
A Direct Algorithm to Find a Largest Common
Connected Induced Subgraph of Two Graphs

Bertrand Cuissart and Jean-Jacques Hébrard

Groupe de Recherche en Électronique, Informatique et Imagerie de Caen,
CNRS-UMR6072, Université de Caen, France

{cuissart, hebrard}@info.unicaen.fr

Abstract. We present a direct algorithm that computes a largest com-
mon connected induced subgraph of two given graphs. It is based on an
efficient generation of the common connected induced subgraphs of the
input graphs. Experimental results are provided.

1 Introduction

Graphs are widely used to represent objects in various domains such as chem-
ical information, computer imaging etc [1–p. 527]. Many applications in these
domains necessitate the use of similarity measures which are often based on the
calculation of a largest common subgraph of two graphs [2, 3, 4, 5, 6] .

There are numerous definitions of a largest common subgraph, depending
on the notions of subgraph and size of a graph taken into account. We are
interested here in the case where the considered subgraphs are the connected
induced subgraphs, and where the size of a graph is the number of its vertices.
This notion has been successfully applied in chemistry [7].

Recall that given two graphs G1, G2 and a positive integer k, the problem of
deciding whether there exists a common subgraph of G1 and G2 of size greater
than k is NP-complete [8]. In fact, the problem remains NP-complete if we re-
strict the search to common connected induced subgraphs. However, in practice,
it is useful to define specialized algorithms for this particular case, since they
could be significantly more efficient than a general one. A first algorithm that
computes a largest common connected subgraph of two graphs was presented
by I. Koch in [9]. This algorithm can be straightforwardly adapted to compute
a largest common connected induced subgraph. It reduces the problem to the
search of a largest clique of a compatibility graph associated with the input
graphs. In this paper, we present a direct algorithm based on a procedure that
efficiently generates the common connected induced subgraphs of the two input
graphs. We experimentally compare the two algorithms.

2 Preliminaries

A graph G is denoted by G(V, E) where V is the set of its vertices and E the
set of its edges. The subgraph of G induced by a subset of its vertices, V ′ ⊆ V ,

L. Brun and M. Vento (Eds.): GbRPR 2005, LNCS 3434, pp. 162–171, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Direct Algorithm to Find a LCCIS of Two Graphs 163

(6,j)

(5,e)

(1,a)

(4,d)

(2,b)

(3,c)

1

2 6

3

4

7

a

j

d

e
gc

b h

f

i

5

G :

G1 : G2 :

Fig. 1. A common subgraph of two graphs

is a graph consisting of V ′ and those edges of V with both vertices in V ′. The
subgraph of G induced by V ′ is denoted by G[V ′]. A graph G′ is an induced
subgraph of G if there exists V ′ ⊆ V such that G[V ′] = G′. In all the paper, we
say subgraph for induced subgraph.

Two graphs G1(V1, E1) and G2(V2, E2) are isomorphic if there exists a bi-
jection f : V1 −→ V2 such that for every u1, v1 ∈ V1, {u1, v1} ∈ E1 if and only
if {f(u1), f(v1)} ∈ E2; f is called an isomorphism. A common subgraph of G1
and G2 is a set of ordered pairs {(u1, v1), . . . , (uk, vk)} such that the function
f : {u1, . . . , uk} −→ {v1, . . . , vk} defined by f(ui) = vi (1 ≤ i ≤ k) is an
isomorphism between G1[{u1, . . . , uk}] and G2[{v1, . . . , vk}].

Example 1. In Figure 1, G = {(1, a), (2, b), (3, c), (4, d), (5, e), (6, j)} is a common
subgraph of G1 and G2.

A graph G is connected if any two of its vertices are linked by a path in G.
The problem LCCIS (Largest Common Connected Induced Subgraph) is to find
a common connected induced subgraph C of two given graphs, such that the
cardinality of C, |C|, is maximum.

Recall that a tree is a connected graph containing no circuit. The vertices of
a tree will be called nodes. A rooted tree is a tree in which one node, the root,
is distinguished. In a rooted tree, any node of degree one, unless it is the root,
is called a leaf. If {u, v} is an edge of a rooted tree such that u lies on the path
from the root to v, then u is said to be the parent of v and v is a child of u. An
ancestor of u is any node of the path from the root to u. If u is an ancestor of
v, then v is a descendant of u, and we write u ≤ v; if u �= v, we write u < v. It
is convenient to denote a tree T with root r by (T, r).

