
Information Processing Letters 112 (2012) 535–539
Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

An exact exponential time algorithm for counting bipartite cliques ✩

Konstantin Kutzkov

IT University of Copenhagen, Denmark

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 November 2011
Received in revised form 4 April 2012
Accepted 4 April 2012
Available online 10 April 2012
Communicated by Ł. Kowalik

Keywords:
Analysis of algorithms
Exact exponential time algorithms
Counting bipartite cliques

We present a simple exact algorithm for counting bicliques of given size in a bipartite
graph on n vertices. We achieve running time of O (1.2491n), improving upon known exact
algorithms for finding and counting bipartite cliques.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Many relationships between real world objects can be
abstractly modeled as graphs. Often we are interested in
dense subgraphs capturing important information. One of
the most studied examples of such dense subgraphs is the
clique problem asking for a subset of the graph’s vertices
such that any two of them are connected by an edge.

A recent trend in algorithmic research has been to
design fast exponential time algorithms solving hard prob-
lems exactly when approximate solutions are either not
satisfying or impossible. New algorithms have been de-
signed considerably increasing the size of efficiently com-
putable instances of hard problems. Notable examples
include solving k-colorability for graphs on n vertices
in time and space O ∗(2n) independent of k [4] and k-
satisfiability on n variables in time O ∗((2(k−1)

k)n) and
polynomial space [13,14].1

The problem of finding a clique of size k in a graph G is
equivalent to the canonical NP-complete problem of find-
ing an independent set of size k in the complement of G ,
i.e. the graph obtained from G with an edge between two

✩ This research was partially supported by the Swedish Research Coun-
cil grant VR 2007-6595, Exact Algorithms.

E-mail address: konk@itu.dk.
1 The O ∗ notation ignores polynomial factors.
0020-0190/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2012.04.001
vertices u and v if and only if there is no edge between u
and v in G . The best known polynomial space exact algo-
rithm for the maximum independent set problem runs in
time O ∗(1.2114n) [5] and for counting maximum indepen-
dent sets in time O (1.2377n) [16].

Algorithms and hardness results have shed light on the
computational complexity of the problem of finding and
counting bipartite cliques when the problem is restricted
to bipartite graphs [9,12,15]. We give a brief overview on
published exact exponential time algorithms for the two
problems.

Given a bipartite graph G = (L ∪ R, E) Fernau and Nie-
dermeier [7] present a sophisticated branching algorithm
for finding a vertex cover with at most tl vertices in L
and tr vertices in R running in time O ∗(1.3999(tl+tr)).
Note that this is equivalent to finding a bipartite indepen-
dent set with at least |L| − tl vertices in L and |R| − tr

vertices in R . Binkele-Raible et al. [3] use this observa-
tion to design an exact algorithm for finding a (k1,k2)-
biclique running in time O ∗(1.30052n). Their algorithm is
simple and intuitive but uses as a subroutine the algo-
rithm from [7]. Recently, Couturier and Kratsch [6] pre-
sented an exact algorithm for finding bipartite cliques run-
ning in time O (1.2691n) and exponential space. As for
counting bicliques, we are aware of only one non-trivial
algorithm. Gaspers et al. [10] present an exact algorithm
for counting maximal bicliques in general graphs in time

http://dx.doi.org/10.1016/j.ipl.2012.04.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:konk@itu.dk
http://dx.doi.org/10.1016/j.ipl.2012.04.001

536 K. Kutzkov / Information Processing Letters 112 (2012) 535–539
O (1.3642n) and polynomial space. The algorithm can be
easily extended to counting bicliques of given size in bi-
partite graphs. Note that the requirement on the bicliques
to be maximal makes the problem inherently more diffi-
cult, see Section 4.1 of [10] for a discussion. The problem
remains #P-hard even when restricted to planar bipartite
graphs of bounded degree [15].

