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The traveling salesman problem (TSP) asks for the
shortest route to visit a collection of cities and return to
the starting point. Despite an intensive study by
mathematicians, computer scientists, operations
researchers, and others, over the past 50 years, it
remains an open question whether or not an efficient —
general solution method exists.

These pages are devoted to the history and
applications ofthe TSP and to ongoing research
towards the solution of large-scale problems. The work
described here is supported by Office of Maval Research
{N00014-03-1-0040) and Mational Science Foundation
(DMI-0245609) grants, and by the School of Industrial
and Systems Engineeringat Georgia Tech.
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Optimal Tours
Information on some of the largest TSP instances solved to date can be found by following the links given
Home below.
> Optimal Tours
Sweden 24 978
Germany 15,112
USA 13,509
24 978 Cities m Sweden 15,112 Cities in Germany
Sobved in 2004 Sobved in 2001
W
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Is Germany Home - Windows Internet Explorer
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Sohtion of a 15,112-city Traveling Salesman Problem
15,112
Home
Optimal Tours
> Germanv Home
On April 20th, 2001, David Applegate, Robert Bixby, Vasek Chvatal, and William Cook announced the
German Solution solution of a traveling salesman problem through 15,112 cities in Germany. This was the largest TSPLIB
] instance that had been solved at the time, exceeding the 13 509-city tour through the United States that
German Tours was solved in 1998.
Computation The optimal tour has length 1,573,084 in the units used in TSPLIB: this translates to a trip of about
66,000 kilometers through Germany. Pictures of the optimal tour can be found at Optimal Tour .
The computation was carried out on a network of 110 processors located at Rice University and at
Princeton University. The total computer time used in the computation was 22.6 years, scaled to a
Compaq EV6 Alpha processor running at 500 MHz. Details can be found in the Computation section.
In German Tours we display the 15,112 -city tour together with other tours through Genmany that have
playved a role in the history of the TSP.
Home | Germany Home Back v
Done €D Internet # 100%




.f.:; Sweden Home - Windows Internet Explorer |:||EH’X|

@.\:}; - |ﬁ, itk f v, Esp, gatech, edufswedenfindes, btml V| 3| % |ts|:| | FeRk
File Edit ‘iew Favorites Tools  Help
— : - - »
W [@Sweden Home ] ‘ - B iy v ;b Page v {CF Tools =

TSP

__J24.078
H

Home

Optimal Tours

= Sweden Home

24,978 Cities

Sweden Tour

Finding the Tour

Sweden Home

Optimal Tour of Sweden

In May 2004, the traveling salesman problem of visiting all 24,978 cities in
Sweden was solved: a tour of length 855,597 TSPLIE units (approximately
72,500 kdlometers) was found and it was proven that no shorter tour exists.

This is currently the largest sobved TSP instance, surpassing the previous record
of 15112 cities through Germany set in Apnl 2001

The 24 978 cities

Pictures of the Sweden Tour

+ How was the tour found?

Details of the computation

Data sets for Sweden TSP and tour

Computation

Data Sets

Research Team

« Robert Bixby, ILOG and Rice University
» William Coolk, -Geargia Tech
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But first, an example

TSP

- given n cities with x/y coordinates

- select any city as a starting and ending point

» arrange the n-1 cities into a tfour of minimum cost

Representation
- a permutation of the n-1 cities

A move operator
- swap two positions (let's say)
- 2-opt?
- Take a sub-tour and reverse it
* how big is the neighbourhood of a state?
* how big is the state space?
* What dimensional space are we moving through?

Evaluation Function
- cost/distance of the tour



The dumbest possible algorithm

"JUST WHAT LEADS YOU TO BELIEVE THIS METEOR!TE

MAY POSSESS PECULIAR POWERS, SERGEANT?
RASPED DETECTIVE INSPECTOR MCALL
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dls‘rance/ cost Table

- 112 137 68
- 72 155 166 145
- 126 63 80
- 146 108
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distance/cost table

12 3 405 6
1 -

o o1 ~ w N
1

Permutation is a tour where we assume we start and end at 15 city in permutation



distance/cost table

HENCEENINEEDE -
1 -

» o1 ~ w
1

Permutation is a tour where we assume we start and end at 15 city in permutation



distance/cost table

HENCEENINEEDE -
1 -

» o1 ~ w
1

Permutation is a tour where we assume we start and end at 15 city in permutation

Use the distance/cost matrix to evaluate the tour




distance/cost table

tour: 135624

- 112 137 156 168
2 - 72 155 166 145
3 - 126 63 80
4 - 146 108
3) - ol
6 -

Permutation is a tour where we assume we start and end at 15 city in permutation

Use the distance/cost matrix to evaluate the tour




distance/cost table

tour: 135624

- 112 137 156 168
2 - 72 155 166 145
3 - 126 63 80
4 - 146 108
3) - ol
6 -

137 + 63 + 51 + 145 + 155 + 68 =

Use the distance/cost matrix to evaluate the tour




distance/cost table

tour: 135624

- 112 137 156 168
2 - 72 155 166 145
3 - 126 63 80
4 - 146 108
3) - ol
6 -

137 + 63 + b1 + 145 + 155 + 68 = 619

Use the distance/cost matrix to evaluate the tour




distance/cost table

HENCEENINEEDE -
1 -

» o1 ~ w
1

while time remains
do begin
randomly generate a four
if it is better than the best
then save it
end




distance/cost table

12 3 405 6
1 -

o o1 &~ W

tour: 135624

1. How do I randomly generate a tour?
2. How do I evaluate tour?




Was that really that dumb?

