
ar
X

iv
:c

s/
03

10
04

9v
1

 [
cs

.D
S]

 2
5

O
ct

 2
00

3

An O(m) Algorithm for

Cores Decomposition of Networks

Vladimir Batagelj, Matjaž Zaveršnik

University of Ljubljana, FMF, Department of Mathematics,

and IMFM Ljubljana, Department of TCS,

Jadranska ulica 19, 1 000 Ljubljana, Slovenia

vladimir.batagelj@uni-lj.si
matjaz.zaversnik@fmf.uni-lj.si

Abstract

The structure of large networks can be revealed by partitioning
them to smaller parts, which are easier to handle. One of such de-
compositions is based on k–cores, proposed in 1983 by Seidman. In
the paper an efficient, O(m), m is the number of lines, algorithm for
determining the cores decomposition of a given network is presented.

1 Introduction

“One of the major concerns of social network analysis is identification of
cohesive subgroups of actors within a network. Cohesive subgroups are
subsets of actors among whom there are relatively strong, direct, intense,
frequent, or positive ties” ([7], p. 249). Several notions were introduced
to formally describe cohesive groups: cliques, n–cliques, n–clans, n–clubs,
k–plexes, k–cores, lambda sets, . . . For most of them it turns out that they
are algorithmically difficult (NP hard [4] or at least quadratic), but for cores
a very efficient algorithm exists. We describe it in details in this paper.

2 Cores

The notion of core was introduced by Seidman in 1983 [6].
Let G = (V,L) be a graph. V is the set of vertices and L is the set of

lines (edges or arcs). We will denote n = |V | and m = |L|. A subgraph
H = (W,L|W) induced by the set W is a k-core or a core of order k iff

1

http://arXiv.org/abs/cs/0310049v1

Figure 1: 0, 1, 2 and 3 core

∀v ∈ W : degH(v) ≥ k and H is a maximum subgraph with this property.
The core of maximum order is also called the main core. The core number

of vertex v is the highest order of a core that contains this vertex.
The degree deg(v) can be: in-degree, out-degree, in-degree + out-degree,

. . . determining different types of cores.
In figure 1 an example of cores decomposition of a given graph is pre-

sented. From this figure we can see the following properties of cores:

• The cores are nested: i < j =⇒ Hj ⊆ Hi

• Cores are not necessarily connected subgraphs.

3 Algorithm

Our algorithm for determining the cores hierarchy is based on the following
property [1]:

If from a given graph G = (V,L) we recursively delete all vertices,
and lines incident with them, of degree less than k, the remaining
graph is the k-core.

The outline of the algorithm is as follows:

INPUT: graph G = (V,L) represented by lists of neighbors
OUTPUT: table core with core number for each vertex

2

1.1 compute the degrees of vertices;
1.2 order the set of vertices V in increasing order of their degrees;
2 for each v ∈ V in the order do begin

2.1 core[v] := degree[v];
2.2 for each u ∈ Neighbors(v) do

2.2.1 if degree[u] > degree[v] then begin

2.2.1.1 degree[u] := degree[u] − 1;
2.2.1.2 reorder V accordingly

end

end;

In the refinements of the algorithm we have to provide efficient implemen-
tations of steps 1.2 and 2.2.1.2.

4 Detailed Algorithm

We describe an implementation of the algorithm in a Pascal like language.
Structure graph is used to represent a given graph G = (V,L). We will

not describe the structure into details, because there are several possibilities,
how to do this. We assume that the vertices of G are numbered from 1 to n.
The user has also to provide functions size and in Neighbors, described
in the table:

name(parameters) returned value

size(G) number of vertices in graph G

u in Neighbors(G,v) u is a not yet visited neighbor of vertex v in graph G

Using an adequate representation of graph G (lists of neighbors) we can
implement both functions to run in constant time.

Two types of integer arrays (tableVert and tableDeg) are also in-
troduced. Both of them must be of length at least n. The only difference
is how we index their elements. We start with index 1 in tableVert and
with index 0 in tableDeg.

The algorithm is implemented by procedure cores. The input is graph
G, represented by variable g of type graph, the output is array deg of type
tableVert containing core number for each vertex of graph G.

