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A b s t r a c t .  The constraint satisfaction community has developed a number 
of heuristics for variable ordering during backtracking search. For example, 
in conjunction with algorithms which check forwards, the Fail-First (FF)  
and Brelaz (Bz) heuristics are cheap to evaluate and are generally consid- 
ered to be very effective. Recent work to understand phase transitions in 
NP-complete problem classes enables us to compare such heuristics over a 
large range of different kinds of problems. Furthermore, we are now able 
to s tar t  to understand the reasons for the success, and therefore also the 
failure, of heuristics, and to introduce new heuristics which achieve the suc- 
cesses and avoid the failures. In this paper, we present a comparison of the 
Bz and F F  heuristics in forward checking algorithms apphed to randomly- 
generated binary CSP's.  We also introduce new and very general heuristics 
and present an extensive study of these. These new heuristics are usually 
as good as or bet ter  than Bz and FF,  and we identify problem classes 
where our new heuristics can be orders of magnitude better.  The result is 
a deeper understanding of what helps heuristics to succeed or fail on hard 
random problems in the context of forward checking, and the identification 
of promising new heuristics worthy of further investigation. 

1 I n t r o d u c t i o n  

In  the  cons t r a in t  sa t i s fac t ion  p r o b l e m  (CSP)  we are  to  ass ign values  to  var iab les  
such t h a t  a set of  cons t ra in t s  is sat isf ied,  or  show t h a t  no sa t i s fy ing  as s ignment  
exists .  Th i s  m a y  be done  v ia  a s y s t e m a t i c  search process,  such as dep th  first  
search w i th  back t r ack ing ,  and  th is  a m o u n t s  to  a sequence of  decisions,  where  a 
decis ion is a choice of  va r i ab le  and  value to  assign to  t h a t  var iable .  T h e  order  
in which decis ions are  m a d e  can have a p ro found  effect on search effort.  Dechter  
and  Mei r i ' s  s t u d y  of  p reprocess ing  techniques  [3] shows t h a t  d y n a m i c  search re- 
a r r a n g e m e n t  (DSR) ,  i.e. a va r iab le  o rder ing  heur is t ic  t h a t  selects as nex t  var iab le  
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the one that  has minimal number of values in its domain, dominated all other 
static orderings. Here, we present three new dynamic variable ordering (dvo) 
heuristics, derived as a result of our studies of phase transition phenomena of 
combinatorial problems, and compare these against two existing heuristics. 

Tsang, Borrett ,  and Kwan's study of CSP algorithms [22] shows that  there 
does not appear to be a universally best algorithm, and that  certain algorithms 
may be preferred under certain circumstances. We carry out a similar investi- 
gation with respect to dvo heuristics in an a t tempt  to determine under what 
conditions one heuristic dominates another. 

In the next section we give a background to the study. We then go on to 
describe four measures of the constrainedness of CSP's, and in Section 4 describe 
five heuristics, based on these measures. The empirical study is reported in 
Section 5, the heuristics are then discussed with respect to previous work in 
Section 6, and conclusions are drawn in Section 7. 

2 Background 
A constraint satisfaction problem consists of a set of n variables V, each variable 
v E V having a domain of values M~ of size my, and a set of constraints C. Each 
constraint c E C of arity a restricts a tuple of variables (v l , .  �9 va), and specifies 
a subset of M t x  M2 x . . .  x Ma, each element of which is a combination of values 
the variables are forbidden to take simultaneously by this constraint. In a binary 
CSP, which the experiments reported here are exclusively concerned with, the 
constraints are all of arity 2. A solution to a CSP is an assignment of a value to 
every variable satisfying all the constraints. The problem that  we address here 
is the decision problem, i.e. finding one solution or showing that  none exists. 

