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Due to a large number of applications, bicliques of graphs have been widely considered in
the literature. This paper focuses on non-induced bicliques. Given a graph G = (V , E) on n
vertices, a pair (X, Y ), with X, Y ⊆ V , X ∩ Y = ∅, is a non-induced biclique if {x, y} ∈ E for
any x ∈ X and y ∈ Y . The NP-complete problem of finding a non-induced (k1,k2)-biclique
asks to decide whether G contains a non-induced biclique (X, Y ) such that |X| = k1 and
|Y | = k2. In this paper, we design a polynomial-space O(1.6914n)-time algorithm for this
problem. It is based on an algorithm for bipartite graphs that runs in time O(1.30052n). In
deriving this algorithm, we also exhibit a relation to the spare allocation problem known
from memory chip fabrication. As a byproduct, we show that the constraint bipartite vertex
cover problem can be solved in time O(1.30052n).

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Throughout the paper all graphs G = (V , E) are undi-
rected and simple. An induced biclique of G is a complete
bipartite induced subgraph of G . A non-induced biclique is
a complete bipartite (not necessarily induced) subgraph
of G . Equivalently, the pair (X, Y ) of disjoint vertex sub-
sets X ⊆ V and Y ⊆ V is a non-induced biclique of G if
{x, y} ∈ E for all x ∈ X and y ∈ Y . If, additionally, X and
Y are independent sets, then (X, Y ) is an induced biclique
of G . Notice that if G is a bipartite graph, then every non-
induced biclique of G is also an induced one. Let the pair
(X, Y ) be an induced or non-induced biclique of G . Then
we call it a (k1,k2) biclique if |X | = k1 and |Y | = k2. Its car-
dinality is |X | + |Y |.

The literature dealing with bicliques is rich and di-
verse. There are applications of bicliques (induced or non-
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induced on general or bipartite graphs) in various different
areas such as data mining, automata and language the-
ory, artificial intelligence and biology; see for example [1].
Therefore, bicliques and algorithmic problems about bi-
cliques have been studied extensively.

1.1. Known results

Already in [9], the complexity of finding certain bicli-
ques has been considered. For example, deciding whether
a bipartite graph has a (k,k) biclique, also known as a bal-
anced biclique of size (at least) k, is NP-complete ([GT24]
in [9]). A maximum cardinality induced biclique can be
computed in polynomial time on bipartite graphs [4],
whereas this problem is NP-complete for general graphs
[18]. A related problem that asks to compute a non-
induced biclique with a maximum number of edges is also
known to be NP-hard [16]. Studies on the approximability
of these problems are presented in [13].

The above-mentioned NP-completeness of the balanced
biclique problem on bipartite graphs implies the NP-
completeness of the following three problems about the
existence of induced and non-induced bicliques, respec-
tively:
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Induced (k1,k2) Biclique
Input: An undirected graph G , positive integers k1 and k2.
Question: Does G have an induced (k1,k2) biclique?

Non-Induced (k1,k2) Biclique
Input: An undirected graph G , positive integers k1 and k2.
Question: Does G have a non-induced (k1,k2) biclique?

Bipartite (k1,k2) Biclique
Input: An undirected bipartite graph G , positive integers k1
and k2.
Question: Does G have a (k1,k2) biclique?

Observe that any biclique in a bipartite graph is in-
duced.

There is a trivial O∗(3n) algorithm for finding and also
for enumerating all induced and non-induced (k1,k2) bi-
cliques of a graph, respectively.2 It considers all partitions
of the vertex set into X , Y and V \ (X ∪ Y ) and verifies for
each whether (X, Y ) fulfills all conditions.

1.2. Our results

For enumerating all non-induced (k1,k2) bicliques, note
that there is no hope in obtaining a faster algorithm
than the above-described O∗(3n) algorithm, as a complete
graph on n vertices has Θ∗(3n) non-induced (�n/3	, �n/3	)
bicliques. For solving the Non-Induced (k1,k2) Biclique
problem, however, we give a polynomial-space O(1.6914n)

time algorithm, based on a polynomial-space O(1.30052n)

time algorithm for Bipartite (k1,k2) Biclique. That algo-
rithm in turn employs a relation to a specific application,
namely to Spare Allocation, which is inspired by mem-
ory chip fabrication. This relation may be interesting on
its own. As a byproduct, we also show that Constraint Bi-
partite Vertex Cover can be solved in time O(1.30052n).

Observe that there is also an O∗(3n/3) = O(1.4423n)

time algorithm to solve Induced (k1,k2) Biclique. This al-
gorithm is based on enumerating all maximal induced bi-
cliques of the graph with a polynomial delay algorithm [6]
and on the fact that an n-vertex graph has O∗(3n/3) max-
imal induced bicliques [11,12].