We present, in Section 5, an algorithm for LCCIS based on an efficient method
for generating the common connected subgraphs of two graphs; this method is
described in Section 4. But before generating the common connected subgraphs
of two graphs, we must be able to simply generate the connected subgraphs of
a graph; Section 3 is devoted to this question.

164 B. Cuissart and J.-J. Hébrard

3 Connected Subgraphs Generation

We present a structure designed to generate the connected subgraphs of a graph.
Throughout this section, G1(V1, E1) is a fixed graph, and (T, r) is a rooted

tree in which each node, except r, is labelled by an element of {v+ : v ∈
V1} ∪ {v− : v ∈ V1}. The label of a node x, x �= r, is denoted by L(x). A label
of the form v+ (resp. v−) is said to be positive (resp. negative). For each node
x of T , we define PL+(x) = {v ∈ V1 : ∃y, y �= r, y ≤ x and L(y) = v+} ;
PL+(x) is the set of vertices of G1 occurring in a positive label of an ancestor of
x. Similarly, we define PL−(x) = {v ∈ V1 : ∃y, y �= r, y ≤ x and L(y) = v−},
and PL(x) = PL+(x) ∪ PL−(x) ; PL(x) is the set of vertices of G1 used for
labelling the ancestors of x.

In order to generate the connected subgraphs of G1, we build T in such a
way that for each node x of T , G1[PL+(x)] is connected. The set of vertices of
G1 that may label the children of x is denoted by F (x) and defined as follows.

If PL+(x) �= ∅ then F (x) = {v ∈ V1 : ∃u ∈ PL+(x), {v, u} ∈ E1} \ PL(x),
otherwise F (x) = V1 \ PL(x).

Example 2. In Figure 2, PL+(x) = {a, b}, PL(x) = {a, b, c}, F (x) = {e}.

Remark that, by definition, PL+(r) = ∅, PL(r) = ∅ and F (r) = V1.

Definition 3. A tree of the connected subgraphs (TOCS) of G1 is a rooted tree
(T, r) such that :

1. Every node of T , except r, is labelled by an element of {v+ : v ∈ V1} ∪ {v− :
v ∈ V1}.

2. For every node x of T , if F (x) = ∅, then x is a leaf, otherwise x has two
children respectively labelled by v+ and v−, with v ∈ F (x).

See Figure 2 for an example of a TOCS.
We will now show that the leaves of a TOCS of G1 and the connected sub-

graphs of G1 are in a bijective correspondence. The following proposition is an
immediate consequence of Definition 3.

Proposition 4. Let f1 and f2 be two leaves of a TOCS. If f1 �= f2 then
PL+(f1) �= PL+(f2).

Let V ′ ⊆ V1 and (T, r) be a TOCS of G1. We associate with V ′ the path of T ,
(x0, . . . , xk), defined as follows: x0 = r, xk is a leaf of T , and for all i (0 ≤ i < k),
xi+1 is the child of xi with a positive label v+ if v ∈ V ′, otherwise xi+1 is the
child of xi with a negative label. The leaf xk is denoted by l(V ′).

Example 5. In Figure 2, l({a, b, e}) = l({a, b, e, d}) = f .

Remark 6. Let V ′ ⊆ V1. We have PL+(l(V ′)) ⊆ V ′, PL−(l(V ′)) ∩ V ′ = ∅
and PL+(l(V ′)) = ∅ if and only if V ′ = ∅. Indeed, if PL+(l(V ′)) = ∅, then
F (l(V ′)) = V1 \ PL(l(V ′)), moreover, F (l(V ′)) = ∅ since l(V ′) is a leaf, thus
PL(l(V ′)) = V1, PL−(l(V ′)) = V1, V1 ∩ V ′ = ∅ and consequently V ′ = ∅.

