
An Empirical Study of Dynamic Variable
Ordering Heuristics for the Constraint

Satisfaction Problem*

Inn P. Gen t 1, Ewan Mac In ty re 1, Pa t r i ck Prosser 1 , B a r b a r a M. S m i t h 2 and
Toby Wal sh 3

1 Depar tment of Computer Science, University of Strathclyde, Glasgow G1 1XH,
Scotland. E-mail: {ipg,em,pat}@cs.strath.ac.uk

2 Division of Artificial Intelligence, School of Computer Studies, University of Leeds,
Leeds LS2 9JT, England. F,-maJl: bms@scs.leeds.ac.uk

3 IRST, I38100 Trento & DIST, I16145 Genova, Italy. E-mnih toby@itc.it

A b s t r a c t . The constraint satisfaction community has developed a number
of heuristics for variable ordering during backtracking search. For example,
in conjunction with algorithms which check forwards, the Fail-First (FF)
and Brelaz (Bz) heuristics are cheap to evaluate and are generally consid-
ered to be very effective. Recent work to understand phase transitions in
NP-complete problem classes enables us to compare such heuristics over a
large range of different kinds of problems. Furthermore, we are now able
to s tar t to understand the reasons for the success, and therefore also the
failure, of heuristics, and to introduce new heuristics which achieve the suc-
cesses and avoid the failures. In this paper, we present a comparison of the
Bz and F F heuristics in forward checking algorithms apphed to randomly-
generated binary CSP's. We also introduce new and very general heuristics
and present an extensive study of these. These new heuristics are usually
as good as or bet ter than Bz and FF, and we identify problem classes
where our new heuristics can be orders of magnitude better. The result is
a deeper understanding of what helps heuristics to succeed or fail on hard
random problems in the context of forward checking, and the identification
of promising new heuristics worthy of further investigation.

1 I n t r o d u c t i o n

In the cons t r a in t sa t i s fac t ion p r o b l e m (CSP) we are to ass ign values to var iab les
such t h a t a set of cons t ra in t s is sat isf ied, or show t h a t no sa t i s fy ing as s ignment
exists . Th i s m a y be done v ia a s y s t e m a t i c search process, such as dep th first
search w i th back t r ack ing , and th is a m o u n t s to a sequence of decisions, where a
decis ion is a choice of va r i ab le and value to assign to t h a t var iable . T h e order
in which decis ions are m a d e can have a p ro found effect on search effort. Dechter
and Mei r i ' s s t u d y of p reprocess ing techniques [3] shows t h a t d y n a m i c search re-
a r r a n g e m e n t (DSR) , i.e. a va r iab le o rder ing heur is t ic t h a t selects as nex t var iab le

* This research was supported by HCM personal fellowship to the last author, by a
University of Strathclyde s tar ter grant to the first author, and by an EPSRC ROPA
award GR/K/65706 for the first three authors. Authors listed alphabetically. We
thank the other members of the APES group, and our reviewers, for their comments.

180

the one that has minimal number of values in its domain, dominated all other
static orderings. Here, we present three new dynamic variable ordering (dvo)
heuristics, derived as a result of our studies of phase transition phenomena of
combinatorial problems, and compare these against two existing heuristics.

Tsang, Borrett , and Kwan's study of CSP algorithms [22] shows that there
does not appear to be a universally best algorithm, and that certain algorithms
may be preferred under certain circumstances. We carry out a similar investi-
gation with respect to dvo heuristics in an a t tempt to determine under what
conditions one heuristic dominates another.

In the next section we give a background to the study. We then go on to
describe four measures of the constrainedness of CSP's, and in Section 4 describe
five heuristics, based on these measures. The empirical study is reported in
Section 5, the heuristics are then discussed with respect to previous work in
Section 6, and conclusions are drawn in Section 7.

2 Background
A constraint satisfaction problem consists of a set of n variables V, each variable
v E V having a domain of values M~ of size my, and a set of constraints C. Each
constraint c E C of arity a restricts a tuple of variables (v l , . �9 va), and specifies
a subset of M t x M2 x . . . x Ma, each element of which is a combination of values
the variables are forbidden to take simultaneously by this constraint. In a binary
CSP, which the experiments reported here are exclusively concerned with, the
constraints are all of arity 2. A solution to a CSP is an assignment of a value to
every variable satisfying all the constraints. The problem that we address here
is the decision problem, i.e. finding one solution or showing that none exists.

