
by Patrick
December 11, 2015

Any Scale Task Allocation (part 1)

1 Introduction

This is a problem presented to us by David and Jeremy. I think it goes as follows. We have a set of tasks
that need to be performed. These tasks can be performed via a number of task variants. For example,
we might have a task sort and a number of ways (task variants) that can do this, such as bSort or
mSort. A task variant has a cost associated with it, and we might think of this as a load on a processor.
We also have a number of processing elements, each with a given capacity, and this is a constraint on
the number and make up of task variants allocated to that processor. Also, there is a restricted set of
processors that a task variant can be allocated to. Processors are interconnected and each connection has
a bandwidth, i.e. a capacity limit on inter-process communication. Finally, pairs of task variants need to
communicate and in doing so require a specific amount of bandwidth. Therefore the first problem is to
find an allocation of task variants to processors such that processor capacity and bandwidth is respected.

It is assumed that a task variant that has a high load on a processor produces more value than an
equivalent task variant (i.e. one that can do the same task) with a lower load. Therefore, we want to
produce the best quality service possible and we do this by maximising the sum of the loads on the
processors.

2 A first model

Ciaran has already produced a model in miniZinc. I want to produce a model in choco3. Why? Because
this will allow us more control over variable and value ordering heuristics, control over the use of spe-
cialised constraints and being able to limit search effort. Of course, not being a miniZincer, some of these
capabilities might already be in miniZinc, so my only real justification is that the problem is interesting
and I want to have some fun. So, here is a first stab at a naive model.

Decision variables For each task we have a set of task variants that can perform that task. Only one
of these task variants will be assigned to an actual processor. Consequently task variants are constrained
integer variables and their domains are processors. Assume that we have processors 1 to n, and that we
have an ”imaginary” processor 0. Therefore if we have task variants tv1,1, tv1,2 and tv1,3 for a given task
task1, two of these will be assigned the value 0 (and will be allocated to our imaginary processor) and
one of the task variants will be assigned to an actual processor. Therefore for taski with n variants the
occurrence of 0 assigned to variants tvi,1, ..., tvi,n is equal to n − 1.

Task variant to processor allocation A processor can be considered as a bin with a capacity. Given
a vector of loads, where loadi is the load demanded by task variant tvi,j , we can view the allocation
of task variants to processors as a bin packing problem. Fortunately, in choco3 there is a bin packing
constraint. This is an implementation of Paul Shaw’s ”A Constraint for Bin Packing” [1]. I used it
recently for a workforce allocation problem (2 weeks ago) and it worked really well.

Respecting bandwidth A link between two processors is again considered as a bin. Therefore we
have a constrained integer variable linkxy with domian {0..c} for the link between processors x and y with
bandwidth capacity c. Also we have constrained integer variables to represent pairs of task variant, call



these ptvi,j . Therefore, when two task variants tvi = x and tvj = y (allocated to processors x and y) we
constrain ptvij to be the pair (x, y) and add the communication demanded between these task variants
to the bin linkxy. Again, this can be viewed as bin packing problem and we use Paul’s constraint. Note
that when two processors are not connected we generate a link with zero capacity. Also, we have a magic
link of unbounded capacity. This link acts between the zeroth processor and all other processors and
between each processor and itself.

3 Problem and solution

Below is a the first problem instance given to me by Ciaran. It has been reformatted so that I can read
it in in java.

nTasks 5

nVariants 10

nProcessors 3

tasksToVariants

1 2

3 4

5 6

7 8

9 10

utilisations

1 2 1 2 1 2 1 2 1 2

capacities

3 3 3

links

0 2 8

2 0 0

8 0 0

bandwidths

0 1 0 0 2

1 0 1 1 0

0 1 0 1 1

0 1 1 0 3

2 0 1 3 0

permittedProcessors

1 2 3

1 2

1 2 3

1 2 3

1 2 3

1

1 2 3

1 2 3

1 2 3

1 2 3

sameProcessor

1 2

3 4

2



Below is a solution to the problem. I have sketched it out. On the left we have 4 processors, with
processor zero being magic: unbounded capacity and linked to all other processors on an unbounded
link. Within each processor box we have the task variants (I just called them Vi) allocated. On the right
we have a small graph showing communication between tasks. Each vertex represents a task and the
contents are the task variants. Red edges between red vertices signify tasks that must reside on the same
processor. The constraint program delivers this solution quickly, a second or so.

4 Outroduction

What’s to follow? Just now, my model has solved one small instance. This is one step, and it was bigger
than I expected. Next wee steps are to use variable ordering over the decision variables, because at
present all variable are decision variables. Then, I need to optimise, by maximising the sum of weights
on processors.

There may be symmetries, and we should probably hope a problem generator avoided these. In
particular, if we have two task variants for a task and they are identical, we should delete one of these.

We can reduce constraints. In the case we have two tasks that must be allocated to the same processor,
we might generate new composite tasks variants that can go on the intersection of the allowed processors
and have connectivity that is the union of connectivity for both. This might simplify the model.

And finally, code and data and this note are in the following directory http://www.dcs.gla.ac.uk/

~pat/jchoco/anyScaleTaskAllocation/

References

[1] P. Shaw. A constraint for bin packing. In Principles and Practice of Constraint Programming - CP
2004, 10th International Conference, CP 2004, Toronto, Canada, September 27 - October 1, 2004,
Proceedings, pages 648–662, 2004.

3

http://www.dcs.gla.ac.uk/~pat/jchoco/anyScaleTaskAllocation/
http://www.dcs.gla.ac.uk/~pat/jchoco/anyScaleTaskAllocation/


Figure 1: A very hastily drawn solution.

4


	Introduction
	A first model
	Problem and solution
	Outroduction

