///////////////////////////////////////////////// // Time Network TTimeNet& TTimeNet::operator = (const TTimeNet& TimeNet) { if (this != &TimeNet) { TNet::operator=(TimeNet); } return *this; } PTimeNet TTimeNet::GetSubGraph(const TIntV& NIdV) const { PTimeNet NewNetPt = TTimeNet::New(); TTimeNet& NewNet = *NewNetPt; NewNet.Reserve(NIdV.Len(), -1); int node, edge; TNodeI NI; for (node = 0; node < NIdV.Len(); node++) { NewNet.AddNode(NIdV[node], GetNDat(NIdV[node])); // also copy the node data } for (node = 0; node < NIdV.Len(); node++) { NI = GetNI(NIdV[node]); const int SrcNId = NI.GetId(); for (edge = 0; edge < NI.GetOutDeg(); edge++) { const int OutNId = NI.GetOutNId(edge); if (NewNet.IsNode(OutNId)) { NewNet.AddEdge(SrcNId, OutNId); } } } NewNet.Defrag(); return NewNetPt; } PTimeNENet TTimeNet::GetTimeNENet() const { TIntV NIdV; GetNIdByTm(NIdV); PTimeNENet OutNet = TTimeNENet::New(GetNodes(), GetEdges()); for (int i = 0; i < NIdV.Len(); i++) { const int Src = NIdV[i]; const TTimeNet::TNodeI NI = GetNI(Src); const TSecTm SrcTm = NI.GetDat(); if (! OutNet->IsNode(Src)) { OutNet->AddNode(Src, SrcTm); } for (int e = 0; e < NI.GetOutDeg(); e++) { if (! OutNet->IsNode(NI.GetOutNId(e))) { OutNet->AddNode(NI.GetOutNId(e), SrcTm); } OutNet->AddEdge(Src, NI.GetOutNId(e), -1, SrcTm); } } return OutNet; } void TTimeNet::GetNIdByTm(TIntV& NIdV) const { TVec > TmToNIdV(GetNodes(), 0); for (TNodeI NodeI = BegNI(); NodeI < EndNI(); NodeI++) { TmToNIdV.Add(TKeyDat(NodeI.GetDat(), NodeI.GetId())); } TmToNIdV.Sort(); NIdV.Gen(GetNodes(), 0); for (int i = 0; i < TmToNIdV.Len(); i++) { NIdV.Add(TmToNIdV[i].Dat); } } // put nodes into buckets by TmUnit void TTimeNet::GetTmBuckets(const TTmUnit& TmUnit, TTmBucketV& TmBucketV) const { THash TmIdToNIdVH; for (TNodeI NodeI = BegNI(); NodeI < EndNI(); NodeI++) { const int TmId = NodeI().Round(TmUnit); if (! TmIdToNIdVH.IsKey(TmId)) TmIdToNIdVH.AddKey(TmId); TmIdToNIdVH.GetDat(TmId).Add(NodeI.GetId()); } TVec > TmIdNIdVV; TmIdToNIdVH.GetKeyDatPrV(TmIdNIdVV); TmIdNIdVV.Sort(); TmBucketV.Gen(TmIdNIdVV.Len()); for (int i = 0; i < TmIdNIdVV.Len(); i++) { TTmBucket& Bucket = TmBucketV[i]; Bucket.BegTm = TmIdNIdVV[i].Val1; Bucket.NIdV = TmIdNIdVV[i].Val2; } } void TTimeNet::GetNodeBuckets(const int NodesPerBucket, TTimeNet::TTmBucketV& TmBucketV) const { TIntV NIdV; GetNIdByTm(NIdV); TmBucketV.Gen(NIdV.Len() / NodesPerBucket + 1, 0); for (int i = 0; i < NIdV.Len(); i++) { const int b = i/NodesPerBucket; if (TmBucketV.Len() <= b) { TmBucketV.Add(TTimeNet::TTmBucket(TSecTm(b))); } TmBucketV[b].NIdV.Add(NIdV[i]); } } PGStatVec TTimeNet::TimeGrowth(const TTmUnit& TmUnit, const TFSet& TakeStat, const TSecTm& StartTm) const { PGStatVec GrowthStat = new TGStatVec(TmUnit, TakeStat); TTmBucketV TmBucketV; GetTmBuckets(TmUnit, TmBucketV); TIntV NodeIdV; TExeTm ExeTm; for (int t = 0; t < TmBucketV.Len(); t++) { NodeIdV.AddV(TmBucketV[t].NIdV); // nodes up to time T printf("\n=== %d/%d] %s (%d nodes)\n", t+1, TmBucketV.Len(), TmBucketV[t].BegTm.GetStr().CStr(), NodeIdV.Len()); ExeTm.Tick(); if (TmBucketV[t].BegTm < StartTm) continue; //PNGraph PreGraph = GetSubGraph(NodeIdV, true); // renumber nodes PNGraph PreGraph = TSnap::ConvertSubGraph(PTimeNet((TTimeNet*)this), NodeIdV); // don't renumber nodes GrowthStat->Add(PreGraph, TmBucketV[t].BegTm); } return GrowthStat; } void TTimeNet::PlotEffDiam(const TStr& FNmPref, const TStr& Desc, const TTmUnit& TmUnit, const TSecTm& StartTm, const int& NDiamRuns, const bool& OnlyWcc, const bool& AlsoRewire) const { const TStr WccStr = OnlyWcc ? "WCC " : TStr::GetNullStr(); TTmBucketV TmBucketV; GetTmBuckets(TmUnit, TmBucketV); TIntV NodeIdV; TExeTm ExeTm, Run1Tm; TFltTrV TmDiamV, NdsDiamV; TFltTrV RwTmDiamV, RwNdsDiamV; for (int t = 0; t < TmBucketV.Len(); t++) { NodeIdV.AddV(TmBucketV[t].NIdV); // nodes up to time T printf("\n*** %d/%d] at %s (%d nodes)\n", t+1, TmBucketV.Len(), TmBucketV[t].BegTm.GetStr(TmUnit).CStr(), NodeIdV.Len()); ExeTm.Tick(); if (TmBucketV[t].BegTm < StartTm) continue; //PUNGraph PreGraph = GetSubUNGraph(NodeIdV, true); PUNGraph PreGraph = TSnap::ConvertSubGraph(PTimeNet((TTimeNet*)this), NodeIdV); { TMom Mom; for (int r = 0; r < NDiamRuns; r++) { printf("%d...", r+1); Run1Tm.Tick(); const double EffDiam = TSnap::GetAnfEffDiam(OnlyWcc ? TSnap::GetMxWcc(PreGraph) : PreGraph); Mom.Add(EffDiam); printf("[%s]\r", Run1Tm.GetTmStr()); } Mom.Def(); TmDiamV.Add(TFltTr((int)TmBucketV[t].BegTm.GetInUnits(TmUnit), Mom.GetMean(), Mom.GetSDev())); NdsDiamV.Add(TFltTr(PreGraph->GetNodes(), Mom.GetMean(), Mom.GetSDev())); NdsDiamV.Sort(); printf(" [%s] \n", ExeTm.GetTmStr()); } if (AlsoRewire) { //PUNGraph RwGraph = TGGen::GenRndDegSeqS(PreGraph, 50, TInt::Rnd); // edge switching model TIntV DegSeqV(PreGraph->GetNodes(), 0); for (TUNGraph::TNodeI NI = PreGraph->BegNI(); NI < PreGraph->EndNI(); NI++) { DegSeqV.Add(NI.GetDeg()); } PUNGraph RwGraph = TSnap::GenConfModel(DegSeqV, TInt::Rnd); printf("Configuration model: (%d, %d) --> (%d, %d)\n", PreGraph->GetNodes(), PreGraph->GetEdges(), RwGraph->GetNodes(), RwGraph->GetEdges()); TMom Mom; for (int r = 0; r < NDiamRuns; r++) { printf(" diam run %d...", r+1); Run1Tm.Tick(); const double EffDiam = TSnap::GetAnfEffDiam(OnlyWcc ? TSnap::GetMxWcc(PreGraph):PreGraph); Mom.Add(EffDiam); printf(" current run [%s]\n", Run1Tm.GetTmStr()); } Mom.Def(); RwTmDiamV.Add(TFltTr((int)TmBucketV[t].BegTm.GetInUnits(TmUnit), Mom.GetMean(), Mom.GetSDev())); RwNdsDiamV.Add(TFltTr(PreGraph->GetNodes(), Mom.GetMean(), Mom.GetSDev())); RwNdsDiamV.Sort(); printf("done with diameter. Total time [%s] \n", ExeTm.GetTmStr()); } // plot { TGnuPlot GnuPlot("diamEff-T."+FNmPref, TStr::Fmt("%s. G(%d, %d)", Desc.CStr(), GetNodes(), GetEdges())); GnuPlot.SetXYLabel(TStr::Fmt("TIME [%s]", TTmInfo::GetTmUnitStr(TmUnit).CStr()), WccStr+"Effective Diameter"); GnuPlot.AddErrBar(TmDiamV, "True", ""); if (! RwTmDiamV.Empty()) { GnuPlot.AddErrBar(RwTmDiamV, "Rewired", "");} GnuPlot.SavePng(); } { TGnuPlot GnuPlot("diamEff-N."