There are two classes of complete search algorithm for the CSP, namely
those that check backwards and those that check forwards. In algorithms that
checks backwards, the current variable vi is instantiated and checking takes place
against the (past) instantiated variables. If this is inconsistent then a new value
is tried, and if no values remain then a past variable is reinstantiated. In al-
gorithms that check forwards, the current variable is instantiated with a value
and the (future) uninstantiated variables are made consistent, to some degree,
with respect to that instantiation. Chronological backtracking (BT), backmark-
ing (BM), backjumping (BJ), conflict-directed backjumping (CBJ), and dynamic
backtracking (DB) are algorithms that check backwards [11, 5, 6, 10], whereas
forward checking (FC) and maintaining arc-consistency (MAC) are algorithms
that check forwards [13, 18]. This study investigates only forward checking al-
gorithms, and in particular forward checking combined with conflict-directed

backjumping (FC-CBJ) [15].
Algorithm FC instantiates variable vl with a value xi and removes from the

domains of future variables any values that are inconsistent with respect to that
instantiation. If the instantiation results in no values remaining in the domain
of a future variable, then a new value is tried for vi and if no values remain for
vi (i.e. a dead end is reached) then the previous variable is reinstantiated (i.e.
chronologicM backtracking takes place). FC-CBJ differs from PC; on reaching a

181

dead end the algorithm jumps back to a variable that is involved in a conflict
with the current variable [15].

In selecting an algorithm we will prefer one that takes less search effort
than another, where search effort is measured as the number of times pairs of
values are compared for compatibility, i.e. consistency checks. Generally, checking
forwards reduces search effort, as does jumping back.

The order in which variables are chosen for instantiation profoundly influ-
ences search effort. Algorithms that check backwards tend to use variable order-
ing heuristics that exploit topological parameters, such as width, induced width
or bandwidth, and correspond to static instantiation orders (i.e. they do not
change during search) [21]. Algorithms that check forwards have additional in-
formation at their disposal, such as the current size of the domains of variables.
Furthermore, since domain sizes may vary during the search process, forward
checking algorithms may use dynamic variable ordering (dvo) heuristics [17],
and it is this class of heuristics that is investigated here.

3 C o n s t r a i n e d n e s s

Many NP-complete problems display a transition in solubility as we increase the
constrainedness of problem instances. This phase transition is associated with
problems which are typically hard to solve [2]. Under-constrained problems tend
to have many solutions and it is usually easy to guess one. Over-constrained
problems tend not to have solutions, and it usually easy to rule out all possible
solutions. A phase transition occurs in between when problems are "critically
constrained". Such problems are usually difficult to solve as they are neither
obviously soluble or insoluble. Problems from the phase transition are often
used to benchmark CSP and satisfiability procedures [22, 9]. Constrainedness
can be used both to predict the position of a phase transition in solubility [23,
20, 16, 7, 19] and, as we show later, to motivate the construction of heuristics.

In this section, we identify four measures of some aspect of constrainedness.
These measures all apply to an ensemble of random problems. Such measures
may suggest whether an individual problem from the ensemble is likely to be
soluble. For example, a problem with larger domain sizes or looser constraints
is more likely to be soluble than a problem with smaller domains or tighter con-
straints, all else being equal. To make computing such measures tractable, we will
ignore specific features of problems (like the topology of the constraint graph)
and consider just simple properties like domain sizes and constraint tightness.

One simple measure of constrainedness can be derived from the size of prob-
lems in the ensemble. Size is determined by both the number of variables and
their domain sizes. Following [7, 8], we measure problem size via the size of the
state space being explored. This consists of all possible assignments of values to
variables, its size is simply the product of the domain sizes, l-I~ev m~. We define
the size (A/') of the problem as the number of bits needed the number of bits
needed to describe a point in the state space, so we have:

N =def E l~ rnv (1)
v E V

182

A large problem is likely to be less constrained and has a greater chance of being
soluble than a small problem with the same number of variables and constraints
of the same tightnesses.

A second measure of constrainedness is the solution density of the ensemble.
If the constraint c on average rules out a fraction Pc of possible assignments,
then a fraction 1 - pc of assignments are allowed. The average solution density,
p is the mean fraction of assignments allowed by all the constraints. The mean
solution density over the ensemble is,

p = I I (1 - po) (2)
cEC

Problems with loose constraints have high solution density. As noted above, all
else being equal, a problem with a high solution density is more likely to be
soluble than a problem with a low solution density.