A Direct Algorithm to Find a LCCIS of Two Graphs 165

e+e− e−e+d+d− d−d+ e+e− e−e+

c d

a

e

b

f

x
b−

a−a+

b+

c+ c+

b+

e+ c+ c−

d−d+ d− c+

d+ d−

d+ d−
d+

e+ e−

e−e+
e−

e−c−

c−

b−

c−

e+

A TOCS of G1 :

G1 :

Fig. 2. A tree of the connected subgraphs of a graph

Proposition 7. Let T be a TOCS of G1.

1. (soundness) For every leaf f of T , G1[PL+(f)] is connected.
2. (completeness) Let V ′ ⊆ V1. If G1[V ′] is connected, then V ′ = PL+(l(V ′)).

Proof. 1. Straightforward consequence of Definition 3.
2. 2. If V ′ = ∅ then PL+(l(V ′)) = ∅ (Remark 6) and V ′ = PL+(l(V ′)).

If V ′ �= ∅, then PL+(l(V ′)) �= ∅ (Remark 6). By definition of l(V ′), we have
PL+(l(V ′)) ⊆ V ′. Let C = V ′ \ PL+(l(V ′)). Suppose C �= ∅. The sets C and
PL+(l(V ′)) form a partition of V ′. By hypothesis, G[V ′] is connected, thus there
exists an edge {u, v} ∈ E1, with u ∈ C and v ∈ PL+(l(V ′)). By definition of
l(V ′), C ∩ PL(l(V ′)) = ∅, therefore u ∈ F (l(V ′)). Now l(V ′) is a leaf of T , thus
F (l(V ′)) = ∅. A contradiction. Finally, C = ∅ and V ′ = PL+(l(V ′)).
�
Example 8. In Figure 2, G1[{a, b, e}] is connected, G1[{a, b, e, d}] is not con-
nected and PL+(f) = {a, b, e}.

It follows from Prop. 4 and Prop. 7 that there exists a bijection from the
leaves of a TOCS of G1 to the connected subgraphs of G1. As a consequence,
the connected subgraphs of G1 can be generated by simply performing a depth
first traversal of a TOCS of G1 [10].

4 Generation of the Common Connected Subgraphs of
Two Graphs

We present an algorithm for generating the common connected subgraphs of two
graphs.

166 B. Cuissart and J.-J. Hébrard

Throughout this section, G1(V1, E1) and G2(v2, E2) are fixed graphs and T
is a TOCS of G1. For every leaf f of T , our algorithm build simultaneously all
the subgraphs of G2 isomorphic to G1[PL+(f)].

We first define a rooted tree whose leaves are in a bijective correspondence
with the common connected subgraphs of G1 and G2.

Definition 9. Let (T, r) be a TOCS of G1. The tree of the common connected
subgraphs of G1 and G2 (TOCCS) built from T is a rooted tree (T ′, r′) in which
each node,except r′, is labelled by an element of V1 ×V2 ∪V1 ×{”Excluded”}. The
label of a node x′, x′ �= r′, is denoted by L′(x′). Each node x′ of T ′ is associated
with a node of T , called the origin of x′ and denoted by Or(x′). (T ′, r′) and the
function Or are defined by induction as follows:

1. Or(r′) = r.
2. Let x′ be a node of T ′.

(a) If Or(x′) is a leaf of T , then x′ is a leaf of T ′.
(b) Otherwise, Or(x′) has two children y and z respectively labelled by v1+

and v1−, where v1 ∈ V1. Let H(x′) = {v2 ∈ V2 : for any ancestor of
x′ labelled by (u1, u2) with u2 ∈ V2, v2 �= u2 and ({v1, u1} ∈ E1 ⇐⇒
{v2, u2} ∈ E2)}, k = |H(x′)| and w1, . . . , wk denote the elements of
H(x′). Then x′ has k+1 children, y′

1, . . . , y
′
k+1, with L′(y′

i) = (v1, wi) and
Or(y′

i) = y (1 ≤ i ≤ k), L′(y′
k+1) = (v1, ”Excluded”) and Or(y′

k+1) = z.

Example 10. Figure 3 displays a path from the root r′ to a node x′ in a TOCCS
of the graphs G1 and G2. Or(x′) = x, F (x) = {e}, x has two children y and z
with L(y) = e+ and L(z) = e−. H(x′) = {5}, x′ has two children y′ and z′ with
L′(y′) = (e, 5) and L′(z′) = (e, ”Excluded”).