We need (03-06) some integer variables and three additional arrays. Ar-
ray vert contains the set of vertices, sorted by their degrees. Positions of
vertices in array vert are stored in array pos. Array bin contains for

3

Algorithm 1: The Cores Algorithm for Simple Undirected Graphs

01 procedure cores(var g: graph; var deg: tableVert);
02 var
03 n, d, md, i, start, num: integer;
04 v, u, w, du, pu, pw: integer;
05 vert, pos: tableVert;
06 bin: tableDeg;
07 begin
08 n := size(g); md := 0;
09 for v := 1 to n do begin
10 d := 0; for u in Neighbors(g, v) do inc(d);
11 deg[v] := d; if d > md then md := d;
12 end;
13 for d := 0 to md do bin[d] := 0;
14 for v := 1 to n do inc(bin[deg[v]]);
15 start := 1;
16 for d := 0 to md do begin
17 num := bin[d];
18 bin[d] := start;
19 inc(start, num);
20 end;
21 for v := 1 to n do begin
22 pos[v] := bin[deg[v]];
23 vert[pos[v]] := v;
24 inc(bin[deg[v]]);
25 end;
26 for d := md downto 1 do bin[d] := bin[d-1];
27 bin[0] := 1;
28 for i := 1 to n do begin
29 v := vert[i];
30 for u in Neighbors(g, v) do begin
31 if deg[u] > deg[v] then begin
32 du := deg[u]; pu := pos[u];
33 pw := bin[du]; w := vert[pw];
34 if u <> w then begin
35 pos[u] := pw; vert[pu] := w;
36 pos[w] := pu; vert[pw] := u;
37 end;
38 inc(bin[du]); dec(deg[u]);
39 end;
40 end;
41 end;
42 end;

4

Figure 2: Arrays

each possible degree the position of the first vertex of that degree in array
vert. See also Figure 2 in which a Pascal implementation of our algorithm
for the case of simple undirected graph G = (V,E), E is the set of edges, is
presented.

In a real implementation of the proposed algorithm dynamically allo-
cated arrays should be used. To simplify our description of the algorithm
we replaced them by static.

At the beginning we have to initialize some local variables and arrays
(08-12). First we determine n, the number of vertices of graph g. Then we

compute degree for each vertex v in graph g and store it into array
deg. Simultaneously we also compute the maximum degree md.

After that we sort the vertices in increasing order of their degrees

using bin-sort (13-25). First we count (13-14) how many vertices will be in
each bin (bin consists of vertices with the same degree). Bins are numbered
from 0 to md.

From bin sizes we can determine (15-20) starting positions of bins in
array vert. Bin 0 starts at position 1, while other bins start at position,
equal to the sum of starting position and size of the previous bin. To avoid
additional array we used the same array (bin) to store starting positions of

5

bins. Now we can put (21-25) vertices of graph G into array vert. For each
vertex we know to which bin it belongs and what is the starting position of
that bin. So we can put vertex to the proper place, remember its position
in table pos, and increase the starting position of the bin we used. The
vertices are now sorted by their degrees.

In the final step of initialization phase we have to recover starting

positions of the bins (26-27). We increased them several times in previous
step, when we put vertices into corresponding bins. It is obvious, that the
changed starting position is the original starting position of the next bin.
To restore the right starting positions we have to move the values in array
bin for one position to the right. We also have to reset starting position of
bin 0 to value 1.

The cores decomposition , implementing the for each loop from the
algorithm described in section 3, is done in the main loop (28-41) that runs
over all vertices v of graph g in the order, determined by table vert. The
core number of current vertex v is the current degree of that vertex. This
number is already stored in table deg. For each neighbor u of vertex v with
higher degree we have to decrease its degree and move it for one bin to the
left. Moving vertex u for one bin to the left is operation, which can be done
in constant time. First we have to swap vertex u and the first vertex in
the same bin. In array pos we also have to swap their positions. Finally
we increase starting position of the bin (we increase previous and reduce
current bin for one element).

4.1 Time complexity

We shall show that the described algorithm runs in time O(max(m,n)).
To compute (08-12) the degrees of all vertices we need time O(max(m,n))

since we have to consider each line at most twice. The bin sort (13-27) con-
sists of five loops of size at most n with constant time O(1) bodies – therefore
it runs in time O(n).

The statement (29) requires a constant time and therefore contributes
O(n) to the algorithm. The conditional statement (31-39) also runs in con-
stant time. Since it is executed for each edge of G at most twice the contri-
bution of (30-40) in all repetitions of (28-41) is O(max(m,n)).

Summing up — the total time complexity of the algorithm is O(max(m,n)).
Note that in a connected network m ≥ n− 1 and therefore O(max(m,n)) =
O(m).

6

4.2 Adaption of the algorithm for directed graphs

For directed simple graphs without loops only few changes in the implemen-
tation of the algorithm are needed depending on the interpretation of the
degree. In the case of in-degree and out-degree the function in Neighbors
must return next not yet visited in-neighbor and out-neighbor respectively.
If degree is defined as in-degree + out-degree, the maximum degree can
be at most 2n − 2. In this case we must provide enough space for table
bin (2n− 1 elements). Function in Neighbors must return next not yet
visited in-neighbor or out-neighbor.

