IT Programming

Java Memory Model

Stack

· Built in variables such as int and boolean are allocated on the stack, which is a first in, last out data structure.

· All the details are worked out by the compiler, and there is little runtime cost in obtaining memory.

{

int i; // storage allocated here

...

} // storage reclaimed here

· A picture of the memory allocation of variable i would be a box in which the values of the variable are stored.

 EMBED Word.Picture.8

Stack Details

· The stack can be thought of as a large array of available memory, together with the index (called the stack pointer) of the next available piece.

· The stack pointer (sp) is incremented by the size of the variable each time it is created, and decremented whenever a variable is destroyed.

[image: image1.wmf][image: image2.wmf]
[image: image3.wmf]

Objects and the Heap

· Object variables are normally allocated on the stack, but they do not contain values.

-
Objects that are part of other objects are allocated on the heap.

· They contain pointers to the actual memory that holds the values of the objects.

· This extra memory comes from the heap must be obtained by calling new.

{

Person p; // This is a pointer, not an object

p = new Person("Ron");

 // it now points to the object

 // memory obtained from heap

} // Pointer variable p (stack) is reclaimed

// The system will reclaim the heap

// memory later

· Allocation of both pieces of memory can be done in one statement.

Person p = new Person("Ron");

The Heap

· We can liken the heap to a large chunk of memory that the system has under its control and that the program can ask for.

· The new Person("Ron") code asks for a chunk of memory large enough to store a Person object.

· The heap mechanism returns a pointer to this memory, which we store in the variable p.

· The storage is allocated at runtime, and so can slow down the program execution.

Many Pointers, One Value

· We can have many pointers to the same object;

Person q = p;
// both point to the same object

Garbage Collection

· If we keep asking for more heap memory, the system will eventually run out of it.

· Recycling heap memory that is no longer needed can control this.

· Fortunately, Java is designed for lazy people and will automatically recycle our garbage without us doing anything about it.

· Java will recognise that some memory is no longer needed when there are no more pointers pointing to it in the program.

· It will also recognise circular garbage. This situation arises when we discard several objects which still point to each other.

Standard Problems with Pointers

Pointer does not point anywhere

· If we forget the new statement, then the variable does not point to an object. If we then try to use it we will get a null pointer exception.

Person p;

p.print(); // null pointer exception

Copying

· There are two types of copying operation

· Deep copying, where we make a copy of the object itself.

-
Shallow copying, where we just copy the pointer.

· The following example is a shallow copy.

{

Person austin = new Person("Austin Powers");

Person evil = new Person("Dr Evil");

...

austin = evil;

}

· Both austin and evil point to the same Person object on the heap, while the austin object on the heap is not pointed to, and will eventually be reclaimed by the garbage collector.

· Deep copying involves the use of clone.

Person minime = (Person) evil.clone();

· The Persons name should also be cloned.

Equality testing

· A straightforward equality test will just compare pointers, and see if both pointers are pointing to the same object. This is a shallow compare.

if (evil == minime)

 // compare pointers, so false

· Comparing the contents to see if they are equal involves the equals method. This is a deep compare.

if (evil.equals(minime))

 // compare contents, so true

Strings and Arrays

· Both strings and arrays are objects.

Warning

· The notation for copying and comparing means different things for built in variables and objects.

int
i, j;

i = j;
// copy value (deep copy)

Person s, t;

...
// values given to s and t

s = t;
// copy pointer (shallow copy)

q

p

"Ron"

evil

austin�

evil

minime�

evil

austin�

heap

stack

p

sp

sp

IT 07/08 Lecture 16
8
© 2002 Ron Poet

_1009134027.unknown

