + 1
andwmj = 0 $ wj = n + 1, wheremmi andwmi are inf0; 1g,
andmmi = 1 (wmj = 1) can be read asmanmi (womanwj ) is
married, and$ is the biconditional. To find a largest stable matching
we maximise the sum of themm variables, and to find the smallest
stable matching we minimise the sum.

There aren variables each with domain sizen. There is a binary
constraint from each man to all women, i.e.n2 binary constraints,
and each of these constraints containsO(n2) nogood pairs. There-
fore the size of the encodings isO(n4). The complexity of arc con-
sistency isO(e:dr) wheree is the number of constraints,d is the
domain size, andr is the arity of the constraints [?, ?]. Consequently
the cost of enforcing arc consistency in our encoding isO(n4). TheO(n2) encoding proposed in [?] has not yet been extended to handle
ties.

For the above encodings the search process uses a variable and
value ordering heuristic. Only person variables are selected (i.e. the
zero/one variables are not selected for instantiation), preference be-
ing given to the variable with the least remaining values in its domain
i.e. theminimum remaining valuesvariable ordering heuristic. Values
are then selected in preference order, such that a person attempts to
marry his or her most preferred partner. This value orderingheuristic
guarantees a failure free enumeration of solutions in SM [?].

When presented with an instance of SMI, i.e. problems generated
ashn; p1; 0:0i, the above encoding for the decision problem reverts
to polynomial performance, and with the value ordering heuristic we
are guaranteed failure free enumeration of all stable matchings. This
is because the encoding reduces to the SMI encoding of [?] for which
search is polynomial.

4 The Constrainedness of SMTI
In [?] a measure of constrainedness was proposed. The measure of
constrainedness (kappa) is defined as� = 1 � log(hSoli)log(jSj) , wherehSoli is the expected number of solutions, andjSj is the size of the
state space.� is defined for an ensemble of problems. When every
state is a solutionhSoli = jSj and� = 0, and problems are easy and
soluble. When no state is a solutionlog(hSoli) = �1 and� =1,
and problems are again easy but unsolvable. When on average each
problem has one solutionlog(hSoli) = 0 and� = 1, problems will
be on the knife edge of constrainedness, where we expect 50% to be
soluble and most to be hard.

For a constraint satisfaction problem� is defined to be�P
2C log(1�p
)Pv2V log(mv) , whereC is the set of constraints,V is the set

of variables,p
 is the tightness of a constraint, andmv is the size of
the domain of the variablev. Given a constraintC involving a set of
variables, the tightness of that constraintp
 can be calculated as the
number of infeasible tuples divided by the number of possible tuples
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for those variables.
By representing SMTI as a constraint satisfaction problem we can

measure� for each instance generated. This will give us some indica-
tion of what ensemble such an instance most likely belongs to. How-
ever, we can make some conjectures as to how the difficulty of SMTI
will vary as we vary the problem generation parametershn; p1; p2i.
When we increasep2 we should expect each stable marriage con-
straint to become looser, i.e. the number of infeasible tuples will fall.
Therefore� should be inversely related top2. When we increasep1
this will increase the amount of incompleteness in preference lists.
Consequently domain sizes will fall, and we should expect� to rise.
However, as domain sizes fall so too does the number of stablemar-
riage constraints. Therefore, it is not immediately clear if this fall
in the number of constraints will win out against the fallingdomain
sizes. Will� fall or rise withp1? And what will happen as we varyp1 andp2 together? Will these be opposing forces, wherep1 tends to
drive problems towards insolubility, whereasp2 tends to make prob-
lems looser? We will investigate these questions in the nextsection.