In a TOCCS, the labels of the form (v1, v2), with v2 ∈ V2, are called positive
and the labels of the form (v1, ”Excluded”) are called negative. For every node
x′ of a TOCCS, we define PL′

+(x′) = {(v1, v2) ∈ V1 × V2 : ∃y′, y′ �= r′, y′ ≤
x′ and L′(y′) = (v1, v2)}.

The following proposition is an immediate consequence of Definition 9.

Proposition 11. Let T ′ be a TOCCS of G1 and G2, and f ′
1, f ′

2 two leaves of
T ′. If f ′

1 �= f ′
2 then PL′

+(f ′
1) �= PL′

+(f ′
2).

We now establish the correspondence between the leaves of a TOCCS and
the common connected subgraphs of G1 and G2.

Proposition 12. Let T ′ be a TOCCS of G1 and G2.

1. (soundness) For every leaf f ′ of T ′, PL′
+(f ′) is a common connected sub-

graph of G1 and G2.
2. (completeness) Let G be a common connected subgraph of G1 and G2. There

exists a leaf f ′ of T ′, such that PL′
+(f ′) = G.

A Direct Algorithm to Find a LCCIS of Two Graphs 167

1

2 3 4

5

b

e

c
d

a

r

a+ a−

b+ b−

c−

e−

(T, r), a TOCS of G1 :

e+

c+ x

y z

r′

(a, 1)
(a, 2), . . . , (a, 5)

(b, 3) (b, 4)

(c, 4)

(b, 2)

(c, ”E”)

(e, ”E”)(e, 5)y’

x’

z’

(a, ”E”)

(T ′, r′), a TOCCS of G1 and G2 built from (T, r) :
(a path)(a path)

(b, ”E”)

G1 : G2 :

Fig. 3. A tree of the connected subgraphs common to two graphs

Proof (Sketch). 1. Straightforward consequence of Definition 9.
2. Let G = {(u1, v1), . . . , (uk, vk)} be a common connected subgraph of G1 and
G2, ui ∈ V1 and vi ∈ V2 (1 ≤ i ≤ k). Let (T, r) be the TOCS of G1 from
which (T ′, r′) is built. By hypothesis, G1[{u1, . . . , uk}] is connected. According
to Prop. 7, we have PL+(l({u1, . . . , uk})) = {u1, . . . , uk}. Let (x0, . . . , xp) be
the path from r to l({u1, . . . , uk}) in T .

For all i, 1 ≤ i ≤ p, if L(xi) is a negative label, we write σ(i) = ”Excluded”,
otherwise, there exists a unique vertex v ∈ V2 such that (L(xi), v) ∈ G and we
write σ(i) = v.

Since G is a common connected subgraph of G1 and G2, there exists a path
in T ′ (x′

0, . . . , x
′
p) from r′ (r′ = x′

0) to a leaf f ′ (f ′ = x′
p) such that L′(x′

i) =
(L(xi), σ(i)) (1 ≤ i ≤ p). We have PL′

+(f ′) = G.
�
It follows from Prop. 11 and Prop. 12 that there exists a bijection from the

the leaves of a TOCCS of two graphs to their common connected subgraphs.
Consequently, we can generate the common connected subgraphs of G1 and G2
by simply performing a depth first traversal of a TOCCS of G1 and G2. Notice
that it is not necessary to compute and store the entire TOCCS. A depth first
traversal only requires to store the path from the root to the node currently
visited.

5 The Algorithm

A first algorithm for solving LCCIS consists in generating the common connected
subgraphs of the two input graphs and returning a largest one. This algorithm

168 B. Cuissart and J.-J. Hébrard

performs a complete traversal of a TOCCS of the input graphs. We will see that,
in fact, parts of the TOCCS may be ignored.

