
European Journal of Operational Research 153 (2004) 92–101

www.elsevier.com/locate/dsw
Global constraints for round robin tournament scheduling

Martin Henz a,*, Tobias M€uuller b, Sven Thiel c

a School of Computing, National University of Singapore, Singapore 117543, Singapore
b Programming Systems Lab, Saarland University, 66041 Saarbr€uucken, Germany

c Max-Planck-Institut f€uur Informatik, Im Stadtwald, 66123 Saarbr€uucken, Germany
Abstract

In the presence of side-constraints and optimization criteria, round robin tournament problems are hard combi-

natorial problems, commonly tackled with tree search and branch-and-bound optimization. Recent results indicate that

constraint-based tree search has crucial advantages over integer programming-based tree search for this problem do-

main by exploiting global constraint propagation algorithms during search. In this paper, we analyze arc-consistent

propagation algorithms for the global constraints ‘‘all-different’’ and ‘‘one-factor’’ in the domain of round robin

tournaments. The best propagation algorithms allow us to compute all feasible perfectly mirrored pattern sets with

minimal breaks for intermural tournaments of realistic size, and to improve known lower bounds for intramural

tournaments balanced with respect to carry-over effects.
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1. Introduction

In round robin sport competitions, each team
plays each other team a fixed number of times

and the matches are organized in rounds. Round

robin schedules can be characterized as one-

factorizations of complete graphs and are studied

in graph theory and combinatorial design. Nu-

merous results have been obtained on variants of

the round robin scheduling problem, including

intermural tournaments, facility-sharing tourna-
ments and bipartite tournaments; extensive refer-

ences are given in [2,23]. The techniques in this
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field are constructive in a sense that interesting

properties of tournaments are identified and

then––by employing graph-theoretical and com-
binatorial arguments––methods to construct cor-

responding tournaments are described.

This works well for highly regular tournaments.

However, in the presence of irregular constraints

which occur in tournament planning practice and

which are difficult to capture as properties of

graphs, constructive methods fail and the problem

degenerates to a combinatorial search problem.
Techniques that have been used to solve such

problems include integer programming [15,20], lo-

cal search [24] and constraint programming

[7,11,19]. Constraint programming has been shown

recently to outperform integer programming on

practical problems [7,8]. Constraint programming
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allows to systematically exploit the round robin
and other constraints, often leading to relatively

small search trees for medium-sized tournaments.

To solve large problems, stronger propagation

algorithms for pruning the search trees become

important. In finite domain programming systems

such as Ilog Solver [10] and Mozart [13], where

constraints are encoded as propagators that op-

erate on a constraint store which stores domains of
variables, arc-consistency is the strongest kind of

propagation that can be achieved for a given

constraint. The most important constraints for

round robin tournaments are

• the all-different constraint, which expresses that

the rows in a tournament contain every team

only once, and
• the one-factor constraint, called symmetric all-

different by R�eegin [17], which expresses that

every column groups the teams into matches.

R�eegin gives arc-consistent propagation algo-

rithms for both problems, which we will review in

Section 5, after introducing graph-theoretical no-

tation in Section 2, presenting the basic ideas of
constraint programming in Section 3, and giving a

formal description of the two constraints in Sec-

tion 4.

A practical consideration in modeling of com-

binatorial search problems using constraint pro-

gramming is the trade-off between the strength of

propagation at each node of the search tree and its

computation time. For example, a naive non-arc-
consistent propagation algorithm for all-different

constraint sometimes outperforms the arc-consis-

tent one; in such cases, the decrease in the size of

the search trees does not outweigh the increase of

time that is spent at each of their nodes. This sit-

uation is common in constraint programming and

necessitates an experimental evaluation for a given

application domain.
An extensive experimental evaluation of prop-

agation algorithms for the round robin tourna-

ments is given in Section 6. Using the empirically

best propagation algorithms, we are able to com-

pute all feasible perfectly mirrored pattern sets

with minimal breaks for intermural tournaments

of realistic size, and to improve a known lower
bound for intramural tournaments balanced with
respect to carry-over effects.
2. Round robin tournaments and graphs

In round robin sport competitions, each team

plays each other team a fixed number of times g
during the competition. Let us first assume g ¼ 1,
thus we are dealing with single round robin tour-

naments (SRR). A temporally dense single round

robin (DSRR) for n teams distributes the nðn� 1Þ
matches over a minimal number of rounds such

that every team plays at most one match per

round. If n is even, the number of rounds is n� 1.