There are two classes of complete search algorithm for the CSP, namely 
those that  check backwards and those that  check forwards. In algorithms that  
checks backwards, the current variable vi is instantiated and checking takes place 
against the (past) instantiated variables. If this is inconsistent then a new value 
is tried, and if no values remain then a past variable is reinstantiated. In al- 
gorithms that  check forwards, the current variable is instantiated with a value 
and the (future) uninstantiated variables are made consistent, to some degree, 
with respect to that  instantiation. Chronological backtracking (BT), backmark- 
ing (BM), backjumping (BJ), conflict-directed backjumping (CBJ), and dynamic 
backtracking (DB) are algorithms that  check backwards [11, 5, 6, 10], whereas 
forward checking (FC) and maintaining arc-consistency (MAC) are algorithms 
that  check forwards [13, 18]. This study investigates only forward checking al- 
gorithms, and in particular forward checking combined with conflict-directed 

backjumping (FC-CBJ) [15]. 
Algorithm FC instantiates variable vl with a value xi and removes from the 

domains of future variables any values that  are inconsistent with respect to that  
instantiation. If the instantiation results in no values remaining in the domain 
of a future variable, then a new value is tried for vi and if no values remain for 
vi (i.e. a dead end is reached) then the previous variable is reinstantiated (i.e. 
chronologicM backtracking takes place). FC-CBJ differs from PC; on reaching a 
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dead end the algorithm jumps back to a variable that is involved in a conflict 
with the current variable [15]. 

In selecting an algorithm we will prefer one that takes less search effort 
than another, where search effort is measured as the number of times pairs of 
values are compared for compatibility, i.e. consistency checks. Generally, checking 
forwards reduces search effort, as does jumping back. 

The order in which variables are chosen for instantiation profoundly influ- 
ences search effort. Algorithms that check backwards tend to use variable order- 
ing heuristics that exploit topological parameters, such as width, induced width 
or bandwidth, and correspond to static instantiation orders (i.e. they do not 
change during search) [21]. Algorithms that check forwards have additional in- 
formation at their disposal, such as the current size of the domains of variables. 
Furthermore, since domain sizes may vary during the search process, forward 
checking algorithms may use dynamic variable ordering (dvo) heuristics [17], 
and it is this class of heuristics that is investigated here. 

3 C o n s t r a i n e d n e s s  

Many NP-complete problems display a transition in solubility as we increase the 
constrainedness of problem instances. This phase transition is associated with 
problems which are typically hard to solve [2]. Under-constrained problems tend 
to have many solutions and it is usually easy to guess one. Over-constrained 
problems tend not to have solutions, and it usually easy to rule out all possible 
solutions. A phase transition occurs in between when problems are "critically 
constrained". Such problems are usually difficult to solve as they are neither 
obviously soluble or insoluble. Problems from the phase transition are often 
used to benchmark CSP and satisfiability procedures [22, 9]. Constrainedness 
can be used both to predict the position of a phase transition in solubility [23, 
20, 16, 7, 19] and, as we show later, to motivate the construction of heuristics. 

In this section, we identify four measures of some aspect of constrainedness. 
These measures all apply to an ensemble of random problems. Such measures 
may suggest whether an individual problem from the ensemble is likely to be 
soluble. For example, a problem with larger domain sizes or looser constraints 
is more likely to be soluble than a problem with smaller domains or tighter con- 
straints, all else being equal. To make computing such measures tractable, we will 
ignore specific features of problems (like the topology of the constraint graph) 
and consider just simple properties like domain sizes and constraint tightness. 

One simple measure of constrainedness can be derived from the size of prob- 
lems in the ensemble. Size is determined by both the number of variables and 
their domain sizes. Following [7, 8], we measure problem size via the size of the 
state space being explored. This consists of all possible assignments of values to 
variables, its size is simply the product of the domain sizes, l-I~ev m~. We define 
the size (A/') of the problem as the number of bits needed the number of bits 
needed to describe a point in the state space, so we have: 

N =def E l~ rnv (1) 
v E V  
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A large problem is likely to be less constrained and has a greater chance of being 
soluble than a small problem with the same number of variables and constraints 
of the same tightnesses. 

A second measure of constrainedness is the solution density of the ensemble. 
If the constraint c on average rules out a fraction Pc of possible assignments, 
then a fraction 1 - pc of assignments are allowed. The average solution density, 
p is the mean fraction of assignments allowed by all the constraints. The mean 
solution density over the ensemble is, 

p = I I  (1 - po) (2) 
cEC 

Problems with loose constraints have high solution density. As noted above, all 
else being equal, a problem with a high solution density is more likely to be 
soluble than a problem with a low solution density. 