5 The Empirical Study
We performed our experiments using the choco constraint program-
ming toolkit [?]. The study is mostly of problems of size 10. Prob-
lems were generated with incompletenessp1 varying from 0.1 to 0.8
in steps of 0.1. Whenp1 � 0:9 problems have empty preference
lists, and are rejected from this study. For each value ofp1 we vary
tiesp2 from 0.0 to 1.0 in steps of 0.01, with a sample size of either
100 or 50 at each data point. Experiments were run on machineswith
either 733MHz or 1GHz processors, with between 256MB and 1GB
of RAM. The experiments reported here took in excess of 2 months
CPU time. We also coded an independent implementation, written
by a different author in Eclipse, and obtained consistent results with
those presented here. In our experiments we first investigate how pa-
rametersp1 andp2 influence the decision problem “Is there a sta-
ble matching of sizen?”. We then explore the optimisation problem
“What is the size of the largest and the smallest stable matchings?”.

5.1 The Decision Problem
In the decision problem we determine if there is a stable matching
of sizen. This is a feature of the problem, and is algorithm indepen-
dent. Figure?? shows for each value ofp1 the proportion of soluble
instances as we vary the amount of tiesp2. We see that as the amount
of ties p2 increases the proportion of soluble instances increases.
This suggests that as we increase ties the constraints between men
and women become looser, consequently we should expect to see a
fall in the constrainedness of problems. We also observe that asp1
increases, i.e. preference lists get shorter, solubility decreases. This
might at first appear unsurprising. However, as preference lists get
shorter the number of stability constraints fall. This fallis not enough
to prevent a fall in solubility due to falling domain size.

In Figure?? we plot solubility against the average constrainedness
of the problem instances, i.e.� is on the x-axis. We see the familiar
phase transition behaviour as observed in [?, ?].

The allDiff constraint makes no difference. The number of search
nodes was the same with and without this redundant constraint, and
there was no significant difference in run times. Figure?? shows the
average cost of answering the decision problem, measured interms
of search nodes, forh10; p1; p2i plotted againstp2. Search costs in-
creases as we increase tiesp2. This is because constraints get looser
as ties increase, consequently the problem is less determined by prop-
agation. Therefore at each instantiation a choice has to be made. Nev-
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Figure 3. The decision problem: is there a stable matching of sizen?
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Figure 4. The decision problem: is there a stable matching of sizen for a
given value of�?
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Figure 5. The average cost of the decision problem
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Figure 6. The average cost of decision problem, plotted against�3



ertheless, search effort is small, never more than 9 nodes. In addition
we see that search cost decreases as we increase incompletenessp1.

Figure ?? re-plots the above data, this time against the average
value of�, rather thanp2. The contour is somewhat surprising, with
search effort falling with increasing constrainedness. There is no sign
of a complexity peak normally associated with the solubility phase
transition.

Our final figure in this section, Figure??, shows how search effort
varies as we vary problem size. There are 6 contours forhn; 0:5; p2i,
with n equal to 10 to 60 in steps of 10. The median search cost in
nodes is plotted againstp2. We plot againstp2 rather than� because
we observed a systematic bias in the values of� since the degree of a
variable is proportional tonp1. It would be interesting future work to
define a specialised value of� for SMTI, not based on the constraint
encoding, to avoid this problem. It appears that median search effort
increases polynomially with problem size. However, we observed oc-
casional hard problems. For example, an instance ofh60; 0:5; 0:61i
took 15438 nodes.
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Figure 7. The median cost of the decision problem forhn; 0:5; p2i,
plotted againstp2.

5.2 Optimisation
We now investigate the size of the largest and smallest stable match-
ings. Stability is an ‘interpolating invariant’ [?]: that is, there is stable
matching of every intermediate size between the min and max.The
maximum sized matching is never more than twice the size of the
minimum [?].

Throughout this section we plot againstp2 instead of�, since con-
strainedness is defined for the decision problem, not the optimisa-
tion question. Figure?? shows the average size of the minimum and
maximum stable matchings for varyingp2 andp1 = 0:5. These are
initially the same size, as they must be, forp2 = 0, but the differ-
ence increases withp2 until for p2 = 1 there is an average difference
in size of more than 3. At complete indifference this corresponds to
the difference in size of maximal matchings. We observed a similar
pattern at different values ofp1. At complete indifference the largest
mean difference is of 3.5 atp1 = 0:7, after which the shortening
preference lists reduces the size of the maximum matching.