A DSRR with an odd number of teams consists of

n rounds in each of which n� 1 teams play and
one team does not. This team is said to have a bye.

In the following, we are limiting ourselves to an

even number of teams, since the problem for an

odd number of teams n� 1 can be reduced to the n
case by introducing an additional team that always

‘‘plays’’ against the team with a bye. When g ¼ 2,

we speak of a dense double round robin (DDRR).

The planning of a DSRR consists of assigning

for each round an opponent team to each team.

Teams Rounds

1 2 3 4 5

1 2 4 6 3 5

2 1 3 5 6 4
3 5 2 4 1 6

4 6 1 3 5 2

5 3 6 2 4 1

6 4 5 1 2 3
Often other decisions have to be taken as well,

such as the place in which the matches are carried

out. For intermural tournaments, this amounts to

the question whether a team plays home or away.

For intramural tournaments, a court may need to
be selected. We first concentrate on opponent team

assignment and discuss intermural tournaments in

Section 6.

The single round robin schedule on the right

shows a valid assignment of opponent teams for
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n ¼ 6 and g ¼ 1 in each round. The value in row t
and column r tells the team against which team t
plays in round r.

In order to characterize the mathematical

properties of round robin schedules, we need to

introduce some terminology on graphs.

Let G ¼ ðV ;EÞ be an undirected graph with

vertex set V and edge set E where ðx; xÞ 62 E (no

self-loops). The degree of G is the maximal number
of edges incident to some vertex in G. G is called

complete, if there is an edge from any vertex to any

other. A factor of G is a subgraph of G with vertex

set V . A factorization of G is a set of factors of G
which are pairwise edge-disjoint and whose union

of edges is E. A set M � E is called a matching in

G, if no two distinct edges in M share a common

endpoint. We call a vertex v matched by M if it is
incident to some edge in M , and free otherwise. A

matching M is called perfect if it covers all vertices

of G, i.e. there are no free vertices. A perfect

matching is also called a one-factor, because it is a

factor with degree 1. A one-factorization of G is a

factorization of G consisting of one-factors.

A one-factorization of the complete graph with

n nodes (n being even) corresponds to a DSRR for
n teams as follows. Every node i represents a team,

every one-factor represents a round, and an edge

ði; jÞ in a one-factor r fixes a match between teams

i and j in round r. The properties of factorizations
guarantee that every team plays every other team

exactly once. This fact is employed in constructive

methods for tournament planning (see references

in [23]).
3. Constraint programming

We represent round robin tournament prob-

lems as a constraint satisfaction problem (CSP). A

CSP is a triple P ¼ ðX ;D;CÞ, where X is a finite

set of variables, and D assigns to each variable
x 2 X a finite domain Dx of possible values. Each

element c of C expresses a constraint on some

variables x1; . . . ; xk, and thus c � Dx1 � � � � � Dxk .

A solution s to the constraint problem P
assigns to each variable x a value sx 2 Dx such

that each constraint is satisfied. This means that

for every constraint c on variables x1; . . . ; xk,
ðsx1 ; . . . ; sxk Þ 2 c holds. The set of all solutions to a
constraint problem P is denoted by solðPÞ.

The constraint programming approach to solv-

ing combinatorial search problems such as round

robin scheduling problems works as follows. En-

code the problem as a constraint satisfaction

problem P, find a new problem P0 that has the

same set of solutions by applying so-called con-

sistency techniques. Now augment P0 in two ways,
by adding a new constraint c0 and its negation,

respectively, to P0. To the resulting problems

P0 þ c0 and P0 þ :c0, apply again consistency

techniques, find new constraints c00 for each of the

problems, and so on. This process leads to a binary

search tree at whose leaves are either problems

that have no solution, or problems where D con-

tains only singletons, which directly correspond to
solutions.

There are many degrees of freedom in this

process, including the original encoding of the

problem, the consistency techniques to be applied,

the choice of new constraints at each step and the

order in which the resulting search tree is explored.

The success of constraint programming relies on

good choices for all these components. However,
we are here mainly concerned with consistency

techniques. For the other aspects of constraint-

based round robin scheduling, see [7,8].