A third measure of constrainedness is derived from the size and solution den- 
sity. E(N), the expected number of solutions for a problem within an ensemble 
is simply the size of the state space times the probability that  a given element 
in the state space is a solution. That  is, 

E(N) = p2 Af -- H m~ x H ( 1 - P r  (3) 
~EV cEC 

If problems in an ensemble are expected to have a large number of solutions, then 
an individual problem within the ensemble is likely to be loosely constrained and 

to have many solutions. 
The fourth and final measure of constrainedness, ~ is again derived from 

the size and solution density. This has been suggested as a general measure 
of the constralnedness of combinatorial problems [8]. It is motivated by the 
randomness with which we can set a bit in a solution to a combinatorial problem. 
If ~ is small, then problems typically have many solutions and a given bit can 
be set more or less at random. For large ~, problems typically have few or no 
solutions and a given bit is very constrained in how it can be set. ~ is defined 

by, 

l~  (4) 
t~ ~'=def 1 ./V" 

l o g 2 ( p )  

- N 

= - l o g ( 1  - ( 5 )  

~ e v  log(my) 

If ~ << 1 then problems have a large expected number of solutions for their 
size. They  are therefore likely to be under-constrained and soluble. If ~ >> 1 
then problems have a small expected number of solutions for their size. They 
are therefore likely to be over-constrained and insoluble. A phase transition in 
solubility occurs inbetween where n ~-. 1 [8]. This is equivalent for CSPs to the 
prediction made in [19] that  a phase transition occurs when E(N) ~ 1. 
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4 H e u r i s t i c s  f o r  C o n s t r a i n e d n e s s  

Many heuristics in CSPs branch on what  can often be seen as an est imate of 
the most  constrained variable [8]. Here, we describe two well known heuristics 
for CSPs and three new heuristics. We use the four measures of constrained- 
ness described above. These measures were defined for an ensemble of problems. 
Each measure can be computed for an individual problem, but  will give only 
an est imate for the constrainedness of an individual problem. For example,  an 
insoluble problem has zero solution density and this may  be very different from 
the measured value of p. Even so, such measures can provide both a good indi- 
cation of the probabil i ty of a solution existing and, as we show here, a heuristic 
es t imate  of the most  constrained variable. 

Below, we adopt  the following conventions. When a variable vi is selected as 
the current variable and instantiated with a value, vi is removed from the set of 
variables V, constraint propagat ion takes place, and all constraints incident on 
vi, namely Ci, are removed from the set of constraints C. Therefore V is the set 
of future variables, C is the set of future constraints, rnj is the actual size of the 
domain of vj E V after constraint propagation,  Pc is the actual value of constraint 
tightness for constraint c E C after constraint propagation,  and Cj is the set of 
future constraints incident on vj. All characteristics of the future subproblem 
are recomputed and made  available to the heuristics as local information. 

4.1 H e u r i s t i c  F F  

ttaralick and Elliott [13] proposed the fail-first principle for CSPs as follows: "To 
succeed, try first where you are most  likely to fail ." The reason for a t tempt ing  
next the task which is most  likely to fail is to encounter dead-ends early on and 
prune the search space. Applied as a constraint ordering heuristic this suggests 
tha t  we check first the constraints that  are most  likely to fail and when applied 
as a variable ordering heuristic, tha t  we choose the most  constrained variable. 
An est imate for the most  constrained variable is the variable with the smallest 
domain.  Tha t  is we choose vi E V such that  mi is a minimum. 

An alternative interpretat ion of this heuristic is to branch on vi such that  we 
maximize the size of  the resulting subproblem, without considering the constraint 
information on tha t  variable. Tha t  is, choose the variable vi E V that  maximizes 

log(my) (6) 
v E V - v i  

where V - vi is the set of future variables with vi removed, and is the same as 
selecting the variable vi which maximizes the denominator  of equation (5). 