Bicliques naturally arise in many areas like artificial in-
telligence, computational biology, data mining, etc. Con-
sider the fundamental knowledge discovery problem of
frequent pattern mining [1]. We are given a set m of
transactions each containing a subset of items i ∈ I for
some ground set I . For example transactions can represent
market baskets and we are interested in finding patterns
among purchased items such as “customers who buy beer
are likely to also buy fish fingers”. We want such patterns
to be representative, thus one sets a support threshold in-
dicating how many times the items in question appear to-
gether in a transaction. It turns out that the computation-
ally expensive step is to mine such α-frequent k-itemsets,
i.e. sets of k items appearing together in at least αm trans-
actions for k > 1 and α > 0 [11]. The problem can be nat-
urally reduced to listing bicliques in a bipartite graph by
associating items and transactions with left and right-hand
side vertices, respectively, and then enumerating all bi-
cliques with k left-side vertices and at least αm right-side
vertices. Often a low support threshold causes a combina-
torial explosion in the number of frequent k-itemsets, thus
a faster counting algorithm is necessary for fine-tuning the
input parameters of a frequent pattern mining algorithm.
We refer the reader to [2] for a list of other applications.

2. Preliminaries

Notation. Let G = (V , E) be a simple undirected graph
on n vertices and m edges. For an edge (u, v) ∈ E v is
a neighbor of u, and the set of neighbors of u is N(u)

and N[u] = N(u) ∪ {u}. The degree of a vertex u is the
number of its neighbors and the degree of G is the max-
imum vertex degree in G . A tree is a connected graph
without cycles, a forest is a collection of pairwise disjoint
trees. We define a parent–child relationship on a tree such
that each vertex has at most one parent. A vertex without
a parent is called a root and a vertex with no children is
called a leaf. A tree has exactly one root. A vertex u is an
ancestor of a vertex v and the vertex v is a descendant of u
if u is on the path from v to the root. The depth of a ver-
tex v is the length of the path from the root to v and the
level of v is the length of the longest path from v to a leaf
which is a descendant of v .

A vertex cover of G is a subset of vertices C ⊆ V such
that for each (u, v) ∈ E , u ∈ C or v ∈ C holds. The com-
plement set V \C is an independent set in G . The graph
obtained by removing a vertex v from G and all its ad-
jacent edges is denoted as G\{v}.

In a bipartite graph B = (L ∪ R, E) for all edges
(x, y) ∈ E , x ∈ L iff y ∈ R . We will refer to vertices in L
and R as left-side, respectively right-side, vertices. A (kl,kr)-
bipartite clique (or biclique) in B = (L ∪ R, E) is a subgraph
K = (LK ∪ R K , E K) of B , such that LK ⊆ L, R K ⊆ R, E K ⊆ E
and for all v L ∈ LK , v R ∈ R K it holds (v L, v R) ∈ E and
|LK | � kl , |R K | � kr . Similarly, a (tl, tr)-bipartite vertex cover
covers B with at most tl vertices from L and at most tr ver-
tices from R and in a (tl, tr)-bipartite independent set there
are at least tl left vertices not connected to any of tr right
vertices. Since a tree does not contain a cycle a tree is also
a bipartite graph. A bipartite complement B̄ = (L ∪ R, Ē) of
a bipartite graph B = (L ∪ R, E) is a bipartite graph such
that (u, v) ∈ Ē iff (u, v) /∈ E for u ∈ L, v ∈ R . It is easy to
see that a (kl,kr)-biclique in B is a (kl,kr)-bipartite inde-
pendent set in B̄ . If the set I ⊆ V is a (kl,kr)-independent
set in B then V \I is a (tl, tr)-bipartite vertex cover in B
with tl := |L| − kl and tr := |R| − kr . The problem of count-
ing the number of bipartite (tl, tr)-vertex covers in a graph
is denoted as #BVC(G, tl, tr).

The algorithm is based on branching on a vertex u ∈ G
distinguishing the cases when u is either taken in a bipar-
tite vertex cover or not. The first case is denoted by G[u]
and the second by G\{u}.

Signatures. For a given bipartite graph G a bipartite
vertex cover with exactly tl left vertices and tr right
vertices has a signature σG(tl, tr). The weighted signa-
ture of G , σG(tl, tr, cG), denotes the number cG of dis-
tinct bipartite vertex covers of G with exactly tl vertices
in L and tr vertices in R . We assume that an empty
graph, denoted as nil, has only one signature σnil(0,0).
We say that two signatures for a given graph are iden-
tical if they correspond to covers with equal number
of left and right vertices. The product of two weighted
signatures σG1(t

(G1)

l , t(G1)
r , cG1) and σG2(t

(G2)

l , t(G2)
r , cG2) is

the new signature σG(t(G1)

l + t(G2)

l , t(G1)
r + t(G2)

r , cG1 · cG2)

where G = (V 1 ∪ V 2, E1 ∪ E2) is the union of the con-
nected graphs G1 = (V 1, E1) and G2 = (V 2, E2). For a given
#BVC(G, tl, tr) problem instance we will say that the sig-
nature σG ′(ql,qr) is admissible if ql � tl and qr � tr for
a graph G ′ ⊆ G .

