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Abstract The purpose of this short paper is to give a reader acquainted with com-
binatorial optimization enough background in Constraint Programming to appreciate
the other papers in this special issue. We will cover modeling, inference, and search.
Whenever appropriate we will make an effort to relate some of the concepts to that of
other computational approaches. Those interested to learn more about this computa-
tional approach will also find some pointers to the literature on recent advances in the
area.
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Introduction

The origins of Constraint Programming (cp) can be traced back as early as the 1960s,
to research on human-machine interfaces (Sutherland 1963; Borning 1977), artificial
intelligence (Montanari 1974; Freuder 1978), and declarative programming languages
(Laurière 1978; Sussman and Steele 1980; Jaffar and Lassez 1987; Colmerauer 1990).
In most general terms cp is the study of computational systems based on constraints. Its
advent on the operations research scene, specifically to model and solve combinatorial
problems, happened in the last twenty years. In this paper we shall restrict ourselves
to the latter.

Like most other solution methods in that area cp expresses the problem at hand
through formal mathematical modeling. Unlike them, the language in which the model
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is formulated features high level primitives that explicitly expose much of the com-
binatorial structure of the problem. We sacrifice the simple syntax that creates an
opportunity for highly optimized monolithic solvers, but gain the rich semantics that
can, and has been, exploited for both inference and search. The distinctive driving
force of cp has been this direct access to structure.

One simple manifestation of this structure is that cp works directly on discrete
variables instead of relying on a continuous relaxation of the model. The set of available
values for a variable, called its domain, is stored in a data structure and updated as the
computation proceeds.1 It plays a few very important roles: it acts as liaison between
inference algorithms acting on different parts of the model, it can guide the search for
solutions, and it signals when search should backtrack.

But most structure is captured in individual constraints. Each on its own may rep-
resent an important characteristic of the problem such as building a Hamiltonian cycle
on a graph, packing items into bins, or scheduling tasks on a cumulative resource. In
cp it is not unusual that a few constraints suffice to model a complex combinatorial
problem. Each type of constraint encapsulates a dedicated inference algorithm that
acts on the domains by filtering out inconsistent values, thereby reducing the search
space.

That search space is explored by problem decomposition, building a search tree
whose branches at a node correspond to decisions that partition the current search
space. These decisions can be arbitrary constraints added to the model for that subtree
but typically they fix a variable to a value in its domain in the left branch and remove
that value from the domain in the right branch. Branching heuristics guide how the
search tree is built.

At its core cp is designed to handle feasibility problems—consider that its problem
representation formalism is termed Constraint Satisfaction Problem. Optimization
problems are traditionally approached as a succession of feasibility problems, raising
the bar for the objective value at each step until the last step which is a proof of
optimality. However hybrid methods, combining cp and mip or local search, have
been applied increasingly to solve optimization problems and are often more effective
than their component parts.

The rest of the paper covers in more detail some important aspects of cp: inference
(Sect. 2), modeling (Sect. 3), and search (Sect. 4).

Inference

In cp a problem is represented using a finite set of discrete variables X = {x1, x2,

. . . , xn} each taking its value from a finite domain, xi ∈ Di ⊂ Z, 1 ≤ i ≤ n, and a
finite set of constraints (i.e. relations) C = {c1, c2, . . . , cm} each expressed on a subset
of the variables (called its scope), c j (x j1 , x j2 , . . . , x jk ) ⊂ Z

k, 1 ≤ j ≤ m. One must
find a combination of values from the domain of each variable that simultaneously
satisfies every constraint (i.e. belongs to every relation). This formalism is called

1 A promising alternative to this representation of the search space as individual domains is the more
structure-rich multiple decision diagram (Hoda et al. 2010).
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the Constraint Satisfaction Problem. Note that we could have written domains as
constraints and even combined all constraints into one, but the above formulation is
closer to the mechanics of cp solvers.

Conceptually variables and constraints are arranged in a network with the former
as vertices and the latter as hyper-edges, incident with the variables in their scope.
Vertices are labeled with the domain of the corresponding variable and these labels
are updated as the computation proceeds. Looking locally at a particular hyper-edge
(constraint), we potentially modify the domains of the incident vertices (variables) by
removing values which cannot be part of any solution because they would violate that
individual constraint. This local consistency step can be performed efficiently. The
modification of a vertex’s label triggers the re-evaluation of all incident hyper-edges,
which in turn may modify other labels. This process stops when either all domain
modifications have been dealt with or the empty domain is obtained, in which case
no solution exists. Note that we never add values to a domain but only remove some
inconsistent ones, and since domains are finite this process must terminate. The overall
behavior is called constraint propagation. It is important to realize that each constraint
has its own specialized filtering algorithm (also called propagator) to filter out values
and that these algorithms interact through the domains of their shared variables.