4 .2  H e u r i s t i c  B z  

The Brelaz heuristic (Bz) comes from graph colouring [1]; we wish to find a 
colouring of the vertices of a graph such that  adjacent vertices have different 
colours. Given a part ial  colouring of a graph, the saturation of a vertex is the 
number  of differently coloured vertices adjacent to it. A vertex with high satura- 
tion will have few colours available to it. The Bz heuristic first colours a vertex of 



184 

maximum degree. Thereafter Bz selects an uncoloured vertex of maximum sat- 
uration, tie-breaking on the degree in the uncoloured subgraph. Bz thus chooses 
to colour next what is estimated to be the most constrained vertices. 

When applying Bz to a CSP we choose the variable with smallest domain size 
and tie-break on degree in the future subproblem. That is, choose the variable 
with smallest mi and tie-break on the variable with greatest future degree ]Ci]. In 
a fully connected constraint graph, Bz will behave like FF, because all variables 
have the same degree. 

4.3 Heur i s t i c  Rho  

The Rho (p) heuristic branches into the subproblem that maximizes the solution 
density, p. The intuition is to branch into the subproblem where the greatest 
fraction of states are expected to be solutions. To maximize p, we select the 
variable vi E V that maximizes 

II (1 - po) (7) 
cEC-C~ 

where C - C~ is the set of future constraints that do not involve variable vi, and 
(1 -Pc)  is the looseness of a constraint. If we express (7) as a sum of logarithms, 
~cec-v~  log(I-pc),  then this corresponds to selecting a variable that minimizes 
the numerator of (5). Expression (7) gives an estimate of the solution density 
of the subproblem after selecting vi. More concisely (and more computationally 
efficient), we choose the future variable vi that minimizes 

II (1_pc) (s) 
cECi 

This is the variable with the most and/or tightest constraints. Again, we branch 
on an estimate of the most constrained variable. 

4.4 Heuristic E(N) 
The E(N) heuristic branches into the subproblem that maximizes the expected 
number of solutions, E(N). This will tend to maximize both the subproblem 
size (the FF heuristic) and its solution density (the Rho heuristic). Therefore, 
we select a variable vi E V that maximizes 

H my • H (1 -pc )  (9) 
v 6 V - v i  c E C - C l  

where V - v~ is the set of future variables with vi removed, and C - Ci is the set 
of future constraints that do not involve variable vi. This can be more succinctly 
(and efficiently) expressed as choose the variable v~ E V that minimizes 

m, H (1 - Pc) (10) 
cECi 

The E(N) heuristic has an Mternative, intuitively appealing, justification. 
Let N be the number of solutions to the current subproblem. At the root of 
the tree, N is the total number of solutions to the problem. If N=0, the current 
subproblcms has no solutions, and the algorithm will at some point backtrack. 
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If  N=I ,  the current subproblem has exactly one solution, and N will remain 
constant on the path  leading to this solution, but be zero everywhere else. As we 
move down the search tree~ N cannot increase as we instantiate variables. The 
obvious heuristic is to maximize N in the future subproblem. We use E(N) as 
an estimate for N, so we branch into the subproblem that  maximizes E(N). And 
this is again an estimate for the most constrained variable, as loosely constrained 
variables will tend to reduce N most. Consider a loosely constrained variable vi 
that  can take any value in its domain. Branching on this variable will reduce N 
to N/mi.  Tightly constrained variables will not reduce N as much. 

4.5 H e u r i s t i c  K a p p a  

The Kappa  heuristic branches into the subproblem that  minimizes ~. Therefore, 
select a variable v~ E V that  minimizes 

- ) ~ c e c - c ,  log(1 - Pc) 
~ e v - ~ ,  log(m~) (11) 

Let a be the numerator  and fl be the denominator of equation (5), the defi- 
nition of ~. Tha t  is, a = - Y ~ c e c  log(1 - P c )  and fl = Y~oev log(my). Then we 
select a variable vi E V such that  we maximize the following 

a + ~ c e c ,  log(1 - pc) 
/~ - l o g ( m i )  (12) 

This heuristic was first suggested in [8] but has not yet been tested extensively 
on a range of CSPs, and depends on the proposal in [8] that  ,~ captures a notion 
of the constrainedness of an ensemble of problems. We assume that  ,~ provides 
an estimate for the constrainedness of an individual in that  ensemble. We again 
want to branch on a variable that  is estimated to be the most constrained, 
giving the least constrained subproblem. We estimate this by the subproblem 
with smallest ,~. This suggests the heuristic of minimizing n. 