Let's get smarter



Local Search (aka neighbourhood search)

We start of f with a complete solution and improve it
or

We gradually construct a solution, make our best move as we go

We need:

* a (number of) move operator(s)
- take a state S and produce a new state S’

* an evaluation function
- so we can tell if we appear to be moving in a good direction
- let's assume we want to minimise this function, i.e. cost.



Woooo000sh! Let's scream down hill. Find the lowest cost solution

Hill climbing/descending



Find the lowest cost solution

Trapped at a local minima

How can we escape?



How might we construct initial four?

Nearest neighbour
Furthest Insertion

Random




But first, an example
A move operator
- 2-0pt?
- Take a sub-tour and reverse it

A tour, starting and ending at city 9
9142735689



But first, an example
A move operator
- 2-0pt?
- Take a sub-tour and reverse it

9142735689

L

reverse




But first, an example
A move operator
- 2-opt?
- Take a sub-tour and reverse it

9142735689

9165372489



Steepest descent

S := construct(n)
improvement := true
while improvement
do let N := neighbourhood(S),

S' = bestOf(N)

in if cost(S') <= cost(S)
then S := S
improvement := true
else improvement := false

But ... it gets stuck at a local minima



Find the lowest cost solution

Trapped at a local minima

How can we escape?



Consider 1-d Bin Packing

* how might we construct initial solution?
* how might we locally improve solution
- what moves might we have?
» what is size of neighbourhood?
» what cost function (to drive steepest/first descent)?



Consider min-conflicts on an arbitrary csp

* how might we construct initial solution?
* how might we locally improve solution
- what moves might we have?
» what is size of neighbourhood?
» what cost function (to drive steepest/first descent)?



Warning:

Local search does not guarantee optimality



Simulated Annealing (SA) Kirkpatrick, Gelatt, & Vecci Science 220, 1983

Annealing, to produce a flawless crystal, a structure in a minimum energy state

- At high femperatures, parts of the structure can be freely re-arranged
- we can get localised increases in temperature
- At low temperatures it is hard to re-arrange into anything
other than a lower energy state
* Given a slow cooling, we settle into low energy states

Apply this to local search, with following control parameters
- initial femperature T

* cooling rate R

* time at temperature E (time to equilibrium)



Simulated Annealing (SA) Kirkpatrick, Gelatt, & Vecci Science 220, 1983

Apply this to local search, with following control parameters

* initial femperature T (whatever)

» cooling rate R (typically R =0.9)

* time at temperature E (time to equilibrium, number of moves examined)
+ A change in cost (+ve means non-improving)

Accept a non-improving move with probability
R
€

Throw a dice (a uniformly random real in range 0.0 to 1.0),
and if it delivers a value less than above then accept
the non-improving move.



SA

K A t —A/t
5 1 1 0.2

5 1 10 0.85
5 1 100 0.95
5 1 10 0.85

5 2 10 0.72
5 3 10 0.62

Replaced e with k
As we increase femp t we increase probability of accept
As delta increases (cost is worse) acceptance decreases




Simulated Annealing Sketch (SA) Kirkpatrick, Gelatt, & Vecci Science 220, 1983

S := construct(n)
while T > limit
do begin
forin(1..E)
do let N := neighbourhood(S),
S' = bestOf(N)
delta := cost(S') - cost(S)
in if delta < O or (random(1.0) < exp(-delta/T))

then S = S
if S' is best so far then save it
T:=T*R

end
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In this article we briefly review the
constructs in combinatorial opti-
seation and in statistical h and

y Ts May ‘ms, Volume 220, Number 4598° | S;CIENCE

Optimization by
Simulated Annealing

S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi

sure of the *'goodness’’ of some complex
system. The cost function depends on
the detailed ation of the many

develop the similarities between the
fields. We show how the Metropolis
ithm for approximate numerical
tion of the behavior of a many-
y system at a finite temperature pro-
vides a natural tool for bringing the tech-
aiques of statistical mechanics to bear on
optimization.

We have applied this point of view to a
sumber of problems arising in optimal
design of computers. Applications to
par P pl and
wiring of electronic systems are de-
wribed in this article. In each context,
we introduce the problem and discuss
the improvements available from optimi-
zation.

Of classic optimization problems, the
traveling salesman problem has received
ths most intensive study. To test the
power of simulated annealing, we used
the algorithm on traveling salesman
problems with as many as several thou-
sand cities. This work is described in a
final section, followed by our conclu-
sions.

C

Combinatorial Optimization

The subject of combinatorial optimiza-
tion (/) consists of a set of problems that
are central to the disciplines of p

parts of that system. We are most famil-
iar with optimization problems occurring
in the physical design of computers, so
examples used below are drawn from

with N, so that in practice exact solu-
tions can be attempted only on problems
involving a few hundred cities or less.
The traveling salesman belongs to the
large class of NP-complete (nondeter-

inistic poly jal time lete)
problems, which has received extensive |
study in the past 10 years (3). No method
for exact solution with a computing ef-
fort bounded by a power of N has been
found for any of these problems, but if
such a solution were found, it could be
mapped into a procedure for solving all
members of the class. It is not known
what features of the individual problems
in the NP-complete class are the cause of
their difficulty.