+FNmPref, TStr::Fmt("%s. G(%d, %d)", Desc.CStr(), GetNodes(), GetEdges())); GnuPlot.SetXYLabel("NODES", WccStr+"Effective Diameter"); GnuPlot.AddErrBar(NdsDiamV, "True", ""); if (! RwNdsDiamV.Empty()) { GnuPlot.AddErrBar(RwNdsDiamV, "Rewired", "");} GnuPlot.SavePng(); } } } // pretend we only have link data starting in PostTmDiam // compare the diameter of the nodes after PostTmDiam with diameter // of the nodes after PostTmDiam but *also* using nodes and edges // from before PostTmDiam void TTimeNet::PlotMissingPast(const TStr& FNmPref, const TStr& Desc, const TTmUnit& TmUnit, const TSecTm& DelPreTmEdges, const TSecTm& PostTmDiam) const { printf("\nGrowth over time: degree distribution, Growth Power Law, Diameter.\n %s group by %s.\n", FNmPref.CStr(), TTmInfo::GetTmUnitStr(TmUnit).CStr()); printf(" Delete out-edges of pre time %s nodes.\n Take subgraph of post year %s subgraph.\n\n", DelPreTmEdges.GetStr().CStr(), PostTmDiam.GetStr().CStr()); const int NDiamRuns = 10; const int NSamples = 100; //PUNGraph FullGraph = GetUNGraph(); PUNGraph FullGraph = TSnap::ConvertGraph(PTimeNet((TTimeNet*)this)); // delete past if (DelPreTmEdges.IsDef()) { int NDelNodes = 0, NDelEdges = 0; printf("Deleting pre-%s node out-links\n", DelPreTmEdges.GetStr().CStr()); for (TNodeI NodeI = BegNI(); NodeI < EndNI(); NodeI++) { if (NodeI() < DelPreTmEdges) { const int NodeId = NodeI.GetId(); for (int edge = 0; edge < NodeI.GetOutDeg(); edge++) { FullGraph->DelEdge(NodeId, NodeI.GetOutNId(edge)); } NDelEdges += NodeI.GetOutDeg(); NDelNodes++; } } printf(" Deleted %d nodes out-edges (%d edges total).\n", NDelNodes, NDelEdges); FullGraph->Defrag(true); } PGStatVec GrowthStat = TGStatVec::New(TmUnit); TFltV PreDiamSDev, PreEffDiamSDev, WccDiamSDev, WccEffDiamSDev; TIntV NodeIdV; TExeTm ExeTm; TTmBucketV TmBucketV; GetTmBuckets(TmUnit, TmBucketV); for (int t = 0; t < TmBucketV.Len(); t++) { printf("\nGraph: %s (%d / %d) [%s]\n", TmBucketV[t].BegTm.GetTmStr().CStr(), t+1, TmBucketV.Len(), TExeTm::GetCurTm()); // up-to-year subgraph NodeIdV.AddV(TmBucketV[t].NIdV); // nodes up to time T if (TmBucketV[t].BegTm < PostTmDiam) { continue; } const PUNGraph PreGraph = TSnap::GetSubGraph(FullGraph, NodeIdV, true); const PUNGraph WccGraph = TSnap::GetMxWcc(PreGraph); TIntV PostYearNIdV, WccPostYearNIdV; for (TUNGraph::TNodeI NI = PreGraph->BegNI(); NI < PreGraph->EndNI(); NI++) { if (GetNDat(NI.GetId()) >= PostTmDiam) { PostYearNIdV.Add(NI.GetId()); if (WccGraph->IsNode(NI.GetId())) { WccPostYearNIdV.Add(NI.GetId()); } } } TMom PreDiamMom, PreEffDiamMom, WccDiamMom, WccEffDiamMom; // diameter of PostYearDiam subgraph using whole graph (all edges) int FullDiam; double EffDiam; for (int r = 0; r < NDiamRuns; r++) { if (! PostYearNIdV.Empty()) { TSnap::GetBfsEffDiam(PreGraph, NSamples, PostYearNIdV, false, EffDiam, FullDiam); PreDiamMom.Add(FullDiam); PreEffDiamMom.Add(EffDiam); } if (! WccPostYearNIdV.Empty()) { TSnap::GetBfsEffDiam(WccGraph, NSamples, WccPostYearNIdV, false, EffDiam, FullDiam); WccDiamMom.Add(FullDiam); WccEffDiamMom.Add(EffDiam); } printf(" diam: %d [%s] \r", r+1, ExeTm.GetTmStr()); ExeTm.Tick(); } PreDiamMom.Def(); PreEffDiamMom.Def(); WccDiamMom.Def(); WccEffDiamMom.Def(); // save stat PGStat GraphStatPt = GrowthStat->Add(TmBucketV[t].BegTm); TGStat& GS = *GraphStatPt; GS.TakeBasicStat(PreGraph, false); GS.TakeBasicStat(WccGraph, true); GS.SetVal(gsvFullDiam, PreDiamMom.GetMean()); // mean GS.SetVal(gsvEffDiam, PreEffDiamMom.GetMean()); GS.SetVal(gsvFullWccDiam, WccDiamMom.GetMean()); GS.SetVal(gsvEffWccDiam, WccEffDiamMom.GetMean()); GS.SetVal(gsvFullDiamDev, PreDiamMom.GetSDev()); // variance GS.SetVal(gsvEffDiamDev, PreEffDiamMom.GetSDev()); GS.SetVal(gsvFullWccDiamDev, WccDiamMom.GetSDev()); GS.SetVal(gsvEffWccDiamDev, WccEffDiamMom.GetSDev()); { TFOut FOut("growth."+FNmPref+".gStatVec"); GrowthStat->Save(FOut); } GrowthStat->SaveTxt(FNmPref, TStr::Fmt("%s. MISSING PAST DIAMETER\nDelPreEdges\t%s\nPostYearDiam\t%s\n", Desc.CStr(), DelPreTmEdges.GetStr().CStr(), PostTmDiam.GetStr().CStr())); } // diameter plots //GrowthStat->PlotDiam(FNmPref, Desc + TStr::Fmt(" MISSING PAST. DelPre:%d PostYear:%d.", // DelPreEdges, PostYearDiam));*/ } void TTimeNet::PlotCCfOverTm(const TStr& FNmPref, TStr Desc, const TTmUnit& TmUnit, const int& NodesBucket) const { if (Desc.Empty()) { Desc = FNmPref; } TTimeNet::TTmBucketV TmBucketV; TStr XLbl; if (TmUnit == tmuNodes) { XLbl = "Number of nodes (time)"; IAssert(NodesBucket > 0); GetNodeBuckets(NodesBucket, TmBucketV); } else { XLbl = TStr::Fmt("Time (%s)", TTmInfo::GetTmUnitStr(TmUnit).CStr()); GetTmBuckets(TmUnit, TmBucketV); } TIntV NodeIdV; TFltPrV DegToCCfV, CcfV, OpClV, OpV; TVec > OpenClsV; TTuple Tuple; TExeTm ExeTm; int XVal = 0; printf("Clustering coefficient over time:\n %d edges, %d edges per bucket, %d buckets \n", GetEdges(), 100000, TmBucketV.Len()); PUNGraph UNGraph = TSnap::ConvertGraph(PTimeNet((TTimeNet*)this)); for (int t = 0; t < TmBucketV.Len(); t++) { printf("\r %d/%d: ", t+1, TmBucketV.Len()); NodeIdV.AddV(TmBucketV[t].NIdV); // edges up to time T int Open=0, Close=0; const PUNGraph Graph = TSnap::GetSubGraph(UNGraph, NodeIdV); const double CCf = TSnap::GetClustCf(Graph, DegToCCfV, Open, Close); if (TmUnit == tmuNodes) { XVal = Graph->GetNodes(); } else { XVal = TmBucketV[t].BegTm.GetInUnits(TmUnit); } CcfV.Add(TFltPr(XVal, CCf)); OpClV.Add(TFltPr(XVal, Open+Close==0?0:Close/(Open+Close))); OpV.Add(TFltPr(XVal, Open==0?0:Close/Open)); Tuple[0]=Graph->GetNodes(); Tuple[1]=Graph->GetEdges(); Tuple[2]=Close; Tuple[3]=Open; OpenClsV.Add(Tuple); printf(" %s", ExeTm.GetStr()); TGnuPlot::PlotValV(DegToCCfV, TStr::Fmt("ccfAt%02dtm.%s", t+1, FNmPref.CStr()), TStr::Fmt("%s. At time %d. Clustering Coefficient. G(%d,%d)", Desc.CStr(), t+1, Graph->GetNodes(), Graph->GetEdges()), "Degree", "Clustering coefficient", gpsLog10XY, false); } TGnuPlot::PlotValV(CcfV, "ccfOverTm."+FNmPref, Desc+". Average Clustering Coefficient", XLbl, "Average clustering coefficient", gpsAuto, false); TGnuPlot::PlotValV(OpClV, "ClsOpnTr1."