A third measure of constrainedness is derived from the size and solution den-
sity. E(N), the expected number of solutions for a problem within an ensemble
is simply the size of the state space times the probability that a given element
in the state space is a solution. That is,

E(N) = p2 Af -- H m~ x H (1 - P r (3)
~EV cEC

If problems in an ensemble are expected to have a large number of solutions, then
an individual problem within the ensemble is likely to be loosely constrained and

to have many solutions.
The fourth and final measure of constrainedness, ~ is again derived from

the size and solution density. This has been suggested as a general measure
of the constralnedness of combinatorial problems [8]. It is motivated by the
randomness with which we can set a bit in a solution to a combinatorial problem.
If ~ is small, then problems typically have many solutions and a given bit can
be set more or less at random. For large ~, problems typically have few or no
solutions and a given bit is very constrained in how it can be set. ~ is defined

by,

l~ (4)
t~ ~'=def 1 ./V"

l o g 2 (p)

- N

= - l o g (1 - (5)

~ e v log(my)

If ~ << 1 then problems have a large expected number of solutions for their
size. They are therefore likely to be under-constrained and soluble. If ~ >> 1
then problems have a small expected number of solutions for their size. They
are therefore likely to be over-constrained and insoluble. A phase transition in
solubility occurs inbetween where n ~-. 1 [8]. This is equivalent for CSPs to the
prediction made in [19] that a phase transition occurs when E(N) ~ 1.

183

4 H e u r i s t i c s f o r C o n s t r a i n e d n e s s

Many heuristics in CSPs branch on what can often be seen as an est imate of
the most constrained variable [8]. Here, we describe two well known heuristics
for CSPs and three new heuristics. We use the four measures of constrained-
ness described above. These measures were defined for an ensemble of problems.
Each measure can be computed for an individual problem, but will give only
an est imate for the constrainedness of an individual problem. For example, an
insoluble problem has zero solution density and this may be very different from
the measured value of p. Even so, such measures can provide both a good indi-
cation of the probabil i ty of a solution existing and, as we show here, a heuristic
es t imate of the most constrained variable.

Below, we adopt the following conventions. When a variable vi is selected as
the current variable and instantiated with a value, vi is removed from the set of
variables V, constraint propagat ion takes place, and all constraints incident on
vi, namely Ci, are removed from the set of constraints C. Therefore V is the set
of future variables, C is the set of future constraints, rnj is the actual size of the
domain of vj E V after constraint propagation, Pc is the actual value of constraint
tightness for constraint c E C after constraint propagation, and Cj is the set of
future constraints incident on vj. All characteristics of the future subproblem
are recomputed and made available to the heuristics as local information.

4.1 H e u r i s t i c F F

ttaralick and Elliott [13] proposed the fail-first principle for CSPs as follows: "To
succeed, try first where you are most likely to fail ." The reason for a t tempt ing
next the task which is most likely to fail is to encounter dead-ends early on and
prune the search space. Applied as a constraint ordering heuristic this suggests
tha t we check first the constraints that are most likely to fail and when applied
as a variable ordering heuristic, tha t we choose the most constrained variable.
An est imate for the most constrained variable is the variable with the smallest
domain. Tha t is we choose vi E V such that mi is a minimum.

An alternative interpretat ion of this heuristic is to branch on vi such that we
maximize the size of the resulting subproblem, without considering the constraint
information on tha t variable. Tha t is, choose the variable vi E V that maximizes

log(my) (6)
v E V - v i

where V - vi is the set of future variables with vi removed, and is the same as
selecting the variable vi which maximizes the denominator of equation (5).

4 .2 H e u r i s t i c B z

The Brelaz heuristic (Bz) comes from graph colouring [1]; we wish to find a
colouring of the vertices of a graph such that adjacent vertices have different
colours. Given a part ial colouring of a graph, the saturation of a vertex is the
number of differently coloured vertices adjacent to it. A vertex with high satura-
tion will have few colours available to it. The Bz heuristic first colours a vertex of

184

maximum degree. Thereafter Bz selects an uncoloured vertex of maximum sat-
uration, tie-breaking on the degree in the uncoloured subgraph. Bz thus chooses
to colour next what is estimated to be the most constrained vertices.

When applying Bz to a CSP we choose the variable with smallest domain size
and tie-break on degree in the future subproblem. That is, choose the variable
with smallest mi and tie-break on the variable with greatest future degree]Ci]. In
a fully connected constraint graph, Bz will behave like FF, because all variables
have the same degree.

4.3 Heur i s t i c Rho

The Rho (p) heuristic branches into the subproblem that maximizes the solution
density, p. The intuition is to branch into the subproblem where the greatest
fraction of states are expected to be solutions. To maximize p, we select the
variable vi E V that maximizes

II (1 - po) (7)
cEC-C~

where C - C~ is the set of future constraints that do not involve variable vi, and
(1 -Pc) is the looseness of a constraint. If we express (7) as a sum of logarithms,
~cec-v~ log(I-pc), then this corresponds to selecting a variable that minimizes
the numerator of (5). Expression (7) gives an estimate of the solution density
of the subproblem after selecting vi. More concisely (and more computationally
efficient), we choose the future variable vi that minimizes

II (1_pc) (s)
cECi

This is the variable with the most and/or tightest constraints. Again, we branch
on an estimate of the most constrained variable.