One major strength of cp is what happens during local consistency, ranging from
straightforward deletions to sophisticated inference. Several levels of consistency have
been defined to describe formally which values are left in domains once local consis-
tency is achieved—we describe the most common. They are all based on the concept of
support. With respect to a given constraint, a support for value d ∈ Di being assigned
to variable xi consists of a satisfying combination of values for each other variable in
that constraint’s scope. The local consistency step removes unsupported values. If the
values in a support are restricted to belong to the domain of the respective variables
then removing every unsupported value achieves domain consistency (also called gen-
eralized arc consistency in some of the literature, for historical reasons). This is the
best we can do while removing individual values from domains. In case it is too compu-
tationally expensive (typically we avoid the exponential cost of explicitly considering
all combinations), we can opt for weaker but more time efficient local consistencies.
Let DR = {d ∈ R : min(D) ≤ d ≤ max(D)}, the smallest real interval containing
every value in domain D. If instead the values in a support are restricted to belong to
the relaxed domain DR of the respective variables then we will talk of domain (R)

consistency. We see here an analogy with the use of continuous relaxations in integer
programming: working with continuous domains lowers the computational effort, for
example by allowing simple algebraic manipulations on numerical constraints over the
reals. Going further, if instead of removing every unsupported value we only remove
unsupported boundary values (i.e. the smallest and largest values in the domain) then
we achieve bounds (R) consistency, often simply called bounds consistency. This
consistency level has been integrated in mip solvers as part of node preprocessing. For
some of the more complex combinatorial structures the above local consistency levels
are sometimes out of reach and therefore we settle for inference rules that remove
some unsupported values but whose consistency level is not characterized.

As mentioned before the filtering algorithms can be quite sophisticated but usually
they are kept to a low polynomial time complexity. Because in depth-first search the
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state of the computation changes little from one call of the filtering algorithm to the
next (see Sect. 4) one often designs them to be incremental, saving past work in data
structures and re-establishing consistency from the current state instead of starting
from scratch every time.

So the concept of filtering domains to achieve some local consistency is really based
on feasibility reasoning, removing values that cannot lead to a feasible solution. But
when solving a combinatorial optimization problem, there has also been a proposal
to filter based on optimality reasoning. Reduced-cost filtering (Focacci et al. 1999)
translates part of the cp model into a linear program and retrieves reduced costs which
are used to remove values that cannot lead to an optimal solution, similar to variable
fixing in mip solvers.

Modeling

cp offers a very rich modeling language with families of constraints defined for many
of the usual combinatorial structures. A comprehensive catalog of constraints proposed
in the literature (but not necessarily supported by cp solvers) is being maintained2—
we present here some of its main representatives and refer the reader to that catalog
for details and pointers to the relevant literature.

Numerical constraints. Of course there are linear constraints, and in particular knap-
sack constraints, but one can also write nonlinear constraints, including those featuring
trigonometric functions, absolute values, exponentials, etc. Generally we infer reduced
domains from them using a unified approach that achieves bounds consistency but in
some special cases such as knapsack constraints we may choose to achieve stronger
domain consistency.

Functional constraints. The ability to describe a functional relationship between a
pair of variables is a useful modeling construct. It has taken two syntactic forms in cp:
the element constraint or, more subtly, indexing by a variable. In this way auxiliary
variables may be defined relative to the main decision variables. For example they can
represent the cost of each decision in the objective. Consider the Traveling Salesman
Problem modeled in cp with one decision variable si for each city i , representing its
successor in the tour. If ci j gives the cost of traveling directly from city i to city j then
we can define auxiliary variables through functional constraints ai = cisi , 1 ≤ i ≤ n
(or equivalently element(si , ci , ai ), 1 ≤ i ≤ n) and write the objective as min z
with z = ∑n

i=1 ai (it could also be written in a single step as min
∑n

i=1 cisi ). Domain
consistency is maintained on such constraints.

Value occurrence constraints. These are perhaps the most important constraints, both
from a historical and practical perspective. They restrict the number of occurrences
of each value being assigned to a set of variables, typically by giving lower and
upper bounds for each value. The most general member of this family is the global
cardinality constraint (gcc) but other noteworthy members are among, concerned

2 Global Constraint Catalog: http://sofdem.github.io/gccat/.

123

http://sofdem.github.io/gccat/


A constraint programming primer 93

with occurrences from a given subset of values, and the ubiquitous alldifferent,
restricting every value to occur at most once. Given their importance and the trade-off
between the strength of the consistency level and the computational effort to achieve
it, several filtering algorithms have been proposed for different consistency levels
including domain and bounds consistency.