Since the NP-complete class of prob-
lems contains many situations of practi-
cal interest, heuristic methods have been
jeveloped with ional require-

et

Summary. There is a deep and useful connection between statistical mechanics
(the behavior of systems with many degrees of freedom in thermal equilibrium at a
finite temperature) and multivariate or combinatorial optimization (finding the mini-
mum of a given function depending on many parameters). A detailed analogy with i
annealing in solids provides a framework for optimization of the properties of very :
large and complex systems. This connection to i
information and provides an unfamiliar perspective on traditional optimization prob- $

lems and methods.

mechanics new

that context. The number of variables
involved may range up into the tens of
thousands. S

The classic example, because it is so
simply stated, of a combinatorial optimi-
zation problem is the traveling salesman
problem. Given a list of N cities and a
means of calculating the cost of traveling
between any two cities, one must plan
the salesman's route, which will pass
through each city once and return finally
to the starting point, minimizing the totak
cost. Problems with this flavor arise in
all areas of scheduling and design. Two
subsidiary problems are of general inter-
est: predicting the expected cost of the
1 's optimal route, averaged over

ience and engineering. Research in this
rea aims at developing efficient tech-
tiques for finding minimum or maximum
Values of a function of very many inde-
Pendent variables (2). This function, usu-
My called the cost function or objective
ion, represents a quantitative mea-

MAY 1983

some class of typical arrangements of

ments proportional to small powers of NV.
Heuristics are rather problem-specific:
there is no guarantee that a heuristic
procedure for finding near-optimal solu-
tions for one NP-complete problem will
be effective for another.

There are two basic strategies for
heuristics: ‘‘divide-and-conquer’ dnd it-
erative improvement. In the first, one £°5=
divides the problem into subproblems of &
manageable size, then solves the sub- % }
problems. The solutions to the subprob- —=
lems must then be patched back togeth- =
er. For this method to produce very good
solutions, the subproblems must be natu-
rally disjoint, and the division made must
be an appropriate one, so that errors
made in patching do not offset the gains

cities, and estimating or
bounds for the computing effort neces-
sary to determine that route.

All exact methods known for deter-
mining an optimal route require a com-
puting effort that increases exponentially

S. Kirkpatrick and C. D. Gelatt, Jr.. are research
staff members and M. P. Vecchi was a visiing
Scientist at IBM Thomas J. Watson Research Cea-
fer. Yorktown Heights, New York 10598. M. P.
Vecchi's present address is Instituto Venezolano de
Investigaciones Cientificas, Caracas 1010A. Vene-
zuela.
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In this article we briefly review the
al constructs in combinatorial opti-
_ation and in statistical mechanics and
.a develop the similarities between the
) fields. We show how the Metropolis
eorithm  for approximate numerical
ulation of the behavior of a many-
Mhody system at a finite temperature pro-
 ides a natural tool for bringing the tech-
siques of statistical mechanics to bear on
sotimization.
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Optimization by
Simulated Annealing

S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi

sure of the ‘‘goodness’’ of some complex
system. The cost function depends on
the detailed configuration of the many
parts of that system. We are most famil-
iar with optimization problems occurring
in the physical design of computers, SO
examples used below are drawn from
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onginal SIEIC=CNIp design), as is the new
palance score, B, calculated as in derjy-
ing Eq. 7. The objective function analo-
gous to Eq. 7 is

f=C+\B (8)

where C is the sum of the number of
external connections on the two chips
and B is the balance score. For this
example, A = 0.01.

For the annealing schedule we chose
to start at a high ‘‘temperature,"
To = 10, where essentially all proposed
circuit flips are accepted, then cool ex-
ponentially, 7, = (T\/To)"Ty, with the ra-
tio TW/To = 0.9. At each temperature
enough flips are attempted that either
there are ten accepted flips per circuit on
the average (for this case, 50,000 accept-
ed flips at each temperature), or the
number of attempts exceeds 100 times
the number of circuits before ten flips
per circuit have been accepted. If the
desired number of acceptances is not
achieved at three successive tempera-

S A

R S IO WAL
and annealing stops.

The finite temperature curves in Fig. |
show the distribution of pins per chip for
the configurations sampled at 7 = 2.5,
1.0, and 0.1. As one would expect from
the statistical mechanical analog, the dis-
tribution shifts to fewer pins and shar-
pens as the temperature s decreased.
The sharpening is one consequence of
the decrease in the number of configura-
tions_that contribute to the equilibrium
ensemble at the lower temperature. In
the language of statistical mechanics, the
entropy of the system decreases, For
this sample run in the low-temperature
limit, the two chips required 353 and 321
pins, respectively. There are 237 nets
connecting the two chips (requiring a pin
on each chip) in addition to the 200
inputs and outputs of the original chip.
The final partition in this example has
the circuits exactly evenly distributed
between the two partitions. Using a
more complicated balance score, which
did not penalize imbalance of less than

-frozen

100 circuits, we found partitions result-
ing in chips with 271 and 183 pins.

If, instead of slowly cooling, one were
to start from a random partition and
accept only flips that reduce the objec-
tive function (equivalent to setting T = 0
in the Metropolis rule), the result is chips
with approximately 700 pins (several
such runs led to results with 677 to
730 pins). Rapid cooling results in a
system frozen into a metastable state
far from the optimal configuration. The
best result obtained after several rapid
quenches is indicated by the arrow in
Fig. 1.

Placement

Placement is a further refinement of
the logic partitioning process. in which
the circuits are given physical positions
(1, 12, 18, 19). In principle. the two
stages could be combined. although this
is not often possible in practice. The
objectives in placement are to minimize
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Fig. 9. Results at four temperatures for a clustered 400-city traveling salesman problem. The
points are uniformly distributed in nine regions. (a) T = 1.2, a = 2.0567: (b T = 0.8,
a=1515()T =04, a =1.055 (W T= 0.0 a=0.7839.
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Tabu Search (TS) Fred Glover

SA can cycle!
» Escape a local minima
* Next move, fall back inl

* Maintain a list of local moves that we have made

* the tabu list!