4.4 Heuristic E(N)
The E(N) heuristic branches into the subproblem that maximizes the expected
number of solutions, E(N). This will tend to maximize both the subproblem
size (the FF heuristic) and its solution density (the Rho heuristic). Therefore,
we select a variable vi E V that maximizes

H my • H (1 -pc) (9)
v 6 V - v i c E C - C l

where V - v~ is the set of future variables with vi removed, and C - Ci is the set
of future constraints that do not involve variable vi. This can be more succinctly
(and efficiently) expressed as choose the variable v~ E V that minimizes

m, H (1 - Pc) (10)
cECi

The E(N) heuristic has an Mternative, intuitively appealing, justification.
Let N be the number of solutions to the current subproblem. At the root of
the tree, N is the total number of solutions to the problem. If N=0, the current
subproblcms has no solutions, and the algorithm will at some point backtrack.

185

If N=I , the current subproblem has exactly one solution, and N will remain
constant on the path leading to this solution, but be zero everywhere else. As we
move down the search tree~ N cannot increase as we instantiate variables. The
obvious heuristic is to maximize N in the future subproblem. We use E(N) as
an estimate for N, so we branch into the subproblem that maximizes E(N). And
this is again an estimate for the most constrained variable, as loosely constrained
variables will tend to reduce N most. Consider a loosely constrained variable vi
that can take any value in its domain. Branching on this variable will reduce N
to N/mi. Tightly constrained variables will not reduce N as much.

4.5 H e u r i s t i c K a p p a

The Kappa heuristic branches into the subproblem that minimizes ~. Therefore,
select a variable v~ E V that minimizes

-) ~ c e c - c , log(1 - Pc)
~ e v - ~ , log(m~) (11)

Let a be the numerator and fl be the denominator of equation (5), the defi-
nition of ~. Tha t is, a = - Y ~ c e c log(1 - P c) and fl = Y~oev log(my). Then we
select a variable vi E V such that we maximize the following

a + ~ c e c , log(1 - pc)
/~ - l o g (m i) (12)

This heuristic was first suggested in [8] but has not yet been tested extensively
on a range of CSPs, and depends on the proposal in [8] that ,~ captures a notion
of the constrainedness of an ensemble of problems. We assume that ,~ provides
an estimate for the constrainedness of an individual in that ensemble. We again
want to branch on a variable that is estimated to be the most constrained,
giving the least constrained subproblem. We estimate this by the subproblem
with smallest ,~. This suggests the heuristic of minimizing n.

4.6 I m p l e m e n t i n g the heur i s t i c s

We use all the above heuristics with the forward checking algorithm FC-CBJ.
After the current variable has successfully been assigned a value (i.e. after domain
filtering all future variables have non-empty domains), the constraint tightness
is recomputed for any constraint acting between a pair of variables, vj and vk,
such that values have just been removed from the domain of vj or vk, or both. To
compute constraint tightness Pc for constraint c acting between variables vj and
vk we count the number of conflicting pairs across that constraint and divide by
the product of the new domain sizes. This counting may be done via consistency
checking and will take mj • mk checks. Constraint tightness will then be in the
range 0 (all pairs compatible) to 1 (all pairs are conflicts). When computing the
sum of the log looseness of constraints (i.e. the numerator of equation (5)), if
Pc = 1 a value of - c r is returned. Consequently, the Kappa heuristic will select
variable vj or vk next, and the instantiation will result in a dead end.

186

In the FF heuristic the first variable selected is the variable with smallest
domain size, and when all variables have the same domain size we ~elect first the
lowest indexed variable Vl. For the B2 heuristic satwration is measured as the
inverse of th~ domain size; i.e. the variable with smallest domain size will have
largest saturation. Consequently, when the constraint graph is a clique FF and
Bz will have identical behaviours.

Search costs reported in this paper do not include the cost in terms of con-
sistency checks of recomputing the constraint tightness. This overhead makes
some of the heuristics less competitive than our results might suggest. However,
our main concern here is to establish sound and gene~M principles for selecting
variable ordering heuristics. In the future, we hope to develop book-keeping tech-
niques and approximations to the heuristics that reduce the cost of re-computing
or estimating the constraint tightness but which still give good performance.

5 The Experiments
The experiments attempt to identify under what conditions one heuristic is bet-
ter than another. Initially, experiments are performed over uniform randomly
generated CSP. In a problem (n, m, pl, P2) there will be n variables~ with a uni-
form domain of size m, P l " (n ' 0 constraints, and exactly p2m 2 conflicts over

2
each constraint [16, tg]. This class of problem is then modified such that we
investigate problems with non-uniform domains and constraint tightness.