In this note we improve algorithms presented in [7],
where the following results were presented: (1) a polyno-
mial-space O(1.8899n) time algorithm and (2) an expo-
nential-space O(1.8458n) time algorithm for solving the
Non-Induced (k1,k2) Biclique problem. Our new results
make use of connections to a problem called Constraint
Bipartite Vertex Cover for which a sophisticated branching
algorithm was described in [2,3,8] that has been analyzed
from the viewpoint of parameterized complexity.

2. Finding bicliques in bipartite graphs

As we will exhibit, the Bipartite (k1,k2) Biclique prob-
lem is closely related to the following problem that comes
up (with certain variants till today) in the fabrication pro-
cess of memory elements.

2 Throughout the paper we write f (n) = O∗(g(n)) if f (n) � p(n) · g(n)

for some polynomial p(n).
An instance of Spare Allocation (SAP) is given by a
n1 × n2 binary matrix A representing an erroneous chip
with A[r, c] = 1 if and only if the chip is faulty at posi-
tion [r, c], and the parameters: positive integers k1 and k2.
The task is: Is there a reconfiguration strategy that repairs
all faults and uses at most k1 spare rows and at most k2
spare columns?

With reconfiguration strategy we mean a prescription
which rows and columns from A have to be replaced by
spares. Kuo and Fuchs [14] provide a fundamental study of
that problem. A review on the according literature is given
in [2,3]. Put concisely, the “most widely used approach to
reconfigurable VLSI” uses spare rows and columns to toler-
ate failures in rectangular arrays of identical computational
elements, which may be as simple as memory cells or as
complex as processor units. If a faulty cell is detected, the
entire row or column is replaced by a spare one.

The following graph-theoretic problem can easily be
seen to be equivalent to the previous problem via the ad-
jacency matrix of a bipartite graph:

An instance of Constraint Bipartite Vertex Cover (CBVC)
is given by a bipartite graph G = (V 1, V 2, E), and the pa-
rameters: positive integers k1 and k2. The task is: Is there
a vertex cover C ⊆ V 1 ∪ V 2 with |C ∩ V i | � ki for i = 1,2?

It is known [8] that CBVC admits a quadratic kernel and
a search tree algorithm with running time 1.3999knO(1)

using polynomial space, where k = k1 + k2.
Let us call a valid solution of a CBVC instance a (k1,k2)

vertex cover.
Parameterized duality is usually defined by reparame-

terizing, say a vertex-selection problem on graphs, by con-
sidering n − k instead of k as the parameter, where n is
the number of vertices in the graph and k is the solu-
tion size. For example, thanks to Gallai’s identity, the pa-
rameterized dual of Vertex Cover is Independent Set. For
vertex-selection problems on bipartite graphs, where we
face two parameters k1, k2 corresponding to the number
of vertices in each part of the vertex bipartition (V 1, V 2)

that are in the solution, it is natural to consider the repa-
rameterization given by (n1 − k1,n2 − k2), where ni = |V i |,
as the dual parameterization. Considering k = k1 + k2 and
n = n1 +n2, one can see that this definition corresponds to
the widely used notion of parameterized duality for one-
parametric problems.

The bipartite complement of a bipartite graph G =
(V 1, V 2, E) is the bipartite graph GC = (V 1, V 2, EC ), where
EC contains all edges between V 1-vertices and V 2-vertices
that are not contained in E .

The following lemma formalizes that Spare Allocation
can be solved in ck1+k2nO(1) time if and only if the param-
eterized dual of Bipartite (k1,k2) Biclique can be solved
in ck1+k2nO(1) time.

Lemma 1. The Spare Allocation problem is polynomially
equivalent to the parameterized dual of Bipartite (k1,k2) Bi-
clique.

Proof. As noticed above, we can consider a CBVC instance
to start with, that is, a bipartite graph G = (V 1, V 2, E), to-
gether with parameters k1,k2. The parameterized dual asks
to find an independent set I1 ∪ I2 in G with Ii ⊆ V i and
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|Ii| � k′
i = |V i| − ki . Now, C1 ∪ C2 is a (k1,k2) vertex cover

of G if and only if (V 1 \ C1) ∪ (V 2 \ C2) is an indepen-
dent set in G with |V 1| − k1 vertices in V 1 and |V 2| − k2
vertices in V 2 if and only if (V 1 \ C1) ∪ (V 2 \ C2) is a
(|V 1| − k1, |V 2| − k2) biclique of the bipartite complement
of G . �

Clearly, the “trivial barrier” for moderately exponential-
time algorithms for CBVC is O∗(2n/2) rather than O∗(2n),
since it is enough to consider all subsets of the smaller
set of V 1 and V 2. Our result is the first exact algorithm
for Constraint Bipartite Vertex Cover that breaks the trivial
Θ∗(2n/2)-barrier.