A propagation technique is a function that

maps constraint problems P ¼ ðX ;D;CÞ to new

constraint problems P0 ¼ ðX ;D0;CÞ, where for

every x 2 X , D0
x � Dx, and where solðPÞ ¼ solðP0Þ.

A CSP is arc-consistent with respect to the
constraint c on variables x1; . . . ; xk, if for each

index i 2 f1; . . . ; kg, and each value v 2 Dxi , there

exists an element ðvx1 ; . . . ; vxi�1
; v; vxiþ1

; . . . ; vxk Þ 2 c.
A CSP is arc-consistent, if it is arc-consistent with

respect to all of its constraints. Arc-consistent

propagation is a propagation technique that turns

a given CSP into an arc-consistent CSP.
4. Constraints for round robin scheduling

The canonical constraint satisfaction problem

for opponent team assignment in DSRR repre-

sents the target timetable by an n� ðn� 1Þ matrix

o of variables, whose variables ot;r tell the opponent
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team against which team t plays in round r. More
formally, we define a DSRR problem as

PDSRR ¼ ðX ;D;CÞ, where X contains all variables

in o and Dot;r ¼ f1; . . . ; ng for every team t and

round r. The set C contains the following con-

straints:

all-differentðot;1; . . . ; ot;n�1Þ;
for every t 2 f1; . . . ; ng; ð1Þ

and

one-factorðx1;r; . . . ; xn;rÞ;
for every r 2 f1; . . . ; n� 1g; ð2Þ

where the constraints all-different and one-factor

are defined as follows:

all-differentðx1; . . . ; xmÞ
¼ fðv1; . . . ; vmÞ 2 Dx1 � � � � � Dxm j

8i;j;i 6¼j � vi 6¼ vjg; ð3Þ

one-factorðx1; . . . ; xmÞ
¼ fðv1; . . . ; vmÞ 2 Dx1 � � � � � Dxm j

8i;j � vi 6¼ i ^ vi ¼ j $ vj ¼ ig: ð4Þ

Propagation algorithms for all-different and one-

factor vary in strength. For the all-different con-

straint, we consider the following two propagation

algorithms:

(1) splitting the constraint up into mðm� 1Þ in-

equality constraints of the form xi 6¼ xj ac-

cording to its definition in formula (3)

(arc-consistency with respect to such inequali-

ties is trivial), and

(2) arc-consistent propagation with respect to the

all-different constraint itself.

For the one-factor constraint, we consider three

propagation algorithms:

(1) after introducing a half-matrix of auxiliary

variables ri;j, where 16 i < j6m, whose do-

mains are Dri;j ¼ f0; 1g, arc-consistent propa-

gation corresponding to the constraints

xi 6¼ i for 16 i6m; ð5Þ

eqðxi; j; ri;jÞ for 16 i < j6m; ð6Þ
eqðxi; j; rj;iÞ for 16 j < i6m ð7Þ

(the constraint eq reflects the equality of the

first two arguments into the third argument),

(2) arc-consistent propagation with respect to

these constraints, plus arc-consistent propaga-

tion with respect to the redundant constraint

all-differentðx1; . . . ; xmÞ, and
(3) arc-consistent propagation with respect to the

one-factor constraint itself.

The propagation behavior of (1) is strictly

weaker than arc-consistent propagation for the

one-factor constraint.

Example 1. For m ¼ 6, let Dx1 ¼ f2; 3; 4; 5; 6g,
Dx2 ¼ f1; 2; 3; 6g, Dx3 ¼ f1; 2; 4; 5; 6g, Dx4 ¼ f1;
3; 6g, Dx5 ¼ f1; 2; 3; 5g, Dx6 ¼ f1; 2; 3; 5g. Arc-
consistency with respect to the neq constraints

removes 2 from Dx2 and 5 from Dx5 , and arc-

consistency with respect to the eq constraints

removes 6 from Dx4 , 2 from Dx5 and 5 from Dx6 .

Arc-consistency with respect to the neq and eq

constraints fails to reach arc-consistency with re-

spect to the one-factor constraint, which further

removes 2, 3 and 6 from Dx1 , 1 and 3 from Dx2 , 1, 2
and 6 from Dx3 , and 1 and 3 from Dx6 .