- Not states, but moves made (e.g. 2-opt with positions j and k)
- Don't accept a move that is tabu

* unless it is the best found so far
- To encourage exploration

- Consider
- size of tabu-list
* what to put info the list
- representation of entries in list
- consider tsp and 1-d bp
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TS + MinConflicts -> solver for CSP



Guided Local Search (6LS) Tsang & Voudouris

* (1) Construct a solution, going down hill, with steepest or 1st descent
* (2) analyse solution at local minima
- determine most costly component of solution
- in tsp this might be longest arc
* (3) penalise the most costly feature
* giving a new cost function
* (4) loop back to (1) if time left
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A Constraint Programming and Constraint Optimization Group metaheuristic search - Microsoft Internet Explorer
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Patrick Mills Tung-Leng Lan

some of the applications of GL3 are;

The traveling salesman problem (TSF) (demo avalable)
The radio length frequency assignment problem (ELEATY

s British Telecom's wotldorce scheduling problem

s The quadratic assignment problem

13

Guided Local Search (GL3Z) 5 a general meta-stochastic search strategy for solving constraint satisfaction and optitnization problems. Itis a control strategy
designed to sit on top of lull-chmbing algonthms to help them to escape local optima. It has been applied to a non-trimal number of problems, meluding: artificial
problems, standard optimization problems and real bfe problems and achieved excellent results m both efficiency (in terms of speed) and effectiveness {(in terms of
quality of selutions).

Patnck Mills extended GL3 by adding Aspiration and Randommness into the GL3E. The resulting algonthm, EGLS (Extended GL3), 15 less less sensitive to the
setting of the major parameter (Lamda-coetficient).

GL3 Solver iz a solver that implements GLS m the SAT, Max-3AT and the QAP A large number of measures are avalable (see details here) for the users to
monitor and analyse the petformance of GLE. This software enables the users to reproduce all the results that we have published n this project.
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Genetic Algorithms (GA) John Holland, 1981

* Represent solution as a chromosome
* Have a population of these (solutions)
- Select the fittest, a champion
* note, evaluation function considered measure of fitness
* Allow that champion fo reproduce with others
* using crossover primarily
* mutation, as a secondary low lever operator
* 6o from generation to generation
- Eventually population becomes homogenised

- Attempts to balance exploration and optimisation

* Analogy is Evolution, and survival of the fittest

It didn't work for me. I want a 3d hand, eyes on the back of my head, good looks , ...



GA sketch

* Arrange population in non-decreasing order of fitness
* P[1] is weakest and P[n] is fittest in population

- generate a random integer x in the range 1 to n-1

- generate a random integer y in the range x to n

* Pnew := crossover(P[x],P[y])

- mutate(Pnew,pMutation)

* insert(Pnew,P)

» delete(P[1])

* loop until no time left
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John Henry Holland

From Wikipedia, the free encyclopedia

WIKIPEDIA

The Free Encyclopedia Dr. John Henry Holland (February 2, 19297, a pioneer in complex system and nonlinear science. He is known as the father of genetic
navigation algorithms. The recipient of the first computer science Ph.D from the University of Michigan, Holland is Professor of Psychology and Professor
= Main page of Electrical Engineering and Computer Science at the University of Michigan, Ann Arbor. He is also a mermber of The Center for the Study of
= Community portal Complex Systems (CSCS) at the University of Michigan, and a member of Board of Trustees and Science Board of the Zanta Fe Institute.
= Featured content John H Holland is the recipient of a MacArthur Fellowship and a fellow of the World Economic Forum. He is the authaor of a number of books
: gz:::::;::;seg ahout complex adaptive systems, including Hidden Order; How Adaptation Bulids Complaxity (1995), Emergence: From Chaos to Crdear (1953)
« Bandom article and his ground-breaking book on genetic algorithms, Adaptation in Natwral and Arificial Systerns (1597519920 Holland also frequently lectures
= AboutWikipedia around the world an his own research, and on current research and open ques{adaptation in Natural and Artificial Systems]
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= Help = Biography &
coarch = Susan Stepney: Bibliography of John Henry Holland &
| | = John Holland's Echo project at the Santa Fe Institute &
This article about a U5, aclentiat 1s & stub. Yow can help Wikipedia by expanding it &

This article about a psychologist is a stuh. You can help Wikipedia by expanding it .
toolbox .:‘ This biographical aticle relating to a computer specialist in the United States s & stub, You can help Wikipedia by expanding it &
= What links here
= Related changes
= Upload file Categories: American scientist stubs | Psychalogist stubs | United States computer specialist stubs | Cognitive scientists | American W
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= Printable version
= Permanent link
= Cite this article
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A Ant Colony Optimization - Microsoft Internet Explorer
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UNIVERSITE' LIERE DE ERUXELLES, BELGIUM

ANTS 2006: Fifth International Workshop on Ant
Colony Optimization and Swarm Intelligence,

Université Libre de Bruxelles, Brussels, Belgium {(Sep 4-
7, 2006)

The winner of the best paper award
at ANTS 2006 received an ant

designed by the Italian sculptor
Matteo Pugliese

The book Ant Colony Optimization,
by Marco Dorigo and Thomas Stiutzle,
is available since June 2004,
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Metaheuristic

From Wikipedia, the free encyclopedia

A metaheuristic is a heuristic method for solving a very general class of computational problems by combining user given black-box
procedures — usually heuristics themselves — in a hopefully efficient way. The name combines the Greek prefix "meta” ("beyvond”, here in the
sense of "higher level™) and "heuristic” (frorm supioker, heuriskealin, "to find").