When plotting the results, problems will be measured in terms of their con-
strainedness, ~. This is because in some experiments we vary the number of
variables and keep the degree of variables 7 constant, vary the tightness of con-
straints P2, and so on. By using constrainedness we hope to get a clear picture of
what happens. Furthermore, in non-unif~r~ problems const~ainedness appears
to be one of the few measures that we can use. It should be noted that in the
.experiments the complexity peak does not always occur exactly at, ~ = 1, and
that in sparse constraints graphs the peak tends to occur at lower values of z,
typically in the range 0.6 to 0.9. This has been observed empirically in [16], and
an explanation is given by Smith and Dyer [19].

tn a~ of the graphs we huwe kept the same ~ne style far each of the heuristics.
The labels in the graphs have then been ordered, from top to bottom, to corre-
spond to the ranking of the heuristics in the phase transition. The best heuristic

will thus appear first.

5. t Uniform Problems, Varying Constraint Graph Density Pl
The aim of this experiment is 1.o determine how the heuristics are affected as
we vary the number of constraints within the constraint graph. The experiments
were performed over problems with 20 variables, each with a domain size of 10.
In Figure 1, we plot the mean performance for sparse constraint graphs 4 with
Pl = d.2, maximally dense constraint graphs with pl = 1.0 and constraint graphs
of intermediate det~sity p, : 0.5. At each density 1,00(1 problems were generated
at each possible value of P2 from 9.0I to 0.99 in steps of 0.01.

4 Disconnected graphs were not filtered out since they had little effect on performance.

187

7000

6000

50O0

-9 ,~00

20OO

,000

00. 6

4O0000

350000

3O0000

~ 250000

~ 200000

E 150000

100000

50000

0
0.6

4::-/%

.7 I I ! I
0 0.8 0.9 1 ' . '

(a) w = 0.2

Rho

B z - - - i \
E(N) / ~.

Kappa - ~ f

o17

, .2

, \

/ \,
! \

.t : x

J

O~ 0.9 , 1.1 1.2
Kappa

(c) w = 1.o

60000

Rho
50000 ! ~ ~ 1 ~ . ~

Eq,0 f ~ k

~o Bz - - - ..r \ k k x

=~ 3o000
!

20000

10000 t'~ "

0.6 0.7 0.8 0.9 1 L1

(b) Pl = 0.5

Slafic

Rho p - - " ~ ' k .,.,,~ .,,,~

100000 Kg~pa ~ " "

Bz Y "'..........

,0000 A ,,../

i V ' : ,000 ~ . ~ .

,00
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Kappa

(d) Pl = 0.2, also with static order

Fig. 1. Mean performance of heuristics for (20, 10)

1.2

For sparse constraint graphs (see Figure l(a)) , Bz performs best, whilst E(N)
and Kappa are not far behind. Rho is significantly worse and FF even more so.
Analysing the distribution in performance (graphs are not shown) e.g. the me-
dian, 95% and higher percentiles, we observed a similar ranking of the heuristics
with the differences between the heuristics opening up in the higher percentiles in
the middle of the phase transition. As problems become more dense at Pl = 0.5
(see Figure l (b)) Kappa dominates E(N). Rho and FF continue to perform
poorly, although FF does manage to overtake Rho.

For complete graphs with Pl = 1.0 (see Figure l(c)) , Bz and FF are identical,
as expected. (The contour for FF overwrites the Bz contour.) For uniform and
sparse problems, Bz seemed to be best, whilst for uniform and dense problems,
Kappa or E(N) would seem to be best.

For comparison with the dynamic variable ordering heuristics, in Figure l (d)
we also plot the mean performance of FC-CBJ with a static variable ordering:
variables were considered in lexicographic order. Performance is much worse
with a static ordering than with any of the dynamic ordering heuristics, even on
the relatively easy sparse constraint graphs. The secondary peaks for the static
variable ordering at low ~ occur as a result of ehps [20], occasional "exceptionally
hard" problems that arise following poor branching decisions early in search [9].
The worst case outside the phase transition was more than 14 million checks at
tc ---- 0.46, in a region where 100% of problems were soluble. This was 5 orders of
magnitude worse than the median of 288 checks at this point.

188

5.2 U n i f o r m P r o b l e m s , V a r y i n g N u m b e r o f Var iab les n

60000

50000

40000

30000

20000

10000

0
0.6

, , , , ,

0.7 0.g 0.9 , 1.1 1.2

(a) = 30
lc+O7

lc+06

100000

i
1171700

1.4o+06

L~+O6

! 6ooooo
E

200O0O

0
0.6

E

0.7 0.8 0.9 1 I.I

(b) n = 50

b'F .~-=

R h o --*--.