Adding the redundant constraint all-differ-
entðx1; . . . ; xmÞ with arc-consistent propagation, as

done in propagation algorithm (2), improves the

propagation behavior in some cases. In Example 1,

arc-consistent propagation with respect to this

constraint and the neq and eq constraints achieves
arc-consistency with respect to the one-factor
constraint. The next example shows that this is not

always the case.

Example 2. For m ¼ 6, let Dx1 ¼ f2; 3; 6g, Dx2 ¼
f1; 6g, Dx3 ¼ f1; 4; 5g, Dx4 ¼ f3; 5g, Dx5 ¼ f3; 4g,
Dx6 ¼ f1; 2g. Here, arc-consistency with respect to

the neq and eq constraints and the all-different
constraint is not able to remove any values from

any domain, whereas arc-consistency with respect

to the one-factor constraint removes 2 and 6 from

Dx1 , 1 from Dx2 , 4 and 5 from Dx3 , 3 from Dx4 , 3

from Dx5 , and 1 from Dx6 , thus fixing the one-fac-

tor 1–3, 2–6 and 4–5.



96 M. Henz et al. / European Journal of Operational Research 153 (2004) 92–101
We conclude from these examples that arc-
consistent propagation for the one-factor con-

straint deserves consideration and––assuming that

there is an efficient algorithm for it––has the po-

tential for improving round robin scheduling be-

yond the addition of an arc-consistent redundant

all-different constraint.

Most previous work on constraint-based tour-

nament planning [7,8,11,19] used only algorithm 1
for the all-different constraint and algorithm 1 for

the one-factor constraint. Trick [22] suggests to use

algorithm 2 for the all-different constraint and al-

gorithm 2 for the one-factor constraint. Our goal is

to evaluate the propagation algorithms to achieve

guidelines for using propagation algorithms in

round robin scheduling.
5. Propagation algorithms

Consider the constraint all-differentðx1; . . . ; xmÞ.
The value graph of this constraint is the bipartite

graph G ¼ ðV ;EÞ with V ¼ fx1; . . . ; xmg [
S

i Dxi

and E ¼ ffxi; vgjv 2 Dxig.

Lemma 1 (R�eegin [16]). The following algorithm is
a propagation technique for arc-consistent propa-
gation with respect to the constraint all-different
ðx1; . . . ; xmÞ. Construct the value graph of the con-
straint. For every variable x and value v, such that
fx; vg is not a matchable edge in G, remove v from
Dx.

R�eegin gives an algorithm for identifying non-

matchable edges in a value graph with m variables

and k values with complexity Oðkm3=2Þ. For round
robin tournaments, both k and m are bounded by

the number of teams n, resulting in a complexity of

Oðn2 ffiffiffi
n

p Þ.
Now, consider the constraint one-factor

ðx1; . . . ; xmÞ. The variable graph of this constraint is
the graph G ¼ ðV ;EÞ with the vertex set V ¼
fx1; . . . ; xmg and the edge set E ¼ ffxi; xjgjj 2 Dxig.

Looking at the definition of the one-factor

constraint, it is easy to derive a one-to-one corre-

spondence between the solutions of the con-

straint and the perfect matchings in its variable

graph G:
• Let ðv1; . . . ; vmÞ 2 one-factorðx1; . . . ; xmÞ denote

a solution. The set M ¼ ffxi; xvigj16 i6mg is

well-defined, a subset of E and a perfect match-

ing in G.
• The matching M 0 corresponds to the solution

ðv01; . . . ; v0mÞ of the constraint where v0i is the

index of the mate of the node xi in the matching

M 0.

This observation motivates the following defi-

nitions: We call an edge e of G matchable if there is
a perfect matching M in G containing e and un-
matchable otherwise.

Lemma 2 (R�eegin [17]). The following algorithm
is a propagation technique for arc-consistent prop-
agation with respect to the constraint one-
factorðx1; . . . ; xmÞ. Iterate over the domains Dx1 ; . . . ;
Dxm to enforce constraints

i 62 Dxi for 16 i6m and

i 2 Dxj $ j 2 Dxi for 16 i < j6m ð8Þ

and construct the variable graph G for the con-
straint. For every pair of values i and j, such that
fxi; xjg is not a matchable edge in G, remove i from
Dxj and remove j from Dxi .