Theorem 2. Constraint Bipartite Vertex Cover and Bipar-
tite (k1,k2) Biclique can be solved in time O(1.30052n), using
polynomial space.

Proof. Let G = (V 1, V 2, E) be an instance for Bipartite
(k1,k2) Biclique. Let n1 = |V 1|, n2 = |V 2|, and α := 0.2189.
We will consider two algorithmic possibilities depending
on k1 + k2:

1. First, suppose k1 + k2 � αn. According to Lemma 1
the problem of finding a (k1,k2) biclique is equiv-
alent to finding a (k′

1,k′
2) vertex cover in the bi-

partite complement with k′
1 = n1 − k1 and k′

2 =
n2 − k2. The algorithm in [8] solves CBVC in time

O(1.3999k′
1+k′

2 ) = O(1.3999n−(k1+k2)) using polyno-
mial space. As k1 + k2 � αn the running time is
O(1.3999(1−α)n) = O(1.30052n).

2. Now, suppose k1 + k2 < αn. Depending on the values
of k1,k2,n1, and n2, the algorithm either (i) enu-
merates all subsets V ′

1 ⊆ V 1 of size k1 and checks
whether |⋂v∈V ′

1
N(v)| � k2 holds, or (ii) it enu-

merates all subsets V ′
2 ⊆ V 2 of size k2 and checks

whether |⋂v∈V ′
2

N(v)| � k1 holds. If this is the case
we clearly have found a (k1,k2) biclique. The enu-
meration (i) is done if and only if

(n1
k1

)
�

(n2
k2

)
(oth-

erwise enumeration (ii) is performed). This step can
thus be done in time O∗(min{(n1

k1

); (n2
k2

)}). By Vander-
monde’s identity, we have that for any x, y, z ∈ N,(x+y

z

) = ∑z
i=0

(x
i

)( y
z−i

)
. In particular,

(n
k

) = (n1+n2
k1+k2

)
�

(n1
k1

) · (n2
k2

)
. Thus, min{(n1

k1

); (n2
k2

)} �
√(n

k

)
and the running

time of this step is upper bounded by O∗(
( n
αn

)1/2
)

which, by Stirling formula [17], is upper bounded by
O(1.30052n).

This shows that Bipartite (k1,k2) Biclique can be solved in
O(1.30052n) time. By Lemma 1, Constraint Bipartite Ver-
tex Cover can also be solved in O(1.30052n) time. �

It is tempting to replace the trivial brute-force enumer-
ation in the second part of the algorithm presented in the
preceding proof by a more elaborate technique. Notice that
this might be not so easy, since it would probably lead to a
parameterized algorithm for the Non-Induced (k1,k2) Bi-
clique problem, hence solving a long-standing open prob-
lem in parameterized complexity.
Corollary 3. Non-Induced (k1,k2) Biclique can be solved in
time O(1.6914n), using polynomial space.

Proof. Given a graph G = (V , E), construct a bipartite
graph G ′ = (V , V ′, E ′) where V ′ is a copy of V . To each
vertex v ∈ V , its copy in V ′ is denoted by v ′ . Then {u, v ′} ∈
E ′ iff {u, v} ∈ E . Observe that (X, Y ) is a non-induced
(k1,k2) biclique in G if and only if (X, Y ′) is a bipartite
(k1,k2) biclique in G ′ where Y ′ is the copy of Y in V ′ . Now
apply the preceding theorem to obtain a running time of
O(1.300522n) = O(1.6914n). �
3. Conclusions

We already mentioned that CBVC, the parameterized
dual of Non-Induced (k1,k2) Biclique, is in FPT. It is a
natural question to ask whether Non-Induced (k1,k2) Bi-
clique is in FPT as well. The proof of Kuo and Fuchs [14]
(showing the NP-hardness of CBVC) is not parameter-
preserving and hence does not answer this question. The
only thing that can be (relatively easily) seen is member-
ship in W[1]. As already mentioned in [5,10,15], this poses
an interesting open problem in parameterized complexity,
even when restricted to bipartite graphs as in our sketched
application and even when k1 = k2. We finally mention
that the experiments with an implementation of CBVC de-
scribed in [2,3] show that the approach described in this
paper might be feasible for many practical situations.
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