3'o ;0 50 2O
num ber o f v~xiablcs

(c) Peaks of mean performance over n

Fig. 2. Mean performance for FC-CBJ + heuristics for (n, 10) with ~ = 5

1.2

The aim of this experiment is to determine how the heuristics scale with
problem size. At first sight, this can be simply done by increasing the number
of variables n, while keeping all else constant. However, if n increases while pl is
kept constant the degree 7 of a variable (i.e. the number of constraints incident
on a variable) also increases. To avoid this, we vary pl with n such that average
degree ~ remains constant at 5, similar to [12]. To observe a phase transition,
1,000 problems were then generated at each possible vMue of P2 from 0.01 to
0.99 in steps of 0.01.

In Figure 2, we plot the performance of each heuristic as we increase n. In
Figures 2(a) and (b), we show the mean performance for n = 30 and n = 50
respectively. The ranking of the heuristics remains the same as in the previous
experiment for constraint graphs of intermediate density. Though not shown, we
observed similar behaviour in the distribution of performance (e.g. median, 95%
and higher percentiles). As before, the differences between the heuristics tend to
open up in the higher percentiles in the middle of the phase transition.

189

In Figure 2(c) we plot the peak in average search effort in the phase transition
regioz~ for each value of n. This then gives a contour showing how search cost
increases with n, for this class of problem. The Figure suggests that Bz, Kappa
and E(N) scale in a similar manner. Using a least square linear fit on the limited
data available, we conjecture that E(N) would become better than Bz when
n > 90, and Kappa would do likewise when n > 164. Further empirical studies
on larger problems would be needed to confirm this. However, Rho and FF
appear to scale less well. The gradients of Figure 2(c) suggests that FF and Rho
scale with larger exponents than Bz, Kappa and E(N).

5 . 3 P r o b l e m s w i t h Non-Uni fo rm Cons t r a in t Tightness

All experiments considered above have constraints generated uniformly. That is,
a single value of p~ describes the tightness of every constraint. At the start of
search, every constraint is equally tight, so a good measure of the constrained-
ness of a variable is simply the number of constraints involving this variable
(i.e. the variable's degree), together with its domain size. Even as we progress
through search and tightnesses vary, this measure should still be reasonably ac-
curate. This might explain why Bz has never been significantly worse in earlier
experiments than Kappa or E(N) which uadertake the computationally heavy
overhead of measuring exact constraint tightnesses.

If we are given a problem with significantly varying constraint tightnesses we
must take account of this to measure constrainedness accurately. We therefore
expect that Bz and FF may perform poorly on problems with varying constraint
tightnesses, while the other heuristics should perform well, because they do take
account of constraint tightness. To test this hypothesis, we generated problems
with mainly loose constraints, but a small number of very tight constraints. We
did this by generating problems with a multiple of 5 constraints, and choosing
exactly 20% of these constraints to have tightness P2 = 0.8 (i.e. tight constraints)
and the remainder tightness Pa = 0.2 (i.e. loose constraints). We expect Bz to
perform poorly on these problems as it will tie-break on the number of constraints
and not the tightness of those constraints (the more significant factor in this
problem class).

We set n = 30 and m = 10, and to observe a phase transition we varied the
constraint graph density, Pl from ~ to 1 in steps of ~r" Results are plotted in

_ a3 Figure 3. The 50% solubility point is at a ~ 0.64 when p~ - g/.
Median performance, Figure 3(a), shows that as predicted Kappa and E(N)

do well. Most significantly, Bz is dominated by all except FF. This is the first of
our experiments so far where Bz has been shown to perform relatively poorly.

Figure 3(b) shows the 75th percentiles for the five heuristics (i.e. 75% of
problems took less than the plotted amount of search effort) and Figure 3(d)
shows worst case. We see that at the 75th percentile there is a greater difference
between the heuristics, suggesting a more erratic behaviour from FF and Bz.
Mean performance (Figure 3(c)) and worst case performance (Figure 3(d)) shows
the existence of exceptionally hard problems for FF and Bz. The worst case for
FF was 26,545 million consistency checks at ~ ~ 0.39, in a region where 100% of

190

lO~I

lv+~

1r

lv+~6

1 0 0 0 0 0

looo

0.2 0.4 0.6 0.8 1 1.2 1A

(a) Median checks
i

0.2 0.4 0.6 0.8 1 1.2 1.4
Kap,pe.

(c) Mean checks

le~-G6

100000

1 0 0 0 0

1 0 0 0

I 0 0

lo4-11

l e + 1 0

I e-V09

10+08

le-~7

l w e C 6

1 0 0 0 0 0

100(30

1 0 0 0

1 0 0
0

, , ~ , , , ,

Rho
~ . . - - .

0.2 0,4 0.6 0.8 1 1.2 1,4
gapm

(b) 75% checks

BZ ~ : ---.-.

0 1 2 : 4 01.6 018 ~ I12 1~

(d) Maximum checks

Fig. 3. Performance of heuristics on n = 30 and m = 10, with p2 = 0.2 for 80% of the
constraints, and p2 = 0.8 for the remainder. Note the different y-scales.

problems were soluble. This was 8 orders of magnitude worse than the median
of 659 checks at this point, and took 87 hours on a DEC Alpha 2004/168.