We now examine the computational cost (measured as search
nodes explored) of finding the minimum and maximum stable match-
ings. These were computed in separate runs. Figure?? shows the
cost of finding the largest matching and verifying its maximality, for
varyingp1; p2. Notice that we have used a log scale for cost. Cost in-
creases as we increasep2 for givenp1. We explain this by noting that
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Figure 8. The average size of the smallest and largest stable matchings forh10; 0:5; p2i
for highp2, the large number of ties leads to many candidate match-
ings to explore. In the region of highp2 we see noisy behaviour in
the search cost. As yet, we have no explanation of why we are seeing
these occasionaly hard problems.

Figure ?? shows the cost of finding (and proving optimal) the
smallest matching. Here, search cost (again shown on a log scale)
increases exponentially withp2, with numbers of nodes in the mil-
lions for p1 = 0:1, p2 = 1. This is because of the factorial number
of matching required to be eliminated as possible minimal match-
ings when verifying minimality. Remembering that whenp2 = 1 the
problem is a simple matching problem and is in P, it is disappointing
that the search has this property. Clearly, some new constraint is re-
quired to eliminate this thrashing if SMTI instances with largep2 are
found in practice.

Figures?? and ?? show how these search costs scale as we in-
creasen with p1 = 0:5. We could not test high values ofp2 at largern because of the large runtimes mentioned above. We see similar be-
haviour to that we noted atn = 10, with noise in the search cost for
largest size, and clear exponential growth in the cost for smallest size.
It is less clear, because of the noise, whether the cost to findthe max-
imal matching is growing polynomially or exponentially. Certainly
we do not see strong evidence of the median growing exponentially.
It may be polynomial, as our better evidence for the decisionproblem
showed.
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Figure 9. The average cost, in nodes, of finding the largest stable
matchings forh10; p1; p2i
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Figure 10. The average cost, in nodes, of finding the smallest stable
matchings forh10; p1; p2i
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Figure 11. The average cost, in nodes, of finding the largest stable
matchings forhn; 0:5; p2i

6 Conclusions and Further Work
We have reported on a notable success for constraint programming
(CP). We have been able to implement a complete algorithm forthe
SMTI problem and perform an empirical study using “off the shelf”
CP technology. It was with this general technology that we achieved
our results, rather than develop special purpose code for our study
of SMTI. Our study has shown how the size of stable matchings
and the decision and optimisation costs vary as we vary the random
generation parameters. Our random instances show significant dif-
ferences in size between smallest and largest, an importantfeature of
the SMTI problem.

We have opened many interesting avenues for further research.
First, why did we fail to observe a complexity peak at the solu-
bility phase transition? Might this emerge when we look at bigger
instances? Second, why was the cost of finding the smallest stable
matching considerably harder than finding the largest stable match-
ing? Might a better encoding of SMTI result in a reduction in cost
for the minimisation problem? Thirdly, determining if there is a sta-
ble matching of sizen is polynomial time solvable for SM, SMI, and
SMT, yet it is NP-Complete for SMTI. Consequently, there must be
a phase transition from P to NP-completness when bothp1 andp2
are greater than zero. When will we start to see problems behave as
if they are NP-Complete? We are faced with the same scenario as we
move from weak to strong stability. As we mix weak and strong sta-
bility will we also see a transition from polynomal behaviour? And
can a good definition of constrainedness be found for SMTI? Perhaps
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Figure 12. The average cost, in nodes, of finding the smallest stable
matchings forhn; 0:5; p2i

the most important future work is practical application, for example
to the real-life hospital residents problem. To do so, it maybe neces-
sary to use encodings which take less time thanO(n4) to establish
consistency. We are actively examining one such encoding based on
0/1 variables which will take onlyO(n2) time: this should speed
up run time per node while not necessarily reducing the number of
search nodes.
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