Value distribution constraints. The previous family could also be seen as constraining
the discrete distribution of values among variables. One can also restrict the dis-
crete distribution in a less detailed way, by acting on its mean and on the deviation
of each value from the mean. The spread constraint is defined on a set of vari-
ables and on two others respectively equal to the mean value of the previous ones
and on their standard deviation. The deviation constraint is similar except that
the latter variable corresponds to the sum of the absolute value of the difference
between each variable and the mean. These are very useful when seeking balance or
fairness in solutions with respect to a given feature. Bounds consistency algorithms
have been proposed, and more recently one achieving domain consistency for both
constraints.

Sequencing constraints. The previous two families of constraints featured sets of
variables but sometimes variables are ordered (e.g. representing a sequence of deci-
sions over time) and one wishes to restrict the possible combinations of consec-
utive values taken by these variables. The sequence constraint (also known as
sliding_distribution) constrains the number of occurrences of each value,
much like thegcc, but only inside a sliding window of a given width over the sequence
of variables. The regular constraint states that the respective values taken by the
finite sequence of variables, seen as a “word”, should belong to the regular language
described by a given automaton. Many intricate sequencing rules can thus be enforced
by specifying an automaton, often in a concise way. Domain consistency is achieved
on the latter constraint.

Scheduling constraints. Resource scheduling has been a remarkably successful appli-
cation area of cp. Given a set of tasks, each with a duration, requiring a resource that
cannot be shared, the disjunctive constraint only allows a schedule for the tasks
such that they do not overlap in time. The cumulative constraint generalizes this
context to a resource of a given capacity and a certain amount of resource required by
each task. Many rules from the or literature (e.g. edge finding, timetabling, energetic
reasoning) have been adapted, encapsulated in constraints, and applied dynamically
during search to reduce domains. The end-result cannot be characterized by the con-
sistency levels previously defined.

Packing constraints. Putting objects of various sizes into one or several given con-
tainers so that they do not overlap arises in many contexts. In one dimension this
corresponds to a bin packing problem for which constraints such as pack and
multiknapsack have been implemented. For higher dimensions there are the
diffn and geost constraints. Filtering algorithms applied to these constraints
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include constructive disjunction and the sweep line technique from computational
geometry. Here again the consistency levels we discussed do not apply.

Extensional constraints. Finally constraints for which no apparent structure can be
exploited may be stated in extension as a set of allowed or forbidden tuples from a
relation of given arity. They are often referred to as table constraints in cp solvers.
Several efficient algorithms achieving domain consistency have been proposed for
such extensional constraints.

Objective function. For optimization problems we typically define an additional vari-
able, say z, representing the objective value and write a constraint to link it to the
objective function (for an example of this, see the paragraph on functional constraints
in this section). Whenever a solution is found, thereby fixing z to some value v, the
constraint z < v (if we are minimizing) is automatically added in order to constrain the
search to improving solutions until none can be found, proving the optimality of the
latest solution. Because filtering algorithms are a multiway process, domain changes
for the decision variables can trigger changes in the objective variable’s domain and
changes in the latter, typically when we add a stronger bound, can in turn impact the
decision variables.

Search

Since constraint propagation may stop with indeterminate variables (i.e. whose domain
still contains several values), the solution process requires search. It usually takes
the form of tree search in which one branches to resolve that indeterminacy either
by shrinking variable domains directly or by triggering more constraint propagation
through the addition of a constraint. In the following we present how cp organizes
search by contrasting it with how mip solvers do it.

Node selection. Node selection in cp often proceeds in a depth-first fashion. Jumping
around freely among nodes at the frontier of the search tree would be too time- or
space-consuming: consider that each constraint may have an internal data structure
maintained by its filtering algorithm so the state of the computation can be quite large
to store or long to restore from scratch. For that reason, and also because in essence
a feasibility problem is being solved, rarely in cp would we select the next node to
expand based on a bound on the objective. A moderate form of jumping that has
gained popularity is limited discrepancy search (Harvey and Ginsberg 1995): leaves
of the search tree are visited in order of increasing number of discrepancies, where a
discrepancy in a path to a leaf corresponds to not following the recommendation of the
value-selection heuristic (see below). This way we favor leaves reached by listening
to the heuristic advice most of the time. A variant of limited discrepancy search breaks
ties among equal discrepancy numbers by favoring discrepancies high in the search
tree, the insight being that the heuristic is less informed at the top of the search tree
(fewer decisions have been made; the search space is larger) so going against it is
not as ill-advised. Of course the underlying assumption here is that we have a good
heuristic to guide us. Another popular approach to recover from a bad decision made
high in the search tree is randomized restarts (Gomes et al. 1998): once search has
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gone on for a while it is restarted from the top of the tree, having introduced some
randomness in the heuristics to avoid repeating the same tree exploration.