4.6  I m p l e m e n t i n g  the  heur i s t i c s  

We use all the above heuristics with the forward checking algorithm FC-CBJ. 
After the current variable has successfully been assigned a value (i.e. after domain 
filtering all future variables have non-empty domains), the constraint tightness 
is recomputed for any constraint acting between a pair of variables, vj and vk, 
such that  values have just  been removed from the domain of vj or vk, or both. To 
compute constraint tightness Pc for constraint c acting between variables vj and 
vk we count the number of conflicting pairs across that  constraint and divide by 
the product  of the new domain sizes. This counting may be done via consistency 
checking and will take mj • mk checks. Constraint tightness will then be in the 
range 0 (all pairs compatible) to 1 (all pairs are conflicts). When computing the 
sum of the log looseness of constraints (i.e. the numerator of equation (5)), if 
Pc = 1 a value of - c r  is returned. Consequently, the Kappa heuristic will select 
variable vj or vk next, and the instantiation will result in a dead end. 



186 

In the FF heuristic the first variable selected is the variable with smallest 
domain size, and when all variables have the same domain size we ~elect first the 
lowest indexed variable Vl. For the B2 heuristic satwration is measured as the 
inverse of th~ domain size; i.e. the variable with smallest domain size will have 
largest saturation. Consequently, when the constraint graph is a clique FF and 
Bz will have identical behaviours. 

Search costs reported in this paper do not include the cost in terms of con- 
sistency checks of recomputing the constraint tightness. This overhead makes 
some of the heuristics less competitive than our results might suggest. However, 
our main concern here is to establish sound and gene~M principles for selecting 
variable ordering heuristics. In the future, we hope to develop book-keeping tech- 
niques and approximations to the heuristics that reduce the cost of re-computing 
or estimating the constraint tightness but which still give good performance. 

5 The Experiments 
The experiments attempt to identify under what conditions one heuristic is bet- 
ter than another. Initially, experiments are performed over uniform randomly 
generated CSP. In a problem (n, m, pl, P2) there will be n variables~ with a uni- 
form domain of size m, P l " ( n ' 0  constraints, and exactly p2m 2 conflicts over 

2 
each constraint [16, tg]. This class of problem is then modified such that we 
investigate problems with non-uniform domains and constraint tightness. 

When plotting the results, problems will be measured in terms of their con- 
strainedness, ~. This is because in some experiments we vary the number of 
variables and keep the degree of variables 7 constant, vary the tightness of con- 
straints P2, and so on. By using constrainedness we hope to get a clear picture of 
what happens. Furthermore, in non-unif~r~ problems const~ainedness appears 
to be one of the few measures that we can use. It should be noted that in the 
.experiments the complexity peak does not always occur exactly at, ~ = 1, and 
that in sparse constraints graphs the peak tends to occur at lower values of z, 
typically in the range 0.6 to 0.9. This has been observed empirically in [16], and 
an explanation is given by Smith and Dyer [19]. 

tn a~ of the graphs we huwe kept the same ~ne style far each of the heuristics. 
The labels in the graphs have then been ordered, from top to bottom, to corre- 
spond to the ranking of the heuristics in the phase transition. The best heuristic 

will thus appear first. 

5. t  Uniform Problems,  Varying Constraint Graph Density  Pl 
The aim of this experiment is 1.o determine how the heuristics are affected as 
we vary the number of constraints within the constraint graph. The experiments 
were performed over problems with 20 variables, each with a domain size of 10. 
In Figure 1, we plot the mean performance for sparse constraint graphs 4 with 
Pl = d.2, maximally dense constraint graphs with pl = 1.0 and constraint graphs 
of intermediate det~sity p, : 0.5. At each density 1,00(1 problems were generated 
at each possible value of P2 from 9.0I to 0.99 in steps of 0.01. 