Metaheuristics are generally applied to problems for which there is no satisfactory problem-specific algorithm or heuristic; orwhen it is not
practical to implement such a method. Most commonly used metaheuristics are targeted to combinatorial optimization problems, but of
course can handle any prablem that can be recast in that farm, such as solving boolean equations.

In spite of overly-optimistic claims by some of their advocates, metaheuristics are not a panacea, and their indiscriminate use often is much
less efficient than even the crudest problem-specific heuristic, by several orders of magnitude.

Contemts [hide]

1 General concepts and nomenclature
2 Commaon meta-heuristics

3 General criticizms

4 Pragmatics

5 Bibliography
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The goal of combinatarial optimization is to find a discrete mathematical object (such as a bit string or

Printable version permutation) that maximizes (or minimizes) an arbitrary function specified by the user of the

Parmanant link metaheuristic. These objects are generically called states, and the set of all candidate states is the
Cite this aficle search space. The nature of the states and the search space are usually problem-specific.
I

in other languages The function to be optimized is called the goal function, or obyective function, and is usually provided by
= Deutsch the user as a black-box procedure that evaluates the function on a given state. Depending on the meta-
= Espafiol heuristic, the user may have to provide other black-box procedures that, say, produce a new random .
= Fran_l_:aia state, prndum.a variants of a given state, pick nr.m state among several, provide upper or loveer bounds for Legend: E=unequivocals, =
» BAFHE the goal function over a set of states, and the like.

I=itnplicits, D=directs. —
some metaheuristics maintain at any instant a single current state, and replace that state by a new one.

This basic step is sometimes called a state transition or move. The move is uphill or downhill depending

on whether the goal function walue increases or decreases. The new state may be constructed from scratch by a user-given genetrator

procedure. Aternatively, the new state be derived from the current state by an user-given rutator procedure; in this case the new state is

called a neighbor of the current one. Producers and mutatars are often probabilistic procedures. The set of new states that can be produced

by the mutator iz the neighborhood of the current state.

Mare sophisticated meta-heuristics maintain, instead of a single current state, a current pool with several candidate states. The basic step
then may add or delete states fram this pool. Usergiven procedures may be called to select the states to be discarded, and to generate the
new ones to be added. The latter may be generated by combination or crosaover of two or more states from the pool.

A metaheuristic may also keep track of the current optimum, the optimum state among those already evaluated so far.

Since the set of candidates is usually very large, metaheuristics are typically implemented so that they can be interrupted after a client-
specified Hime budget. If not interrupted, some exact metafeunstics will eventually check all candidates, and use heuristic methods only to
choose the order of enumeration; therefore, they will always find the true optimum, if their time budget is large enough. Other metaheuristics
give only a weaker probabilistic guarantee, namely that, as the time budget goes to infinity, the probability of checking every candidate tends
to 1.

Common meta-heuristics [edit]

@ & Intermet
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Since the set of candidates is usually very large, metaheuristics are typically implermented so that they can be interrupted after a client-
specified time budget. If not interrupted, some exact metaheuristics will eventually check all candidates, and use heuristic methods only to
choose the order of enumeration; therefore, they will always find the true optimum, if their time budget is large enough. Other metaheuristics
give only a weaker probabilistic guarantee, namely that, as the time budget goes to infinity, the probability of checking every candidate tends
to 1.

Common meta-heuristics [edit]

Sorne well-known meta heuristics are

= Randorm optimization

= Local search

= Greedy algonthm and hill-climbing
= Randorm-restart hill climbing

= Best-first zearch

= Simulated annealing

= Ant colony optimization

= Tabu search —
= Genetic algarithms

= GRASF

= Swarrm intelligence

= Stochastic Diffusion Search

= (Generalized extremal aptimization

Innumerable variants and hybrids of these technigues have been proposed, and many more applications of metaheuristics to specific problems
have been reported. This is an active field of research, with a considerable literature, a large community of researchers and users, and a wide
range of applications.

General criticisms [edit]

While there are many computer scientists who are enthusiastic advocates of metaheuristics, there are also many who are highly critical of the
concent and have little reaard for much of the research that is done on it
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Innumerable variants and hybrids of these techniques have been proposed, and many more applications of metaheuristics to specific problems
have been reported. This is an active field of research, with a considerable literature, a large community of researchers and users, and a wide
range of applications.

General criticisms [edit]

While there are many computer scientists who are enthusiastic advocates of metaheuristics, there are also many who are highly critical of the
concept and have little regard for much of the research that is done on it.

Those critics point out, for ane thing, that the general goal of the typical metaheuristic — the efficient optimization of an arbitrary black-box
function — cannaot be solved efficiently, since for any metaheuristic Af one can easily build a function fthat will farce A to enumerate the whale
search space (or worse). Further, the Mo-free-lunch theorem has proven that over the set of all mathematically possible problems, each
optimization algarithrn will do on average as well as any other. Thus, at best, a specific metaheuristic can be efficient anly for restricted
classes of goal functions (usually those that are partially "smooth” in some sense). However, when these restrictions are stated at all, they
either exclude most applications of interest, or make the problerm amenable to specific solution methods that are much more efficient than the
meta-heuristic.

