
It’s search Jim,
but not as we know it

tsp

But first, an example

TSP
• given n cities with x/y coordinates
• select any city as a starting and ending point
• arrange the n-1 cities into a tour of minimum cost

Representation
• a permutation of the n-1 cities

A move operator
• swap two positions (let’s say)
• 2-opt?

• Take a sub-tour and reverse it
• how big is the neighbourhood of a state?
• how big is the state space?
• What dimensional space are we moving through?

Evaluation Function
• cost/distance of the tour

The dumbest possible algorithm

1

2

5 6

4

3

1

2

5 6

4

3

1

2

5 6

4

3

1 2 3 4 5 6

1 - 112 137 68 156 168

2 - 72 155 166 145

3 - 126 63 80

4 - 146 108

5 - 51

6 -

distance/cost table

1

2

5 6

4

3

1 2 3 4 5 6

1 -

2 -

3 -

4 -

5 -

6 -

distance/cost table

Permutation is a tour where we assume we start and end at 1st city in permutation

1

2

5 6

4

3

1 2 3 4 5 6

1 -

2 -

3 -

4 -

5 -

6 -

distance/cost table

Permutation is a tour where we assume we start and end at 1st city in permutation

tour: 1 3 5 6 2 4

1

2

5 6

4

3

1 2 3 4 5 6

1 -

2 -

3 -

4 -

5 -

6 -

distance/cost table

Permutation is a tour where we assume we start and end at 1st city in permutation

tour: 1 3 5 6 2 4

Use the distance/cost matrix to evaluate the tour

1

2

5 6

4

3

distance/cost table

Permutation is a tour where we assume we start and end at 1st city in permutation

tour: 1 3 5 6 2 4

Use the distance/cost matrix to evaluate the tour

1 2 3 4 5 6

1 - 112 137 68 156 168

2 - 72 155 166 145

3 - 126 63 80

4 - 146 108

5 - 51

6 -

1

2

5 6

4

3

distance/cost table
tour: 1 3 5 6 2 4

Use the distance/cost matrix to evaluate the tour

1 2 3 4 5 6

1 - 112 137 68 156 168

2 - 72 155 166 145

3 - 126 63 80

4 - 146 108

5 - 51

6 -

137 + 63 + 51 + 145 + 155 + 68 =

1

2

5 6

4

3

distance/cost table
tour: 1 3 5 6 2 4

Use the distance/cost matrix to evaluate the tour

1 2 3 4 5 6

1 - 112 137 68 156 168

2 - 72 155 166 145

3 - 126 63 80

4 - 146 108

5 - 51

6 -

137 + 63 + 51 + 145 + 155 + 68 = 619

1

2

5 6

4

3

1 2 3 4 5 6

1 -

2 -

3 -

4 -

5 -

6 -

distance/cost table
tour: 1 3 5 6 2 4

while time remains
do begin
 randomly generate a tour
 if it is better than the best
 then save it
 end

1

2

5 6

4

3

1 2 3 4 5 6

1 -

2 -

3 -

4 -

5 -

6 -

distance/cost table
tour: 1 3 5 6 2 4

1. How do I randomly generate a tour?
2. How do I evaluate tour?

Was that really that dumb?

Let’s get smarter

Local Search (aka neighbourhood search)

We start off with a complete solution and improve it

or

We gradually construct a solution, make our best move as we go

We need:
• a (number of) move operator(s)

• take a state S and produce a new state S’
• an evaluation function

• so we can tell if we appear to be moving in a good direction
• let’s assume we want to minimise this function, i.e. cost.

Wooooooosh! Let’s scream down hill.

Hill climbing/descending

Find the lowest cost solution

Trapped at a local minima

How can we escape?

Find the lowest cost solution

How might we construct initial tour?

Nearest neighbour

Furthest Insertion

Random

But first, an example
A move operator
• 2-opt?

• Take a sub-tour and reverse it

A tour, starting and ending at city 9
9 1 4 2 7 3 5 6 8 9

9

1

8

7

5

4

3

2
6

But first, an example
A move operator
• 2-opt?

• Take a sub-tour and reverse it

9 1 4 2 7 3 5 6 8 9

9

1

8

7

5

4

3

2
6

reverse

But first, an example
A move operator
• 2-opt?

• Take a sub-tour and reverse it

9 1 4 2 7 3 5 6 8 9

9 1 6 5 3 7 2 4 8 9

9

1

8

7

5

4

3

2
6

Steepest descent

S := construct(n)
improvement := true
while improvement
do let N := neighbourhood(S),
 S’ := bestOf(N)
 in if cost(S’) <= cost(S)
 then S := S’
 improvement := true
 else improvement := false

But … it gets stuck at a local minima

Trapped at a local minima

How can we escape?

Find the lowest cost solution

Consider 1-d Bin Packing

• how might we construct initial solution?
• how might we locally improve solution

• what moves might we have?
• what is size of neighbourhood?
• what cost function (to drive steepest/first descent)?

Consider min-conflicts on an arbitrary csp

• how might we construct initial solution?
• how might we locally improve solution

• what moves might we have?
• what is size of neighbourhood?
• what cost function (to drive steepest/first descent)?