Colored graphs. In our algorithm we partition the set of
edges E in two subsets of black and white edges, B and W ,
such that E = B ∪ W and B ∩ W = ∅. We maintain the in-
variant that edges in W form a forest. We call the forest
formed by W proper if in each tree only the root is possi-
bly adjacent to any black edges and assume that an empty
forest is proper. The subgraphs induced by the edge sets B
and W are the subgraphs of G containing only edges
from B and W , denoted as G B = (V , B) and GW = (V , W),
respectively. By coloring a black edge e white we mean the
operation B = B\{e} and W = W ∪ {e} for e ∈ B .

3. The #BVC(G, tl, tr) problem on trees

Lemma 1. Let F = (V , E) be a forest. Then #BVC(F , tl, tr) can
be solved in polynomial time in the size of the forest.

Proof. We present an algorithm for counting the num-
ber of (tl, tr)-bipartite vertex covers using a standard dy-
namic programming approach. Assume F consists of a sin-
gle tree T and the depth of T is d. Starting with the nodes
of depth d for each node v of the tree we store a set of
signatures for bipartite vertex covers for the subtree rooted

K. Kutzkov / Information Processing Letters 112 (2012) 535–539 537
at v with no more than tl left vertices and tr right vertices.
We divide the signatures in two sets S v and S v̄ depending
on whether the vertex v is part of the cover or not. Once
the signatures of all nodes of depth d have been computed,
we go one level higher in the tree and compute the signa-
tures of the nodes at depth d − 1.

We show now how to compute the signatures for the
bipartite vertex covers of a tree rooted at v with already
computed signatures for all its children. Assume w.l.o.g.
that v is a left-side vertex and we want to find all sig-
natures for covers containing v . We start with an empty
forest F and an empty set of signatures S F . We first add
the weighted signature σnil(0,0,1) to S F . Let v have k
children. Assuming an order on v ’s children, we consider
the ith subtree Ti , 1 � i � k, compute the product of each
weighted signature in S F , with each weighted signature
of covers of Ti and update S F to contain only the new
signatures. Now we look through S F and compress all
identical weighted signatures by adding their correspond-
ing counters and remove all weighted signatures of cov-
ers which cannot be extended to a (tl, tr)-bipartite vertex
cover. At the end we add 1 to the number of left vertices in
each signature in S F and set S v := S F . For computing the
set of weighted signatures not including v , S v̄ , we observe
that only signatures including v ’s children can correspond
to a vertex cover for the subtree rooted at v . Therefore we
have to repeat the above procedure but only considering
the signatures Su for trees rooted at u, u being a child of v .
If S v and S v̄ are empty the algorithm returns 0. At the end
we return the sum of the counters of the weighted signa-
tures in Sr and Sr̄ for the root of the tree r.

We show that Sr and Sr̄ will contain exactly one sig-
nature for each (ql,qr)-bipartite vertex cover such that
ql � tl and qr � tr by induction on the structure of the
tree. Consider a vertex v . If v a leaf then correctness is
trivial. Assume we have computed the weighted signatures
for v ’s children and let denote by F the forest obtained by
the trees rooted at v ’s children. In particular, for a given
weighted signature σTu (t

(Tu)

l , t(Tu)
r , cTu) the counter cTu

records the number of unique bipartite vertex covers of
given size for the tree Tu ∈ F . Let σF (t(F)

l , t(F)
r , cF) ∈ S F be

an admissible weighted signature computed after all trees
in F have been considered. We compute the products of
signatures for covers of pairwise disjoint trees, therefore
the counter cF will record the number of unique covers
for F . Further, assuming that each (ql,qr)-bipartite vertex,
ql � tl , qr � tr , is recorded in a signature we see that each
such cover for F will contribute to the counter of exactly
one signature. We consider the cases when v is either
included in or excluded from the cover, therefore each sig-
nature added to either S v or S v̄ corresponds to a unique
(ql,qr)-bipartite vertex cover, ql � tl and qr � tr , and each
such cover is recorded in an admissible signature.