Moreover, the more advanced metaheuristics rely on auxiliary user-given black-box producers, mutators, etc.. It turns out that the
effectiveness of a metaheuristic on a particular problem depends almost exclusively on these auxiliary functions, and very little on the heuristic
itself. Given any twa distinct metaheuristics M and W, and almost any goal function f, it is usually possible to write a set of auxiliary
procedures that will make M find the optimum much more efficient than &, by many orders of magnitude; or vice-versa. In fact, since the
auxiliary procedures are usually unrestricted, one can submit the basic step of metaheuristic M as the generator or mutator for M. Because of
thiz extreme generality, one cannot say that any metaheuristic is better than any other, not even for a particular class of problems — in
particular, better than brute force search, or the following "banal metaheuristic™:

1. Call the user-provided state generator.
2. Print the resulting state.
3. 3top.

Finally, all metaheuristic optimization technigues are extrernely crude when evaluated by the standards of (continuous) nonlinear optimization.
Within this area, it is well-known that to find the optirmum of a smooth function on »variables one must essentially obtain its Hessian matrix,
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3. Stop.

Finally, all metaheuristic optimization technigues are extrernely crude when evaluated by the standards of (continuous) nonlinear optimization.
Within this area, it is well-known that ta find the optimum of a smooth function on hvariables one must essentially obtain its Hessian matrix,
the n by nmatrix of its second derivatives. If the function is given as a black-box procedure, then one must call it about /2 times, and solve
an n by nosystemn of linear equations, before one can make the first useful step towards the minimum. However, none of the common
metaheuristics incorporate or accommodate this procedure. At best, they can be seen as camputing some crude approximation to the local
gradient of the goal function, and moving more or less "downhill". But gradient-descent is a terrible non-linear optimization method, because
the gradient of a "typical” function is usually almost orthogonal to the direction towards the minimurm.

Pragmatics [edit]

Independently of whether those criticisms are valid or not, metaheuristics can be terribly wasteful if used indiscriminately. Since their
performance iz critically dependent on the userprovided generatars and mutatars, one should concentrate an impraving these procedures,
rather than twiddling the parameters of sophisticated metaheuristics. A trivial metaheuristic with a good rmutator will usually run circles around
a sophisticated one with a poor mutator (and a good problem-specific heuristic will often do much better than both). In this area, more than in
any other, a few haurs of reading, thinking and programming can easily save months of computer time. On the other hand, this generalization
does not necessarily extend equally to all problermn domains. The use of genetic algorithmes, for example, has produced evolved design
solutions that exceed the best hurman-produced solutions despite years of theory and research. Problerm domains falling into this category are
often problems of combinatarial optimization and include the design of sorting netwarks, and evalved antennas, among others.

Bibliography [edit]
. Blum and A Roli (2003). Metaheuristics in cambinatorial optimization: Overview: and conceptual comparizon. ACGH Computing Sunels 35
(3) 268-303.
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DGPF & A distributed framework for randomized, heuristic searches like GA and Hill Climbing which comes with a specialization for Genetic

Pranrameninn and allowes 1 camhbine diffarent cearch alaoithens
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HC, SA, TS, GLS are point based
GA is population based

All of them retain the best solution found so far
(of coursel)



Local Search: a summary

« cannot guarantee finding optimum (i.e. incomplete)
* these are "meta heuristics” and need insight/inventiveness to use
* they have parameters that must be tuned
* tricks may be needed for evaluation functions to smooth out landscape
- genetic operators need to be invented (for GA)
- example in TSP, with PMX or order-based chromosome
* this may result in loss of the spirit of the meta heuristic
* challenge to use in CP environment (see next slides)




Local search for a csp (V,C,D)
let cost be the number of conflicts
Therefore we try to move to a state with less conflicts
Inject diversity into search (TS?)

Min-Conflicts anyone?

Warning

Local search cannot prove that there is no solution
neither can it be guaranteed to find a solution




Problems with local search and CP?

Glon Boxler........

ALL 1 HAD T0 DO NOW WAS
TO COAX THEM INTO THE NET




Problems with local search and csp?

* how do we do a local move?
* how do we undo the effects of propagation?
* can we use propagation?
* maybe use 2 models
- ohe active, conventional
- one for representing state
- used to compute neighbourhood
- estimate cost of local moves



Dynadec / Solution Videos



http://dynadec.com/resources/solution-videos/
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A Constraint-Based Architecture for Local Search

Laurent Michel

Brown University, Box 1910,
Providence Rl 02812

ldm@cs . brown.edu

ABSTRACT

Combinatorial optimization problems are ubiguitons in many
practical applications. Yet most of them are challenging,
both from computational complexity and programming stand
points. Local search is one of the main approaches to address
these problems. However, it often requires sophisticated in-
cremental algorthms and data stroctures, and considerable
experimentation. This paper proposes a constraint-based,
object-oriented, architecture to reduce the development time
of local search algorithms significantly. The architecture
consists of declarative and search components. The declara-
tive component includes invaréznts, which maintain complex
expressions incrementally, and differentialle olfects, which
maintain properties that can be gqueried to evaluate the ef
fect of local moves. Differentiable objects ame high-level
madeling concepts, such as constraints and functions, that
capture combinatorial substructums arising in many appli-
cations. The search component supports various abstrac-
tions to specify hewristics and meta-hewristics. We illustrate
the architecture with the language CoMer and several ap-
plications, such as car sequencing and the progressive party
problem. The applications indicate that the architecture al-
lows for very high-level modeling of local search algorithms,
while preserving excellent performance.

Pascal Van Hentenryck
Brown University, Box 1510,
Providence Rl 02912

pvh@cs.brown.edu

1. INTRODUCTION

Combinatorial optimization problems are ubigquitows in prac-
tical applications such as logistics, scheduling, resouroe al-
location, and computational biology to name only a few.
Maost of these problems are NP-complete and challenging
baoth from computational and software engineering stand-
points. Indeed, reasonable solutions to these problems often
involve complex algonthms and data structures, as well as
significant experimentation.