4 Disconnected graphs were not filtered out since they had little effect on performance. 
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Fig. 1. Mean performance of heuristics for (20, 10) 

1.2 

For sparse constraint graphs (see Figure l(a)) ,  Bz performs best, whilst E(N) 
and Kappa are not far behind. Rho is significantly worse and FF even more so. 
Analysing the distribution in performance (graphs are not shown) e.g. the me- 
dian, 95% and higher percentiles, we observed a similar ranking of the heuristics 
with the differences between the heuristics opening up in the higher percentiles in 
the middle of the phase transition. As problems become more dense at Pl = 0.5 
(see Figure l (b))  Kappa dominates E(N). Rho and FF continue to perform 
poorly, although FF does manage to overtake Rho. 

For complete graphs with Pl = 1.0 (see Figure l(c)) ,  Bz and FF are identical, 
as expected. (The contour for FF overwrites the Bz contour.) For uniform and 
sparse problems, Bz seemed to be best, whilst for uniform and dense problems, 
Kappa or E(N) would seem to be best. 

For comparison with the dynamic variable ordering heuristics, in Figure l (d)  
we also plot the mean performance of FC-CBJ with a static variable ordering: 
variables were considered in lexicographic order. Performance is much worse 
with a static ordering than with any of the dynamic ordering heuristics, even on 
the relatively easy sparse constraint graphs. The secondary peaks for the static 
variable ordering at low ~ occur as a result of ehps [20], occasional "exceptionally 
hard" problems that arise following poor branching decisions early in search [9]. 
The worst case outside the phase transition was more than 14 million checks at 
tc ---- 0.46, in a region where 100% of problems were soluble. This was 5 orders of 
magnitude worse than the median of 288 checks at this point. 
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5.2 U n i f o r m  P r o b l e m s ,  V a r y i n g  N u m b e r  o f  Var iab les  n 
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Fig. 2. Mean performance for FC-CBJ + heuristics for (n, 10) with ~ = 5 

1.2 

The aim of this experiment is to determine how the heuristics scale with 
problem size. At first sight, this can be simply done by increasing the number 
of variables n, while keeping all else constant. However, if n increases while pl is 
kept constant the degree 7 of a variable (i.e. the number of constraints incident 
on a variable) also increases. To avoid this, we vary pl with n such that average 
degree ~ remains constant at 5, similar to [12]. To observe a phase transition, 
1,000 problems were then generated at each possible vMue of P2 from 0.01 to 
0.99 in steps of 0.01. 

In Figure 2, we plot the performance of each heuristic as we increase n. In 
Figures 2(a) and (b), we show the mean performance for n = 30 and n = 50 
respectively. The ranking of the heuristics remains the same as in the previous 
experiment for constraint graphs of intermediate density. Though not shown, we 
observed similar behaviour in the distribution of performance (e.g. median, 95% 
and higher percentiles). As before, the differences between the heuristics tend to 
open up in the higher percentiles in the middle of the phase transition. 
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In Figure 2(c) we plot the peak in average search effort in the phase transition 
regioz~ for each value of n. This then gives a contour showing how search cost 
increases with n, for this class of problem. The Figure suggests that Bz, Kappa 
and E(N) scale in a similar manner. Using a least square linear fit on the limited 
data available, we conjecture that E(N) would become better than Bz when 
n > 90, and Kappa would do likewise when n > 164. Further empirical studies 
on larger problems would be needed to confirm this. However, Rho and FF 
appear to scale less well. The gradients of Figure 2(c) suggests that FF and Rho 
scale with larger exponents than Bz, Kappa and E(N). 

5 . 3  P r o b l e m s  w i t h  Non-Uni fo rm Cons t r a in t  Tightness  

All experiments considered above have constraints generated uniformly. That is, 
a single value of p~ describes the tightness of every constraint. At the start of 
search, every constraint is equally tight, so a good measure of the constrained- 
ness of a variable is simply the number of constraints involving this variable 
(i.e. the variable's degree), together with its domain size. Even as we progress 
through search and tightnesses vary, this measure should still be reasonably ac- 
curate. This might explain why Bz has never been significantly worse in earlier 
experiments than Kappa or E(N) which uadertake the computationally heavy 
overhead of measuring exact constraint tightnesses. 