5 .4 P r o b l e m s w i t h N o n - U n i f o r m D o m a i n S i z e

Unlike the other four heuristics, Rho completely ignores the domain sizes and
its contribution to problem constrainedness. We therefore expect that the lZho
heuristic will do poorly on problems with mixed domain sizes. To test this hy-
pothesis, we generated 20 variable problems, giving each variable a domain of
size 10 with probability 0.5 and a domain of size 20 otherwise. We denote this as
m = {10, 20}. To observe a phase transition, we fixed the constraint density Pl
at 0.5 and varied P2 from 0.01 to 0.99 in steps of 0.01, generating 1,000 problems
at each point. We plot the results for mean checks for each of the heuristics in
Figure 4. As predicted, the lZho heuristic performs worse than in the previous
problem classes. This seems to reaffirm the worth of exploiting information on
domain sizes.

6 Discussion

Theory-based heuristics for the binary CSP are presented by Nudel [14], based
on the minimizat ion of a complexity estimate, namely the number of compound

191

lc+06

100000

10000

1000

100 0 0:2 0:4 0:6

Rho

Kappa ~ /~-,~, "-.,
.

./, 2:

o:8 ; ,:,
l~opa

Fig. 4. Performance of FC-CBJ, with n = 20, m = {10, 20} and pl = 0.5

labels at a given depth in the search tree. Two classes of heuristic are presented,
global and local. Global heuristics fix the instantiation order at the start of
search, whereas local heuristics take account of information made available dur-
ing search, such as actual domain sizes and constraint tightness. Nudel's local
heuristics are thus dynamic variable ordering (dvo) heuristics. Three dvo heuris-
tics are presented, I02, I03, and I04. I02 chooses "next below a node, that
variable with minimum number mi of surviving labels after forward checking at
the node", and is equivalent to FF. Heuristic I03 tie-breaks I02 by choosing
the variable (with smallest domain) that most constrains future variables, and
has much in common with Bz. I04 stops when any future constraint disallows
all tuples across that constraint. As Nudel says, this is not so much a heuristic
but an algorithmic step. I04 is implicit in heuristics Rho, E(N), and Kappa.

It is interesting to contrast our approach with Nudel's as both give theory-
based variable ordering heuristics. Nudel gives measures that estimate the size
of the remaining search tree, and then constructs heuristics which seek to min-
imize these estimates. We have not related our measures directly to the search
tree. Instead we have sought to move into areas of the search tree likely to be
unconstrained and therefore have solutions. When one makes certain simplifica-
tions, both approaches can result in the same heuristic such as FF. However, the
detailed relationship between the approaches has not yet been fully analysed.

Feldman and Golumbic [4] applied Nudel's heuristics to real-world constraint
satisfaction problems. Three heuristics are presented, one for a backward check-
ing algorithm (BT), and two for a forward checking algorithm (FC1 and FC2).
All three heuristics were applied as global/static orderings. Heuristic FC1 selects
vi with minimum mi I-I~ <j (1 -p i , j) , where pi,j is tightness of the constraint acting
between vi and future variable vj. This corresponds to a global E(N) ordering.
Heuristic FC2 takes into consideration all constraints, and selects variable vi
with minimum mi I-[j#i,kr - pj,k). As far as we can see, there is no corre-
spondence between FC2 and the heuristics presented here. In their experiments
heuristic FC1 dominated FC2 on hard problems.

The new dvo heuristics presented here may be used as global/static vari-

192

able ordering heuristics. When we have uniform constraint tightness, Rho will
correspond to a reverse maximum cardinality ordering [3], suitable for forward
checking algorithms. If all variables have the same constraint tightness then E(N)
maximizes A; (the FF heuristic), and if all variables have the same domain size
E(N) simplifies to maximizing p (the Rho heuristic). Like the E(N) heuristic, the
Kappa heuristic simplifies to maximizing Af (the FF heuristic) if all variables
have the same constraint tightness and to maximlCzing p (the Rho heuristic) if all
variable have the same domain size. Clearly, FF and Bz can be considered as low
cost surrogates of the minimize Kappa heuristic; both attempt to minimize (11)
by maximizing the denominator, and Bz tie-breaks by estimating the numerator
of (11) by assuming all constraints are of the same tightness.

7 Conclus ions

Three new variable ordering heuristics for the CSP have been presented, namely
E(N), l~ho, and Kappa. These new heuristics are a product of our investigations
into phase transition phenomena in combinatorial problems. The new heuristics
have two properties in common. Firstly, they all attempt to measure the con-
strainedness of a subproblem, and secondly, they attempt to branch on the most
constrained variable giving the least constrained subproblem. The heuristics dif-
fer in how they measure constrainedness, and what information they exploit.