The last two decades have witnessed the emergence of many
languages and libraries for combinatorial optimization (e.g.,
[6, 9, 14, 25, 26]). These languages may dramatically re-
duce development time for these applications, while inducing
small overheads in efficiency. However, most tools focus on
global search which includes branch & bound amd constraint
satisfaction algorithms. They offer little or no support for
local search.

Local search is one of the most widely wed approaches to
combinatorial optimization becanse it often produces high-
quality solutions in reasonable time. Local search tackles
combinatorial optimization problems by moving from a con-
figuration to one of its neighbors until a feasible configura-
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them from many tedious and error-prone aspects of local
soarch. The resulting programs are often intwtive and nat-
ural, vet they are also efficient since they encapsulate vears
of research on incremental algorithms, Another important
benefit of the architecture is its compositionality. It is easy
to add new constraints, and to modify or remove existing
ones, without having to worry about the global effect of
these changes. In the same spint, the architecture cleary
separates the modeling and search components and makes
it easy to experiment with different meta-heuristics without
affecting the problem modeling. Finally, the architecture is
non-intrusive and lets programmers choose their own maod-
eling and meta-hearistic, thus supporting a wide vanety of
local search algonthms,

It 2 alzo worth emphasizing that the architecture builds on
fundamental research in programming languages. It inte-
grates one-way constraints pioneered in the Sketchpad and
ThingLab object-oriented systems [24, 4] and generalizes
them to accommaodate finite differencing techniques on al-
gebraic and set expressions [19, 20]. It also encapsulates
efficient incremental graph algorithms [21, 1], and uses poly-
morphism heavily to obtain its compositional nature. Ob-
serve also that the resulting architecture has some favor of
aspect-oriented programming [13], since constraints repre-
sont and maintain properties across a wide range of objects,
Finally, note also that many of the concepts introduced in
CoMer are much more widely applicable and would benefit
many other applications, where incremental algonthms and
data structures are heavily used. This is typical in many
groedy algorithms, as well as in many heunstic and appros-
imation algorithms.

Thiz paper illustrates the architecture wing CoMET, a Java-
like programming language under development at Brown
University. CoMET supports the local search architecture
with a mumber of novel concepts, abstractions, and control
structures. However, it i important to point out that the
architecture could be implemented equally well as a hbrary
or on top of an existing language. CoMET simply enables
us to experiment easily with a variety of designs and imple-
mentation techniques, and to choose a syntax reflecting the
semantics of the architecture.

them. Moreover, some of these applications are rather s0-
phisticated and, in one case, COMET enabled us to close an
open problem. We also report that the efficiency of a JIT
implementation of CoOMET is comparable to special-purpose
algorithms. It is also useful to mention that ComeT helped
us to design the fastest algorithm for warehouse location,

which will be reported in another paper. As a consequenoce,
we believe that the architecture brings significant benefits
for the implementation of local search algorithms, which are
20 fundamental in mumerous application areas,

The rest of the paper i3 organized as follows. Section 2
reviews the architecture in more detail. Section 3, 4, and
5 present three applications to give some of the flavor of
the architecture. Section 6 describes the implementation,
which generalizes finite-differencing ted
T concludes the paper.

nigues, and Section

2, THE ARCHITECTURE

Our architecture for local search, depicted in Figure 1, con-
sists of a declarative and a search component organized in
three layers. The kernel of the architecture is the conoept
of invariants (or one-way constraints) over algebraic and
set expressions [15]. Invardamts are expressed in terms of
incremental variables and specify a relation which must he

For instance, the code fragment
ine{int} £(m) <- sum{i in 1..10) al[il;

declares an incremental variable s of type int (in a model m)
and an invariant specifying that s i3 always the swmmation
of a[1],...,al[10]. Each time, a new value iz assigned to
an element alil, the value of 8 i updated accordingly (in
constant time). Note that the invariant specifies the rela-
tion to be maintained incrementally, not how to apdate it.
Incremental variables are always associated with a model (m
in this case), which makes it possible to use a very efficient
implementation which dynamically determines a topologi-
cal order in which to update the invariants. As we will see
later in the paper, COMET supports a wide vadety of alge
braic and set invariants, It also contains a number of graph
invariants (to incrementally maintain shortest and longest
paths) but these are not discussed in this paper.
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Local Search for CP, some recent work

* min-conflicts
* Minton @ nasa
- WalkSat
- reformulate CSP as SAT
- GENET
- Tsang & Borrett
* Weak-commitment search
- Yokoo AAAI-94
- Steve Prestwich
- Cork
- Large Neighbourhood Search
* Paul Shaw, ILOG
* Incorporating Local Search in CP (for VRP)
- deBaker, Furnon, Kilby, Prosser, Shaw
- LOCALIZER
- COMET



Is local search used?
(aka "who cares")

You bet!
(aka industry)

Early work on SA was Aart's work on scheduling

BT use SA for Workforce management (claim $120M saving per year)

ILOG Dispatcher uses TS & GLS (TLS?)

COMET Dynadec
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By eliminating symmetries we are producing a non-equivalent CSP which has
fewer solutions. But the solutions eliminated can be derived from those which are
still allowed, and for all practical purposes we have only eliminated solutions which
are equivalent to solutions which still exist. On the other hand, implied constraints
do not change the set of possible solutions at all.