If we are given a problem with significantly varying constraint tightnesses we 
must take account of this to measure constrainedness accurately. We therefore 
expect that Bz and FF may perform poorly on problems with varying constraint 
tightnesses, while the other heuristics should perform well, because they do take 
account of constraint tightness. To test this hypothesis, we generated problems 
with mainly loose constraints, but a small number of very tight constraints. We 
did this by generating problems with a multiple of 5 constraints, and choosing 
exactly 20% of these constraints to have tightness P2 = 0.8 (i.e. tight constraints) 
and the remainder tightness Pa = 0.2 (i.e. loose constraints). We expect Bz to 
perform poorly on these problems as it will tie-break on the number of constraints 
and not the tightness of those constraints (the more significant factor in this 
problem class). 

We set n = 30 and m = 10, and to observe a phase transition we varied the 
constraint graph density, Pl from ~ to 1 in steps of ~r" Results are plotted in 

_ a3 Figure 3. The 50% solubility point is at a ~ 0.64 when p~ - g/. 
Median performance, Figure 3(a), shows that as predicted Kappa and E(N) 

do well. Most significantly, Bz is dominated by all except FF. This is the first of 
our experiments so far where Bz has been shown to perform relatively poorly. 

Figure 3(b) shows the 75th percentiles for the five heuristics (i.e. 75% of 
problems took less than the plotted amount of search effort) and Figure 3(d) 
shows worst case. We see that at the 75th percentile there is a greater difference 
between the heuristics, suggesting a more erratic behaviour from FF and Bz. 
Mean performance (Figure 3(c)) and worst case performance (Figure 3(d)) shows 
the existence of exceptionally hard problems for FF and Bz. The worst case for 
FF was 26,545 million consistency checks at ~ ~ 0.39, in a region where 100% of 
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Fig. 3. Performance of heuristics on n = 30 and m = 10, with p2 = 0.2 for 80% of the 
constraints, and p2 = 0.8 for the remainder. Note the different y-scales. 

problems were soluble. This was 8 orders of  magnitude worse than the median 
of  659 checks at this point, and took 87 hours on a DEC Alpha 2004/168. 

5 .4  P r o b l e m s  w i t h  N o n - U n i f o r m  D o m a i n  S i z e  

Unlike the other four heuristics, Rho completely ignores the domain sizes and 
its contribution to problem constrainedness. We therefore expect that the lZho 
heuristic will do poorly on problems with mixed domain sizes. To test this hy- 
pothesis,  we generated 20 variable problems, giving each variable a domain of 
size 10 with probability 0.5 and a domain of size 20 otherwise. We denote this as 
m = {10, 20}. To observe a phase transition, we fixed the constraint density Pl 
at 0.5 and varied P2 from 0.01 to 0.99 in steps of 0.01, generating 1,000 problems 
at each point.  We plot the results for mean checks for each of the heuristics in 
Figure 4. As predicted, the lZho heuristic performs worse than in the previous 
problem classes. This seems to reaffirm the worth of exploiting information on 
domain sizes. 

6 Discussion 

Theory-based heuristics for the binary CSP are presented by Nudel [14], based 
on the minimizat ion  of a complexity estimate,  namely the number of compound 
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Fig. 4. Performance of FC-CBJ, with n = 20, m = {10, 20} and pl = 0.5 

labels at a given depth in the search tree. Two classes of heuristic are presented, 
global and local. Global heuristics fix the instantiation order at the start  of 
search, whereas local heuristics take account of information made available dur- 
ing search, such as actual domain sizes and constraint tightness. Nudel's local 
heuristics are thus dynamic variable ordering (dvo) heuristics. Three dvo heuris- 
tics are presented, I02, I03, and I04. I02 chooses "next below a node, that 
variable with minimum number mi of surviving labels after forward checking at 
the node", and is equivalent to FF. Heuristic I03 tie-breaks I02 by choosing 
the variable (with smallest domain) that  most constrains future variables, and 
has much in common with Bz. I04 stops when any future constraint disallows 
all tuples across that  constraint. As Nudel says, this is not so much a heuristic 
but  an algorithmic step. I04 is implicit in heuristics Rho, E(N), and Kappa. 