For the running time analysis observe that the num-
ber of signatures for (tl, tr)-bipartite covers is bounded by
(tl + 1) · (tr + 1). For a parent vertex v with k children we
compute the signatures for T v from the signatures of its
children in O (k · t2

l · t2
r). Since k, tl , tr are upper bounded

by the number of vertices in the tree and we compute ex-
actly once the signatures for a subtree rooted at a given
vertex the claim follows.
The algorithm trivially extends to counting bipartite
cliques in forests. �
Lemma 2. Let G = (L ∪ R, E), E = (B ∪ W), be a colored bi-
partite graph and G W a proper forest. Let v be a vertex with
only one adjacent black edge e = (u, v). Then after coloring e
white GW remains a proper forest.

Proof. We show that W ∪ {e} is a proper forest. Since v is
adjacent to a black edge it must hold that v is the root of
a (possibly empty) tree in G W , the forest induced by W ,
call it T v . By coloring e white v is not any more adja-
cent to a black edge. If u were not adjacent to another tree
in GW then clearly e ∪ T v is a tree rooted at u. Otherwise
since u was adjacent to a black edge, namely e, it must
hold that u is the root of one or more other trees of white
edges. Thus, by coloring e white T v becomes a subtree
at u. Since the trees in G W are pairwise disjoint and e
causes the creation of only one new tree, it follows that all
trees in W ∪{e} are pairwise disjoint. Also, in the new tree
only u is possibly adjacent to a black edge, thus W ∪ {e}
induces a proper forest. �
Corollary 1. For a colored bipartite graph G = (L ∪ R, B ∪ W)

such that no vertex is adjacent to more than two black edges we
can obtain a list of admissible signatures for #BVC(G, tl, tr) in
polynomial time.

Proof. G B is a collection of paths and cycles. By branching
on a vertex in each “black cycle” we obtain two trees for
which we compute a set of admissible signatures in poly-
nomial time and the set of all admissible signatures for
#BVC(G, tl, tr) can then be obtained by the approach out-
lined in Lemma 1. �
4. Analysis of the algorithm

A pseudocode description of the algorithm CountBVC is
presented in Fig. 1.

Correctness of CountBVC. First, we compress the already
computed signatures as outlined in the proof of Lemma 1.
If G consists of several connected components, we com-
pute the signatures for each component and then the list
of signatures for G as in the proof of Lemma 1. For each
branching on a vertex v we partition the set of (tl, tr)-
bipartite vertex covers in two disjoint subsets either in-
cluding or excluding v . Further, when excluding a ver-
tex all its neighbors must be in the cover. As shown in
Lemma 2 by coloring white a black edge (u, v), such that v
is not adjacent to any other black edge, we maintain the
invariant that G W is a proper forest. Therefore, if there
are no vertices adjacent to more than two black edges we
obtain a list of admissible signatures by dynamic program-
ming.

Running time of CountBVC. We analyze the running time
of our algorithm with the Measure & Conquer tech-
nique [8]. We assign a weight 0 � wd � 1 to each ver-
tex of degree d in G . For a colored bipartite graph

538 K. Kutzkov / Information Processing Letters 112 (2012) 535–539
function CountBVC

Input: colored bipartite graph G = (L ∪ R, B ∪ W), positive integers tl , tr , a list of signatures L.
Output: A list of admissible signatures for #BVC(G, tl, tr).

1: Compress all signatures in L as discussed in the proof of Lemma 1.
2: if tl < 0 or tr < 0 then
3: return L
4: if there are more than one connected components in G then
5: Call CountBVC(Gi , tl, tr) for each component Gi and compute a list of admissible signatures for G from the signature lists Li for each Gi .
6: while there exists a vertex adjacent to only one edge e in B do
7: B = B\{e}
8: W = W ∪ {e}
9: if all vertices are adjacent to at most two edges in B then

10: solve #BVC(tl, tr) by the dynamic programming algorithm from Corollary 1.
11: else
12: choose a vertex u with a maximum number of adjacent black edges, giving preference to vertices with neighbors of lower degree, let w.l.o.g. u ∈ L.