11 When Systematic Search is Not Good Enough

Constraint satisfaction problems are difficult to solve; there is no known method
which has reasonable complexity, so that as we try to solve larger and larger prob-
lems, sooner or later we shall meet a problem which cannot be solved, or proved not
to have a solution, in a reasonable time. For instance, I have tried to solve instances
of the template design problem where there are 50 different designs and 40 slots in
each template, and sometimes no solution can be found even if the program is left
running overnight. It is often possible to improve the performance of the algorithms
by thinking of better variable and value ordering heuristics, new implied constraints,
etc. (for instance, a program which previously found no solution overnight may now
find a solution in a few seconds) but suppose we have done everything we can think
of. What do we do then?

It 1s often tempting to assume that the problem we are trying to solve has no
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solution, especially if we have an optimisation problem; this means that the last
solution we have (if we have one) is the optimal solution. However, in reality we
may be a long way from the optimal solution, unless we have some independent
evidence that suggests that the solution we already have may be ‘good enough’.

In other cases, we may simply be trying to find a solution that satisfies the
constraints; then, if the algorithm fails to find a solution, and appears to be running
for an indefinite amount of time, we have no answer to our problem at all. Sometimes
in these circumstances, if we suspect that there really is no solution, we may be
willing to relax some of the constraints so as to find a solution of some kind. Even if
there is a solution, but the algorithm cannot find one, we may prefer to settle for a
solution that satisfies most of the constraints rather than having no solution at all.

It is possible to express the problem of satisfying as many constraints as possible
as a CSP; rather than posting every constraint, the constraints which we allow
to be relaxed are simply defined. In Solver, each such constraint corresponds to
a constrained Boolean expression. We can create another constrained (integer)
expression representing the mumber of these constraints that are satisfied, and then
maximise its value. Unfortunately, the resulting problem is likely to be even harder
to solve than the original problem (although it will have a solution, whereas the
original problem may have been infeasible). Unless a constraint definitely applies
(i.e. has been posted) its effects cannot be propagated, so that the algorithm has to
do correspondingly more search.

An alternative is to abandon the systematic search algorithms we have used so
far, and use some kind of local search procedure, which always has a solution of

sorts, and continually attempts to improve it.
An example is the min-conflicts heuristic (S. Minton, M.D. Johnston, A.B.
P]l]]_lph and P. Laird, ‘So]vmg Large—Sw.]e C(mhtraurt S&tlbfar{'tl()ll and S{.hedu]mg
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sorts, and continually attempts to improve it.

An example is the min-conflicts heuristic (S. Minton, M.D. Johnston, A.B.
Philips and P. Laird, ‘Solving Large-Scale Constraint Satisfaction and Scheduling
Problems Using a Heuristic Repair Method’, Proceedings AAAI-90, pp. 17-254,
1990). This grew out of a neural network developed for scheduling the use of the
Hubble Space Telescope. The neural network was extremely successful, and it was
analysed to try to find out why; the min-conflicts heuristic is a simple algorithm
which was developed from this analysis, and is reported to perform better than the
neural network.

This heuristic can be built into a procedure which attempts to find a solution
which maximises the number of satisfied constraints as follows:

e form an initial solution by assigning a value to each variable at random

e until a solution satisfying all the constraints is found, or a pre-set time limit

is reached:

— select a variable that is in conflict i.e. the value assigned to it violates
one or more constraints involving one or more other variables

— assign this variable a value that minimizes the number of conflicts (i.e.
attempt to minimize the number of other variables that will need to be

— break ties randomly
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It is important to have a time-limit on an algorithm of this kind, because in
abandoning systematic search, we have abandoned completeness; the algorithm has
no means of telling if the problemn has no solution. In common with other local-
search algorithms (i.e. algorithms which repeatedly move from one solution to a
‘neighbouring’ solution), it may also get stuck in a local optimum where there is
a neighbourhood of equally good solutions surrounded by worse solutions. The
algorithm as defined above will then endlessly loop around this neighbourhood, but
if this is not the best solution, the only way to improve is to temporarily choose a
worse solution.

One way of avoiding this situation is to run the algorithm a number of times,
starting with a different random initial solution each time.

Minton et al. claim that the min-conflicts heuristic works well in its original
scheduling domain and on problems such as n-queens; they claim for instance that
it can easily solve the one million queens problem (this is not all that impressive,
apart from the memory problems associated with problems of this size, since the n-
queens problem is not especially difficult, and gets relatively easier as n gets larger,
becaunse the constraints get looser).

One difficulty with methods of this kind is that they do not integrate easily
with constraint propagation. Nevertheless, they may offer the only way of finding
a solution of some kind to very difficult or very large problems, when the methods
we have considered earlier fail. The latest version of Solver (5.0) does in fact offer
local search as an option, as well as complete search.

12 Conclusions

Many different kinds of problem can be expressed as constraint satisfaction prob-
377, 434pt  Page: "58" 53 of 53
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One difficulty with methods of this kind is that they do not integrate easily
with constraint propagation. Nevertheless, they may offer the only way of finding
a solution of some kind to very difficult or very large problems, when the methods
we have considered earlier fail. The latest version of Solver (5.0) does in fact offer

local search as an option, as well as complete search.

12 Conclusions

Many different kinds of problem can be expressed as constraint satisfaction prob-
lems, and constraint programming tools offer a relatively easy way to express such
problems. We have seen a number of algorithms which will guarantee to find a
solution (or even an optimal solution) if given enough time. We have also seen that
solving a large problem successfully may require careful development of a solution
strategy based on insights into how the available methods will go about solving our
particular problem; so constraint programming is no panacea for difficult problems.
Nevertheless, for the right kind of problem and with a good solution strategy, it can
be the best available way to solve the problem by far.

THE END
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That's all for now folks