It is interesting to contrast our approach with Nudel's as both give theory- 
based variable ordering heuristics. Nudel gives measures that  estimate the size 
of the remaining search tree, and then constructs heuristics which seek to min- 
imize these estimates. We have not related our measures directly to the search 
tree. Instead we have sought to move into areas of the search tree likely to be 
unconstrained and therefore have solutions. When one makes certain simplifica- 
tions, both approaches can result in the same heuristic such as FF. However, the 
detailed relationship between the approaches has not yet been fully analysed. 

Feldman and Golumbic [4] applied Nudel's heuristics to real-world constraint 
satisfaction problems. Three heuristics are presented, one for a backward check- 
ing algorithm (BT), and two for a forward checking algorithm (FC1 and FC2). 
All three heuristics were applied as global/static orderings. Heuristic FC1 selects 
vi with minimum mi I-I~ <j (1 -p i , j ) ,  where pi,j is tightness of the constraint acting 
between vi and future variable vj. This corresponds to a global E(N) ordering. 
Heuristic FC2 takes into consideration all constraints, and selects variable vi 
with minimum mi I-[j#i,kr - pj,k). As far as we can see, there is no corre- 
spondence between FC2 and the heuristics presented here. In their experiments 
heuristic FC1 dominated FC2 on hard problems. 

The new dvo heuristics presented here may be used as global/static vari- 
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able ordering heuristics. When we have uniform constraint tightness, Rho will 
correspond to a reverse maximum cardinality ordering [3], suitable for forward 
checking algorithms. If all variables have the same constraint tightness then E(N) 
maximizes A; (the FF heuristic), and if all variables have the same domain size 
E(N) simplifies to maximizing p (the Rho heuristic). Like the E(N) heuristic, the 
Kappa heuristic simplifies to maximizing Af (the FF heuristic) if all variables 
have the same constraint tightness and to maximlCzing p (the Rho heuristic) if all 
variable have the same domain size. Clearly, FF and Bz can be considered as low 
cost surrogates of the minimize Kappa heuristic; both attempt to minimize (11) 
by maximizing the denominator, and Bz tie-breaks by estimating the numerator 
of (11) by assuming all constraints are of the same tightness. 

7 Conclus ions  

Three new variable ordering heuristics for the CSP have been presented, namely 
E(N), l~ho, and Kappa. These new heuristics are a product of our investigations 
into phase transition phenomena in combinatorial problems. The new heuristics 
have two properties in common. Firstly, they all attempt to measure the con- 
strainedness of a subproblem, and secondly, they attempt to branch on the most 
constrained variable giving the least constrained subproblem. The heuristics dif- 
fer in how they measure constrainedness, and what information they exploit. 

The new heuristics have been tested alongside two existing heuristics, namely 
Fail-First (FF) and Brelaz (Sz), and on a variety of uniform and non-uniform 
problems, using a forward checking algorithm FC-CBJ. On uniform problems, 
the new heuristics perform similarly to each other and dominate FF. Bz was 
consistently better on sparse and moderately dense constraint graphs, and was 
easier to calculate. As constraint graph density increased to the point of becom- 
ing a clique, Bz performance degraded to be the same as FF. With respect to 
problem size, the new heuristics appear to scale better than FF and Bz. 

Problems with non-uniform constraint tightnesses exposed poor behaviour 
from Bz. This was expected, because Bz exploits information from the domain 
sizes and topology of the constraint graph, but ignores the tightness of con- 
straints. Experiments on problems with non-uniform domains demonstrated that 
ignoring information of domain sizes results in poor performance. 

In some respects the work reported here might be considered as a first foray 
into a better understanding of what makes heuristics work. Further work could 
include determining the importance of tie-breaking in the heuristic Bz, compared 
to simply choosing the flrst~ variable sensibly. Faster substitutes for the heuristics 
would allow us to investigate the hypothesis that, the new heuristics scale better 
than the old. Little has been done to compare the ranking of the new heuristics on 
an individual problem basis. We would also like to investigate the performance 
of the new heuristics in problems where there is a very large set of different 
domain sizes at the start of search. 
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