Warning:
Local search does not guarantee optimality

Simulated Annealing (SA) Kirkpatrick, Gelatt, & Vecci Science 220, 1983

Annealing, to produce a flawless crystal, a structure in a minimum energy state

• At high temperatures, parts of the structure can be freely re-arranged
• we can get localised increases in temperature

• At low temperatures it is hard to re-arrange into anything
 other than a lower energy state
• Given a slow cooling, we settle into low energy states

Apply this to local search, with following control parameters
• initial temperature T
• cooling rate R
• time at temperature E (time to equilibrium)

Simulated Annealing (SA) Kirkpatrick, Gelatt, & Vecci Science 220, 1983

Apply this to local search, with following control parameters
• initial temperature T (whatever)
• cooling rate R (typically R = 0.9)
• time at temperature E (time to equilibrium, number of moves examined)
• Δ change in cost (+ve means non-improving)

Accept a non-improving move with probability

Te

Throw a dice (a uniformly random real in range 0.0 to 1.0),
and if it delivers a value less than above then accept
the non-improving move.

62.01035

72.01025

85.01015

95.010015

85.01015

2.0115

tktK

Replaced e with k
As we increase temp t we increase probability of accept
As delta increases (cost is worse) acceptance decreases

SA

Simulated Annealing Sketch (SA) Kirkpatrick, Gelatt, & Vecci Science 220, 1983

S := construct(n)
while T > limit
do begin
 for in (1 .. E)
 do let N := neighbourhood(S),
 S’ := bestOf(N)
 delta := cost(S’) - cost(S)
 in if delta < 0 or (random(1.0) < exp(-delta/T))
 then S := S’
 if S’ is best so far then save it
 T := T * R
 end

Tabu Search (TS) Fred Glover

SA can cycle!
• Escape a local minima
• Next move, fall back in!

• Maintain a list of local moves that we have made
• the tabu list!
• Not states, but moves made (e.g. 2-opt with positions j and k)

• Don’t accept a move that is tabu
• unless it is the best found so far

• To encourage exploration

• Consider
• size of tabu-list
• what to put into the list
• representation of entries in list
• consider tsp and 1-d bp

TS + MinConflicts -> solver for CSP

Guided Local Search (GLS) Tsang & Voudouris

• (1) Construct a solution, going down hill, with steepest or 1st descent
• (2) analyse solution at local minima

• determine most costly component of solution
• in tsp this might be longest arc

• (3) penalise the most costly feature
• giving a new cost function

• (4) loop back to (1) if time left

Genetic Algorithms (GA) John Holland, 1981

• Represent solution as a chromosome
• Have a population of these (solutions)
• Select the fittest, a champion

• note, evaluation function considered measure of fitness
• Allow that champion to reproduce with others

• using crossover primarily
• mutation, as a secondary low lever operator

• Go from generation to generation
• Eventually population becomes homogenised

• Attempts to balance exploration and optimisation

• Analogy is Evolution, and survival of the fittest

It didn’t work for me. I want a 3d hand, eyes on the back of my head, good looks , ...

• Arrange population in non-decreasing order of fitness
• P[1] is weakest and P[n] is fittest in population

• generate a random integer x in the range 1 to n-1
• generate a random integer y in the range x to n
• Pnew := crossover(P[x],P[y])
• mutate(Pnew,pMutation)
• insert(Pnew,P)
• delete(P[1])
• loop until no time left

GA sketch

HC, SA, TS, GLS are point based

GA is population based

All of them retain the best solution found so far
(of course!)

Local Search: a summary

• cannot guarantee finding optimum (i.e. incomplete)
• these are “meta heuristics” and need insight/inventiveness to use
• they have parameters that must be tuned
• tricks may be needed for evaluation functions to smooth out landscape
• genetic operators need to be invented (for GA)

• example in TSP, with PMX or order-based chromosome
• this may result in loss of the spirit of the meta heuristic

• challenge to use in CP environment (see next slides)

Local search for a csp (V,C,D)

let cost be the number of conflicts

Therefore we try to move to a state with less conflicts

Inject diversity into search (TS?)

Min-Conflicts anyone?

Warning
Local search cannot prove that there is no solution
neither can it be guaranteed to find a solution

Problems with local search and CP?

Problems with local search and csp?

• how do we do a local move?
• how do we undo the effects of propagation?
• can we use propagation?
• maybe use 2 models

• one active, conventional
• one for representing state

• used to compute neighbourhood
• estimate cost of local moves

Dynadec / Solution Videos

http://dynadec.com/resources/solution-videos/

Local Search for CP, some recent work

• min-conflicts
• Minton @ nasa

• WalkSat
• reformulate CSP as SAT

• GENET
• Tsang & Borrett

• Weak-commitment search
• Yokoo AAAI-94

• Steve Prestwich
• Cork

• Large Neighbourhood Search
• Paul Shaw, ILOG

• Incorporating Local Search in CP (for VRP)
• deBaker, Furnon, Kilby, Prosser, Shaw

• LOCALIZER
• COMET

Is local search used?
(aka “who cares”)

You bet!
(aka industry)

Early work on SA was Aart’s work on scheduling

BT use SA for Workforce management (claim $120M saving per year)

ILOG Dispatcher uses TS & GLS (TLS?)

COMET Dynadec

That’s all for now folks