Return CountBVC(G\{u}, tl − 1, tr ,add-left(L,1)) ∪ CountBVC(G\N[u], tl, tr − |N(u)|,add-right(L, |N(u)|)).

Fig. 1. A high-level pseudocode description of the algorithm. The algorithm recursively builds a search tree by branching on a vertex of degree at
least two in G B and returns a list of admissible signatures for #BVC(G, tl, tr). For a bipartite graph G = (L ∪ R, E) the algorithm is initially called as
CountBVC(G, L ∪ R, E ∪ ∅, tl, tr ,nil), nil denotes the empty list. The functions add-left(L, i) and add-right(L, i) add i to the number of left and right ver-
tices in each signature in the list L, respectively, and return L.
G = (L ∪ R, B ∪ W) the complexity measure is μ(G) =∑
d�0 nd wd where nd is the number of vertices adjacent

to exactly d black edges. In the following we will refer to
the degree of a vertex v in G B simply as the degree of v .
Clearly, μ(G) � n therefore an upper bound on the running
time with respect to μ(G) implies an upper bound with
respect to the number of vertices n. As one can see in case
W = ∅ the measure setting wd = 1 for all d is the standard
measure “number of vertices”. We can set w0 = w1 = 0
because vertices adjacent to at most one black edge cannot
exist in G B after termination of the while-loop in lines 3–5
and its execution takes only polynomial time. We write
�i := wi − wi−1. The �i measure the progress made by
the algorithm after assigning a vertex and decreasing the
weight of its neighbors. In order to simplify the analy-
sis we will enforce also the following constraint on the
weights: �2/2 � �3 � · · · � �i−1 � �i = 0 for some i > 2
that has to be determined later. The reason for first con-
dition �2/2 � �3 will become clear from the proof of the
following

Lemma 3. For each branching on a vertex u of maximum de-
gree d in G B the corresponding recurrence is majorized by
T (μ(G)) � T (μ(G) − wd − ∑

v∈N(u) �iv) + T (μ(G) − wd −∑
v∈N(u) wiv − ∑

v∈N(u)(iv − 1)�d) where the degree of u’s
neighbor v is 2 � iv � d.

Proof. We need to lower bound the total decrease of the
weights of the neighbors of u’s neighbors in G B . After in-
cluding u’s neighbor v of degree i in the cover we delete
(i − 1) black edges different from (u, v). The only possi-
bility the deletion of a black edge does not reduce the
weight of a vertex is when all of its adjacent edges are
deleted and the deletion of one of them does not count
since it corresponds to decreasing the weight of the vertex
from w1 to w0. All vertices in G B have degree at least 2,
thus from the constraint �2/2 � �3 � · · · � �i−1 � �i = 0
and d(v) � 2 ∀v ∈ B we observe that after deleting k dis-
tinct edges the decrease is at least k�d . �

Given the lists of admissible signatures for several con-
nected components Gi , we can obtain in polynomial time
the list of admissible signatures for the union of all Gi .
Therefore, in the following we assume the graph consists
of a single connected component. When removing a vertex
from G B we always decrease the degree of some other ver-
tex in G B . Thus, for a given connected component we can
exclude from consideration the case where we have a d-
regular bipartite graph G B . This case occurs at most once
in a given path in the search tree, thus for fixed d such
cases only contribute a constant factor to the total run-
ning time implying that in line 12 we will (almost) always
branch on a vertex of maximum degree with neighbors of
lower degree in G B .

Theorem 1. For a bipartite graph G = (L ∪ R, E) on n vertices
the number of (kl,kr)-bicliques can be computed in O (1.2491n)

time and polynomial space.