5 Example

We applied the described algorithm for cores decomposition on a network
based on the Knuth’s English dictionary [5]. This network has 52652 vertices
(English words having 2 to 8 characters) and 89038 edges (two vertices are
adjacent, if we can get one word from another by changing, removing or
inserting a letter). The obtained network is sparse: density is 0.0000642.
The program took on PC only 0.01 sec to compute the core numbers. In
the table below the summary results are presented.

Vertices with core number 0 are isolated vertices. Vertices with core
number 1 have only one neighbor in the network. The 25-core (main core)
consists of 26 vertices, where each vertex has at least 25 neighbors inside the
core (obviously this is a clique). The corresponding words are a’s, b’s,
c’s, . . . , y’s, z’s.

The 16-core has additional 34 vertices (an, on, ban, bon, can, con,
Dan, don, eon, fan, gon, Han, hon, Ian, ion, Jan, Jon, man, Nan, non,
pan, pon, ran, Ron, San, son, tan, ton, van, von, wan, won, yon, Zan).
There are no edges between vertices with core number 25 and vertices with
core number 16. The adjacency matrix of the subgraph induced by these 34
vertices is presented on figure 3. In this matrix we can see two 17-cliques
and some additional edges.

The 15-core has additional 16 vertices (ow, bow, cow, Dow, how, jow,
low, mow, now, pow, row, sow, tow, vow, wow, yow). This is a clique
again, because only the first letters of the words are different.

7

vertices with core number k size of k-core
k # % # %

25 26 0.049 26 0.049
16 34 0.065 60 0.114
15 16 0.030 76 0.144
14 59 0.112 135 0.257
13 82 0.156 217 0.412
12 200 0.380 417 0.792
11 202 0.384 619 1.176
10 465 0.883 1084 2.059
9 504 0.957 1588 3.016
8 923 1.753 2511 4.769
7 1114 2.116 3625 6.885
6 1590 3.020 5215 9.905
5 2423 4.602 7638 14.507
4 3859 7.329 11497 21.836
3 5900 11.206 17397 33.042
2 8391 15.937 25788 48.978
1 13539 25.714 39327 74.693
0 13325 25.308 52652 100.000

6 Conclusion

The cores, because they can be efficiently determined, are one among few
concepts that provide us with meaningful decompositions of large networks.
We expect that different approaches to the analysis of large networks can
be built on this basis. For example, the sequence of vertices in sequential
coloring can be determined by their core numbers (combined with their
degrees). Cores can also be used to reveal interesting subnetworks in large
networks [3, 2].

The described algorithm is implemented in program for large networks
analysis Pajek (Slovene word for Spider) for Windows (32 bit) [1]. It is
freely available, for noncommercial use, at its homepage:

http://vlado.fmf.uni-lj.si/pub/networks/pajek/

Acknowledgment

This work was supported by the Ministry of Education, Science and Sport
of Slovenia, Project J1-8532. It is a detailed version of the part of the talk

8

Figure 3: Adjacency matrix of 16-core without 25-core

presented at Recent Trends in Graph Theory, Algebraic Combinatorics, and

Graph Algorithms, September 24–27, 2001, Bled, Slovenia,

References

[1] BATAGELJ, V. & MRVAR, A. (1998). Pajek – A Program for Large
Network Analysis. Connections 21 (2), 47–57.

[2] BATAGELJ, V. & MRVAR, A. (2000). Some Analyses of Erdős Col-
laboration Graph. Social Networks 22, 173–186.

[3] BATAGELJ, V., MRVAR, A. & ZAVERŠNIK, M. (1999). Partition-
ing approach to visualization of large graphs. In KRATOCHVÍL, Jan
(ed.). Proceedings of 7th International Symposium on Graph Drawing,

9

September 15-19, 1999, Štǐŕın Castle, Czech Republic. (Lecture notes
in computer science, 1731). Berlin [etc.]: Springer, 90–97.

[4] GAREY, M. R. & JOHNSON, D. S. (1979). Computer and intractabil-

ity. San Francisco: Freeman.

[5] KNUTH, D. E. (1992). Dictionaries of English words.
ftp://labrea.stanford.edu/pub/dict/ .

[6] SEIDMAN, S. B. (1983). Network structure and minimum degree. So-

cial Networks 5, 269–287.

[7] WASSERMAN, S. & FAUST, K. (1994). Social Network Analysis:

Methods and Applications. Cambridge: Cambridge University Press.

10

	Introduction
	Cores
	Algorithm
	Detailed Algorithm
	Time complexity
	Adaption of the algorithm for directed graphs

	Example
	Conclusion