The problem of finding the unmatchable edges

was presented in [1, Exercise 12.42]. It was stated

that the problem can be solved with a variation of

Edmonds� blossom-shrink algorithm [5,6]. R�eegin�s
algorithm follows these ideas. The running time of

the resulting algorithms is OðmsÞ, where m denotes
the number of nodes and s the number of edges

of the variable graph. In round robin tournaments,

m is bounded by the number of teams n and s is

bounded by n2, resulting in a complexity of the

propagation algorithm of Oðn3Þ.
6. Experimental evaluation

For the experimental evaluation, we use the

programming system Mozart 1.1.0 [13] for the

concurrent constraint language Oz [21], which

provides extensive support for finite domain con-

straint programming. We implemented the prop-

agation algorithms all-different and one-factor
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described in the previous sections using the LEDA
library [12] and made them available to the Mozart

system through Mozart�s Constraint Propagator

Interface [14]. The run times given in this section

are always the average user time of five runs on a

256 MB 400 MHz Pentium II PC running Linux.

The coefficient of deviation (standard deviation/

arithmetic mean) was always below 3%.

The C++ and Oz source code for generating
and running these benchmarks is available at [9].

The goals of the experimental evaluation are as

follows:

• evaluate the usefulness of the arc-consistent

one-factor constraint for round robin applica-

tions by comparing the sizes of search trees

and run times resulting from searches that use
the new constraint with searches that use arc-

consistent all-different or simply the encoding

using neq and eq,
• investigate the range of round robin problems

to which arc-consistent one-factor provides ad-

vantages over other techniques, and

• evaluate the efficiency of the arc-consistent one-

factor constraint for practical applications.

We observe from all experiments that the use of

the arc-consistent all-different constraint is crucial.

It typically leads to a reduction of the size of the

search tree and the runtime by one or two orders

of magnitude. Large tournament problems can
Table 1

Benchmarks on unconstrained DSRR

n neq/eq all-differen

F UT F

6 0 0.030 0

10 3 0.428 1

14 62 3.18 0

18 20 5.82 0

22 675 81.3 2

26 ? ? 2

30 ? ? 0

34 ? ? 17

38 ? ? 5

42 ? ? 4

n: number of teams; F : number of failures in the search tree; UT : use
exceeded.
only be solved using arc-consistent propagation
for all-different, and thus we fix this propagation

algorithm in the rest of this section.

6.1. Unconstrained single round robin tournaments

Here, we compare the performance of arc-con-

sistent one-factor versus the encoding using neq
and eq and the redundant all-different constraint.
In this and all following benchmarks, we use

constraint-based tree search by using constraints

of the form ot1;r ¼ t2 as branching constraints c (see
Section 3), which means that we enumerate the

opponent variables. We order the variables round-

wise. At each node, we enumerate the first variable

that has a non-singleton domain. The value t2 is

always the smallest element of this domain. More
sophisticated enumeration techniques such as first-

fail do not improve the search. Table 1 com-

pares the encodings using neq/eq from Section 4,

Formula (4), the addition of a redundant arc-

consistent all-different constraint as discussed in

Example 1, and the algorithm one-factor, for

finding the first DSRR.

We observe that for these kinds of benchmarks,
arc-consistent one-factor achieves optimal propa-

gation in a sense that there are no failures in the

search trees, whereas the encoding using neq/eq
requires search. From 26 teams onward, this

method fails to produce solutions within reason-

able time. Arc-consistent all-different occasionally
t one-factor

UT F UT

0.048 0 0.020

0.558 0 0.220

4.35 0 1.13

8.86 0 4.37

25.0 0 12.7

57.1 0 32.0

122.0 0 71.2

241.0 0 145.0

429.0 0 272.0

742.0 0 484.0

r time. The ? symbols indicate that 30 minutes of runtime were
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requires a bit of search, but the performance dif-
ference to arc-consistent one-factor is not dramatic

here.

6.2. Tightly constrained round robin tournaments

The next set of benchmarks looks at tightly

constrained problems. We constrain the problems

by randomly forbidding opponent teams, until
there are very few or no solutions to the problem.

Table 2 compares the three remaining propagation

algorithms for finding all solutions, or proving

unsatisfiability. The problems s � are single round

robin problems as described throughout the paper,

whereas the problems d � are double round robin

problems. For the latter, we have instead of an all-

different constraint per team (requiring that each
team plays each other team once) constraints that

force the number of occurrences of all other teams

in each row of the o matrix to be 2. There is no

restriction on the distance between first leg and

return match.