Proof. An algorithm counting the number of (|L| − kl,

|R| − kr)-bipartite vertex covers also computes the number
of (kl,kr)-bicliques. After CountBVC terminates, we can
obtain the number of covers of admissible size in poly-
nomial time from the list of its signatures. We give an up-
per bound on the number of recursive calls of CountBVC.
Assume first all vertices in G B are of degree at most 5.
By enumerating the possible combinations we computed
an approximation of the weights wi yielding the claimed
upper bound on the running time: w0 = w1 = 0, w2 =
0.620707, w3 = 0.881125, w4 = 0.967413, w5 = 0.997178,
wd = 1.0 for d � 6. It can now be easily verified by plug-
ging the recurrence from Lemma 3 into the possible cases
when G B has degree at most 5 that O (1.2491μ(G)) is
an upper bound on the running time of the algorithm.
As shown in [8] each recurrence from a branching on
a vertex of degree more than 5 in G B majorizes a certain
branching on a vertex of degree at most 5 in G B , thus the
bound follows. �

As observed by Binkele-Raible et al. [3] the problem of
finding a non-induced biclique of a given size in a graph
G = (V , E) can be reduced to that of finding a biclique
in a bipartite graph G ′ = (V ∪ V ′, E ′) such V ′ is a copy
of V and (u, v ′) ∈ E ′ iff (u, v) ∈ E . Thus, there is a one-to-

K. Kutzkov / Information Processing Letters 112 (2012) 535–539 539
one correspondence between a biclique in G and a biclique
in G ′ . Since G ′ has 2n vertices we obtain the following

Corollary 2. The number of non-induced bipartite cliques
in a graph G = (V , E) on n vertices can be computed in
time O (1.561n).

Acknowledgements

The author would like to thank two anonymous ref-
erees for many helpful comments and suggestions and
Nina Taslaman for discussions on graph theory terminol-
ogy.

References

[1] R. Agrawal, R. Srikant, Fast algorithms for mining association rules in
large databases, in: VLDB, Morgan Kaufmann, 1994, pp. 487–499.

[2] J. Amilhastre, M.-C. Vilarem, P. Janssen, Complexity of minimum
biclique cover and minimum biclique decomposition for bipartite
domino-free graphs, Discrete Appl. Math. 86 (1998) 125–144.

[3] D. Binkele-Raible, H. Fernau, S. Gaspers, M. Liedloff, Exact
exponential-time algorithms for finding bicliques, Inform. Process.
Lett. 111 (2) (2010) 64–67.
[4] A. Björklund, T. Husfeldt, M. Koivisto, Set partitioning via inclusion–
exclusion, SIAM J. Comput. 39 (2) (2009) 546–563.

[5] N. Bourgeois, B. Escoffier, V.Th. Paschos, J.M.M. van Rooij, Fast algo-
rithms for max independent set, Algorithmica 62 (1–2) (2012) 382–
415.

[6] J.-F. Couturier, D. Kratsch, Bicolored independent sets and bicliques,
in: CTW 2011, pp. 130–133.

[7] H. Fernau, R. Niedermeier, An efficient exact algorithm for constraint
bipartite vertex cover, J. Algorithms 38 (2) (2001) 374–410.

[8] F.V. Fomin, F. Grandoni, D. Kratsch, A measure & conquer approach
for the analysis of exact algorithms, J. ACM 56 (5) (2009).

[9] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, Freeman, 1979.

[10] S. Gaspers, D. Kratsch, M. Liedloff, On independent sets and bicliques
in graphs, Algorithmica 62 (3–4) (2012) 637–658.

[11] J. Han, M. Kamber, Data Mining: Concepts and Techniques, Morgan
Kaufmann, 2000.

[12] D.S. Hochbaum, Approximating clique and biclique problems, J. Algo-
rithms 29 (1998) 174–200.

[13] R.A. Moser, D. Scheder, A full derandomization of Schöning’s k-SAT
algorithm, in: STOC 2011, pp. 245–252.

[14] U. Schöning, A probabilistic algorithm for k-SAT based on limited lo-
cal search and restart, Algorithmica 32 (4) (2002) 615–623.

[15] S.P. Vadhan, The complexity of counting in sparse, regular, and planar
graphs, SIAM J. Comput. 31 (2) (2001) 398–427.

[16] M. Wahlström, A tighter bound for counting max-weight solutions to
2SAT instances, in: IWPEC 2008, pp. 202–213.

	An exact exponential time algorithm for counting bipartite cliques
	1 Introduction
	2 Preliminaries
	3 The #BVC(G, tl, tr) problem on trees
	4 Analysis of the algorithm
	Acknowledgements
	References