Variable selection. Variable selection has been the subject of much research in cp.
Some generic variable-selection heuristics have been proposed but most cp solvers
also make it easy for users to design their own heuristic tailored to their problem. An
early design principle, the Fail-First Principle, recommends to branch so that fail-
ure comes sooner than later. Though unintuitive on the surface, it recognizes the fact
that search will take a wrong turn every once in a while and then escaping the failed
subtree as quickly as possible will be very important (remember that we are likely
using depth-first search). This principle’s main instantiation has been the smallest-
domain-first heuristic, which selects a variable with the fewest values remaining in its
domain: because there aren’t many choices left to fix that variable, there is a certain
urgency to that decision and, in case we are in a failed subtree, the low fanout at that
node may help build a small subtree. Other heuristics stemming from that principle
include: weighted degree (Boussemart et al. 2004), favoring a variable appearing in
many constraints that have often been instrumental in detecting a dead end during
search so far; impact-based search (Refalo 2004), favoring a variable whose assign-
ments cause the largest reduction in the size of the Cartesian product of the domains
(inspired by pseudo-cost branching in mip solvers); activity-based search (Michel and
Hentenryck 2012), favoring a variable whose domain is reduced most often (inspired
by the VSIDS heuristic in sat solvers). Thus variable-selection heuristics are gener-
ally concerned with feasibility and not so much with optimization, with the notable
exception of the regret heuristic which favors a variable with the largest difference
between the best and second-best values in its domain according to the objective
function.

Branching direction. Branching at a node can be enumerative, with a branch for each
value in the domain of the selected variable. Alternatively when the domains are large
domain splitting can be performed by partitioning the domain of a given variable
among two or more branches. But branching is more often binary, fixing a variable to
a value in its domain in the left branch and removing that value from the domain in the
right branch. Thus the usual branching direction is the one fixing the variable. Value-
selection heuristics have also generated interest in cp but to a lesser degree, perhaps
underestimating their importance. Proceeding in simple lexicographic order is still
popular. One could argue that the design principle here should be “Succeed First”
and some of the previously mentioned heuristics integrating the choice of variable
and value have followed it: impact-based search favors the value causing the smallest
reduction in the size of the Cartesian product of the domains; regret favors the best value
according to the objective function. Another heuristic, counting-based search (Pesant
et al. 2012), follows the latter principle to choose both variable and value: it favors an
assignment that appears most often in solutions to a constraint. This heuristic is also
an instance of the combinatorial structure of individual constraints being exploited for
search.

123



96 G. Pesant

A noteworthy use of value selection is to break some value symmetries dynamically
during search: among yet-unassigned interchangeable values, only one will be selected
and the others will never be branched on at that node.

Learning from search. An important ingredient of several of the most popular variable-
selection heuristics is learning from past search to guide future branching decisions.
And if restarts are used the learnt information is kept. Weighted degree learns a con-
straint’s weight by incrementing it every time its filtering algorithm empties a domain.
Activity-based search proceeds similarly with a variable’s weight every time its domain
is reduced. Impact-based search stores the observed impact of branching decisions as
search proceeds and uses it in other parts of the search tree after backtracking instead
of computing impacts at every node.

A recent and very promising combination of the high-level modeling capability
of cp and the efficiency of sat solvers is Lazy Clause Generation (Ohrimenko et al.
2009). Every time a dead end is reached, a short explanation for it is learned and added
as a clause to the sat model. Here again the combinatorial structure of constraints can
be exploited to generate such explanations.

Hybrid approaches. A growing number of applications of constraint programming
do not use straight cp tree search but hybridize it with some other combinatorial
optimization approach. cp-based Branch and Price (Junker et al. 1999) uses cp to
generate columns (i.e. solve the pricing subproblem). It takes advantage of the fact
that column generation can be cast as a feasibility problem since one must generate
negative reduced cost columns but not necessarily the most negative one. It also brings
flexibility to handle several potentially complex constraints in the subproblem. For cp it
provides a proven solving approach for very large instances. Logic-based Benders
Decomposition (Hooker 2005) has been a very successful hybridization framework
for cp, which has been used alternatively in the master problem and in the subproblem.
Large Neighborhood Search (Shaw 1998) is conceptually a local search method that
explores a neighborhood through cp tree search. Operationally at each iteration some
fraction of the variables in the cp model are fixed to their value in the current solution
while the others are constrained to their initial domain, defining the neighborhood to
search over.

Conclusion

This year marks the twentieth anniversary of Constraint Programming’s main confer-
ence and next year will mark the same anniversary for its main journal, Constraints.
The field has made it to adulthood, choosing to go down some paths and abandoning
others along the way. It seems clear that solving combinatorial problems will remain a
strong drive and its association with other approaches toward the same goal is bringing
new and exciting ways to achieve it.
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