Although the results vary considerably, we note

that in these tightly constrained problems, arc-

consistent one-factor results in a reduction of the
size of search trees by a factor of up to 10, and of

the runtime by even more. The difference between
Table 2

Benchmarks on tightly constrained DSRR and DDRR

File n S neq/eq

F UT

s_6_yes 6 4 7 0.088

s_8_yes 8 5 47 0.540

s_10_yes 10 1 37 0.704

s_12_yes 12 1 3216 77.9

s_14_yes 14 1 8407 242.0

s_6_no 6 0 4 0.048

s_8_no 8 0 13 0.172

s_10_no 10 0 20 0.530

s_12_no 12 0 241 6.64

s_14_no 14 0 537 16.7

s_16_no 16 0 1467 64.5

s_18_no 18 0 593 38.6

s_20_no 20 0 ? ?

d_6_yes 6 4 21 0.066

d_8_yes 8 32 5776 19.2

d_10_yes 10 2 76646 409.0

n: number of teams; S: number of solutions; F : number of failures in
the two techniques increases with the problem size.
Note that for the double round robin problems,

the reduction of the search tree afforded by the

redundant all-different constraint does not justify

its computational effort.

6.3. Minimizing carry-over

We consider sports, in which a match between
two teams a and b has an impact on the perfor-

mance of these teams in the next round, an effect

called carry-over. In such a sport, each sequence of

two teams should appear at most once in such a

schedule, leading to a schedule balanced with re-

spect to carry-over effects. For example, this is not

the case for the schedule on page 3; the sequence

(3, 5) appears three times. Since this ideal is not
always achievable, the goal is to minimize the

carry-over effect using a cost function. Russell [18]

gives a constructive method for generating tour-

naments with no carry-over effect where n is a

power of two, and conjectures the non-existence of

such tournaments in all other cases. He gives a

constructive method to generate tournaments with

small carry-over effects leading to a carry-over
effect of 60 for n ¼ 6, 138 for n ¼ 10 and 196 for

n ¼ 12 according to a canonical cost measure.
all-different one-factor 2

F UT F UT

5 0.124 4 0.060

24 0.606 10 0.200

17 0.686 1 0.106

1452 64.1 179 6.26

1328 75.3 527 20.4

4 0.066 4 0.022

12 0.246 6 0.086

13 0.646 6 0.168

111 5.37 25 0.794

182 10.9 69 2.54

213 18.0 86 5.37

95 9.57 30 2.29

2755 314.0 254 23.0

4 0.084 2 0.020

2736 28.1 226 0.93

38251 677.0 5956 35.6

the search tree; UT : user time.
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With constraint-based branch-and-bound using
arc-consistent propagation for one-factor con-

straints, we are able to prove the optimality of his

schedule for n ¼ 6. However, for n ¼ 10, we obtain

a schedule with a better cost (136) after 26.2 sec-

onds. The best values that we obtain is 128 for

n ¼ 10 shown on the previous page, which is ob-

tained using a randomized search strategy (the

runtime of about 30 minutes is therefore not very
informative). Trick [22] reports an even better cost

(122) after 1 day of runtime, also using constraint

programming. For n ¼ 12, we improve the best

known schedule (cost 196) given in [18] and

achieve a schedule with a cost of 188, which is

given in [9].

In this study, the use of arc-consistent propa-
gation for the one-factor constraint is again cru-

cial.

Teams Rounds

1 2 3 4 5 6 7 8 9

1 6 5 10 9 4 8 7 2 3

2 7 4 9 10 6 3 8 1 5

3 8 9 7 6 5 2 4 10 1
4 9 2 8 7 1 10 3 5 6

5 10 1 6 8 3 7 9 4 2

6 1 7 5 3 2 9 10 8 4

7 2 6 3 4 10 5 1 9 8

8 3 10 4 5 9 1 2 6 7

9 4 3 2 1 8 6 5 7 10

10 5 8 1 2 7 4 6 3 9

Small carry-over schedule for n ¼ 10.
6.4. Feasible pattern sets

Here, we consider intermural dense double

round robins (DDRR) ðg ¼ 2Þ, where the second

part of the double round robin repeats the first

part with opposite venues. A team is said to have a

break, if it either plays two consecutive matches

home or away. We consider the problem of finding

all schedules that minimize the overall number of
breaks. A widely accepted method of searching for