+FNmPref, Desc+". Close/(Open+Closed) triads", XLbl, "Close / (Open+Closed) triads", gpsAuto, false); TGnuPlot::PlotValV(OpV, "ClsOpnTr2."+FNmPref, Desc+". Close/Open triads", XLbl, "Close / Open triads", gpsAuto, false); TGnuPlot::SaveTs(OpenClsV, "ClsOpnTr."+FNmPref+".tab", TStr::Fmt("#%s\n#Nodes\tEdges\tClosed\tOpenTriads", Desc.CStr())); printf("\n"); } void TTimeNet::PlotMedianDegOverTm(const TStr& FNmPref, const TTmUnit& TmUnit, const int& NodesPerBucket) const { TTimeNet::TTmBucketV TmBucketV; TStr XLbl; if (TmUnit == tmuNodes) { XLbl = "Number of nodes (time)"; IAssert(NodesPerBucket > 0); GetNodeBuckets(NodesPerBucket, TmBucketV); } else { XLbl = TStr::Fmt("Time (%s)", TTmInfo::GetTmUnitStr(TmUnit).CStr()); GetTmBuckets(TmUnit, TmBucketV); } printf("\n\n%s\nMedian degree over time:\n %d edges, %d edges per bucket, %d buckets \n", FNmPref.CStr(), GetEdges(), NodesPerBucket, TmBucketV.Len()); TFltPrV MedDegV, MedInDegV, MedOutDegV; TIntV NodeIdV; int XVal; PUNGraph UNGraph = TSnap::ConvertGraph(PTimeNet((TTimeNet*)this)); PNGraph NGraph = TSnap::ConvertGraph(PTimeNet((TTimeNet*)this)); FILE *F = fopen(("gStat-"+FNmPref+".tab").CStr(), "wt"); fprintf(F, "UndirNodes\tUndirEdges\tUndirNonZNodes\tMedianDeg\tMeanDeg\tDirNodes\tDirEdges\tDirNonzNodes\tMedInDeg\tMedOutDeg\tMeanInDeg\tMeanOutDeg\n"); for (int t = 0; t < TmBucketV.Len(); t++) { printf("\r %d/%d: ", t+1, TmBucketV.Len()); NodeIdV.AddV(TmBucketV[t].NIdV); // edges up to time T if (TmUnit == tmuNodes) { XVal = NodeIdV.Len(); } else { XVal = TmBucketV[t].BegTm.GetInUnits(TmUnit); } // un graph { const PUNGraph Graph = TSnap::GetSubGraph(UNGraph, NodeIdV); TMom Mom; for (TUNGraph::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++) { if (NI.GetOutDeg()>0) { Mom.Add(NI.GetOutDeg());} } Mom.Def(); MedDegV.Add(TFltPr(XVal, Mom.GetMedian())); fprintf(F, "%d\t%d\t%d\t%f\t%f", Graph->GetNodes(), Graph->GetEdges(), TSnap::CntNonZNodes(Graph), (float)Mom.GetMedian(), (float)Mom.GetMean()); } // directed graph { const PNGraph Graph = TSnap::GetSubGraph(NGraph, NodeIdV); TMom MomOut, MomIn; for (TNGraph::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++) { if (NI.GetOutDeg()>0) { MomOut.Add(NI.GetOutDeg()); } if (NI.GetInDeg()>0) { MomIn.Add(NI.GetInDeg()); } } MomOut.Def(); MedOutDegV.Add(TFltPr(XVal, MomOut.GetMedian())); MomIn.Def(); MedInDegV.Add(TFltPr(XVal, MomIn.GetMedian())); fprintf(F, "\t%d\t%d\t%d\t%f\t%f\t%f\t%f\n", Graph->GetNodes(), Graph->GetEdges(), (int)TSnap::CntNonZNodes(Graph), (float)MomIn.GetMedian(), (float)MomOut.GetMedian(), (float)MomIn.GetMean(), (float)MomOut.GetMean()); } } fclose(F); TGnuPlot::PlotValV(MedDegV, "medDeg."+FNmPref, FNmPref+" Median degree", TTmInfo::GetTmUnitStr(TmUnit), "Median degree"); TGnuPlot::PlotValV(MedOutDegV, "medOutDeg."+FNmPref, FNmPref+" Median OUT degree", TTmInfo::GetTmUnitStr(TmUnit), "Median OUT degree"); TGnuPlot::PlotValV(MedInDegV, "medInDeg."+FNmPref, FNmPref+" Median IN degree", TTmInfo::GetTmUnitStr(TmUnit), "Median IN degree"); } // load Arxiv affiliation network (papers to authors bipartite graph) //