The new heuristics have been tested alongside two existing heuristics, namely
Fail-First (FF) and Brelaz (Sz), and on a variety of uniform and non-uniform
problems, using a forward checking algorithm FC-CBJ. On uniform problems,
the new heuristics perform similarly to each other and dominate FF. Bz was
consistently better on sparse and moderately dense constraint graphs, and was
easier to calculate. As constraint graph density increased to the point of becom-
ing a clique, Bz performance degraded to be the same as FF. With respect to
problem size, the new heuristics appear to scale better than FF and Bz.

Problems with non-uniform constraint tightnesses exposed poor behaviour
from Bz. This was expected, because Bz exploits information from the domain
sizes and topology of the constraint graph, but ignores the tightness of con-
straints. Experiments on problems with non-uniform domains demonstrated that
ignoring information of domain sizes results in poor performance.

In some respects the work reported here might be considered as a first foray
into a better understanding of what makes heuristics work. Further work could
include determining the importance of tie-breaking in the heuristic Bz, compared
to simply choosing the flrst~ variable sensibly. Faster substitutes for the heuristics
would allow us to investigate the hypothesis that, the new heuristics scale better
than the old. Little has been done to compare the ranking of the new heuristics on
an individual problem basis. We would also like to investigate the performance
of the new heuristics in problems where there is a very large set of different
domain sizes at the start of search.

193

References
1. D. Breiaz. New methods to cotor the vertices of a graph. YACM, 22(4):251-256,

1979.
2. P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard problems

are. In Proc. IJCAI-91, pages 331-337, 1991.
3. It. Dechter and I. Meiri. Experimental evaluation of preprocessing algorithms for

constraint satisfaction problems. Artificial Intelligence, 68:211-241, 1994.
4. R. Feldman ~lld M.C. Golumbic. Interactive schedu/Jng as a constra2n~ satisfaction

problem. Annals of Mathematics and Artificial Intelligence, 1:49-73, 1990.
5. J. Gaschnig. A general backtracking algorithm that eliminates most redundant

tests. In Proc. IJCAI-77, page 457, 1977.
6. J. Gaschnig. Performance measurement and analysis of certain search algorithms.

Tech. rep. CMU-CS-79-124, Carnegie-Mellon University, 1979.
7. I.P. Gent, E. Maclntyre, P. Prosser, and T. Walsh. Scaling effects in the CSF

phase transition. In Principles and Practice of Constraint Programming, pages
70-87. Springer, 1995.

8. I.P. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The constrainedness of search.
In Proc. AAAI-96, 1996.

9. I.P. Gent and T. Walsh. Easy problems are sometimes hard. Artificial Intelligence,
70:335-345, 1994.

10. M.L. Ginsberg. Dynamic backtracking. JAIH, 1:25-46, 1993.
11. S.W. Golomb and L.D. Baumert. Backtrack programming. JACM, 12:516-524,

1965.
12. S. Grant and B.M. Smith. The phase transition behaviour of maintaining arc

consistency. In Proc. ECAI-96, pages 175-179, 1996.
13. R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for constraint

satisfaction problems. Artificial Intelligence, 14:263-313, I980.
14. B. Nudel. Consistent-labeling problems and their algorithms: Expected-

complexities and theory-based heuristics. Artificial Intelligence, 21:135-178, 1983.
15. P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Computa-

tional Intelligence, 9(3):268-299, 1993.
16. P. Prosser. An empirical study of phase transitions in binary constraint satisfaction

problems. Artificial Intelligence, 81(1-2):1-15, 1996.
17. P.W. Purdom. Search rearrangement backtracking and polynomial average time.

Artificial Intelligence, 21:117-133, 1983.
18. D. Sabin and E.C. Freuder. Contradicting conventional wisdom in constraint sat-

isfaction. In Proc. ECAI-94, pages 125-129, 1994.
19. B.M. Smith and M.E. Dyer. Locating the phase transition in binary constraint

satisfaction problems. Artificial Intelligence, 81(1-2):1-t5, 1996.
20. B.M. Smith and S. Grant. Sparse constraint graphs and exceptionally hard prob-

lems. In Proc. IJCAI-95, pages 646-651, 1995.
21. E.P.K. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993_
22. E.P.K. Tsang, J.E. Borrett, and A.C.M. Kwan. An attempt to map the perfor-

mance of a range of algorithm and heuristic combinations. In Hybrid Problems,
Hybrid Solutions, pages 203-216. IOS Press, 1995. Proceedings of AISB-95.

23. C.P. Wi/liams and T. Itogg. Exploiting the deep structure of constraint problems.
Artificial Intelligence, 70:73-117, 1994.