intermural tournaments is to generate pattern sets

first [7,8,15,20]. These are sets of home/away pat-

terns that satisfy simple row and column con-
straints [7]. However, not all such pattern sets lead
to schedules even if there are no other side con-

straints. De Werra [4] gives a construction of fea-

sible pattern sets with 3n� 6 breaks, proves their

optimality and states that no constructive method

is known to enumerate all feasible pattern sets. In

this situation, it is useful to enumerate feasible
pattern sets, which––surprisingly––has to our

knowledge not been tackled so far. For this task
we use the constraint model given in [7] and add

the model for opponents given in Section 4. The

table on the right gives the number of pattern sets

for n6 18; the pattern sets are listed in [9]. The

column P gives the number of pattern sets that

fulfill the pattern set constraints, the column F
gives the number of pattern sets that fulfill the

model for opponents. For all n6 16, there exists a
schedule for every computed pattern set. For

n ¼ 18, there are four cases, for which we could

neither prove infeasibility nor generate a schedule.

For n6 16 the use of the arc-consistent one-

factor constraint or the redundant arc-consistent
all-different constraint for one-factor was not

crucial and the pattern sets were obtained faster

with trivial propagation for the one-factor con-

straint. For n ¼ 18, the arc-consistent propagation

for the one-factor constraint allows to prove the

infeasibility of 17 pattern sets; without it, the

number of pattern sets generated is 101.

n P F

4 0 0

6 1 1

8 4 2
10 15 4

12 56 10

14 210 17

16 792 46

18 3003 84
6.5. Intermural tournaments

The intermural benchmarks in this section show

that the pruning obtained from arc-consistent



Table 3

Benchmarks on intermural tournaments

File n S neq/eq all-different one-factor 2

F UT F UT F UT

i_8_yes 8 7 0 0.138 0 0.182 0 0.142

i_12_yes 12 3 0 0.440 0 0.510 0 0.436

i_16_yes 16 4 6 1.30 4 1.51 4 1.22

i_20_yes 20 10 35 4.23 22 4.63 22 3.61

acc97/98 9 179 273 19.5 273 28.4 268 22.1

n: number of teams; S: number of solutions; F : number of failures in the search tree; UT : user time.
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one-factor not always outweighs its computational
effort. The best strategy for intermural tournament

problems is to first find so-called pattern sets [3].

Table 3 shows the run times for finding all solu-

tions of intermural tournament problems, all of

which except the last one are randomly con-

strained as in the previous section. The last prob-

lem is the ACC 1997/98 problem [8,15], which is

tightly constrained by a variety of conditions.
Since we are not concerned with the computation

of the pattern sets, we fix a particular pattern set

for the benchmarks, except for the ACC 1997/98

problem. The numbers for this last problem in-

clude the effort for generating pattern sets, since

the one-factor constraint already achieves some

additional pruning during pattern set generation.

We observe that the effort for neither arc-con-
sistent one-factor nor arc-consistent all-different is

justified for these intermural tournaments. The

reason is that pattern sets already enforce one-

factor to such an extent that arc-consistent one-

factor achieves almost no additional pruning of

the search trees. Note that the arc-consistent one-

factor constraint could be sped up in this case by

exploiting that the variable graph is bipartite,
which would lead a complexity of Oðn2 ffiffiffi

n
p Þ, similar

to the arc-consistent all-different.
7. Conclusion

We analyzed the use of the global constraints

all-different and one-factor for constraint-based
search for round robin tournament schedules. We

conclude from an extensive experimental evalua-

tion that arc-consistent propagation for the all-
different constraint is crucial for efficient solution
of all tournament scheduling problems considered.

Arc-consistent propagation for the one-factor

constraint is essential for intramural tournaments.

For large unconstrained and tightly constrained

single and multiple round robin tournaments, we

observe a typical reduction of the search tree and

runtime by one order of magnitude. Intermural

tournaments do not benefit much from the arc-
consistent one-factor constraint.

Using these algorithms, we could establish new

lower bounds for the minimization of carry-over

effects for intramural single round robin tourna-

ments and enumerate the all feasible pattern sets

for intramural tournaments with a minimal num-

ber of breaks for up to 16 teams. For 18 teams,

there are four open cases.
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