Throughout this section, G1(V1, E1) and G2(V2, E2) are fixed graphs, (T, r)
is a TOCS of G1, and (T ′, r′) is a TOCCS of G1 and G2 built from (T, r).
Recall that for every node x of T , PL−(x) = {v ∈ V1 : ∃y, y �= r, y ≤ x and
L(y) = v−}. For each node x′ of T ′, we define PL′

−(x′) = {(v1, ”Excluded”) :
∃y′, y′ �= r′, y′ ≤ x′ and L′(y′) = (v1, ”Excluded”)}. The following propositions
allow us not to entirely examine the TOCCS explored by the algorithm.

Proposition 13. Let m ≥ 0 be an integer and x′ a node of T ′. If |V1| −
|PL′

−(x′)| ≤ m, then |PL′
+(y′)| ≤ m, for every descendant y′ of x′.

Remark that |V1|−|PL′
−(x′)| is the number of vertices of V1 not yet excluded,

when x′ is visited. Suppose the search has already discovered a common subgraph
of size m. If |V1| − |PL′

−(x′)| ≤ m, then it is useless to explore the principal
subtree of T ′ at x′, since, according to Prop. 13, we would not find any common
subgraph of size greater than m.

Proposition 14. Let x′ be a node of T ′ such that PL′
+(x′) �= ∅, and f ′

1 a leaf
of T ′ descending from x′ (x′ ≤ f ′

1). If for every y′ such that x′ < y′ ≤ f ′
1, L′(y′)

is positive, then, for every leaf f ′
2 descending from x′, we have |PL′

+(f ′
2)| ≤

|PL′
+(f1)|.

Proof (Sketch). Let x = Or(x′), f1 = Or(f ′
1) and f2 = Or(f ′

2) (Definition 9).
G1[PL+(f1)] is the largest connected subgraph of G1 that contains the vertices of
PL+(x) and does not contain the vertices of PL−(x). By hypothesis, PL′

+(x′) �=
∅, thus PL+(x) �= ∅. Consequently, G1[PL+(f2)] contains the vertices of PL+(x)
and does not contain the vertices of PL−(x). Hence, PL+(f2) ⊆ PL+(f1) and
|PL′

+(f ′
2)| ≤ |PL′

+(f ′
1)| .
�

Let x′ be a node of T ′ such that PL′
+(x′) �= ∅. After having explored a path

p from x′ to a leaf f ′
1, such that p only contains nodes positively labelled (except

x′ possibly), it is useless to explore the other paths beginning at x′. Indeed we
are sure, from Prop. 14, that these paths do not lead to any common subgraph
larger than the one given by PL′

+(f ′
1).

Finally, our algorithm partially explores a TOCCS in a depth first manner,
ignoring parts of it that cannot provide a common subgraph larger than the
current largest one already found.

6 Experimental Results

It is essential to characterize graph matching algorithms by their performances
[11, 12]. We experimentally compared our algorithm (T-TOCCS) with the algo-
rithm based on the method proposed by I. Koch (C-CLIQUE) [9].

Material. The experiments were realized on a computer with 1 GB of memory
and the AMD Athlon processor (2,2 GHz). We implemented both algorithms

A Direct Algorithm to Find a LCCIS of Two Graphs 169

Table 1. Experimental results

Randomly Connected Graphs, fixed density.
S MC EC MT ET S MC EC MT ET

Density =0.1 Density =0.2
21 5.235 3.37 0.462 0.345 16 1.259 0.133 0.172 0.0336
22 6.366 2.007 0.469 0.22 17 3.049 0.369 0.412 0.08
23 19.604 5.023 1.4 0.602 18 7.949 0.995 1.289 0.318
24 56.197 27.122 4.405 2.342 19 18.567 1.953 3.64 0.584
25 119 70.976 8.628 6.663 20 45.966 4.805 9.375 1.765
26 286.748 105.66 21.162 9.521 21 115.653 11.851 22.631 6.003

Density =0.5 Density =0.85
14 1.091 0.0332 0.272 0.048 10 0.7 0.07 0.017 0.0169
15 2.656 0.086 0.601 0.127 11 4.61 0.982 0.101 0.0712
16 6.049 0.228 1.397 0.052 12 14.658 1.974 0.17 0.16
17 13.821 0.451 3.848 0.394 13 62.386 14.122 0.913 0.826
18 31.078 0.95 9.718 1.6 14 242.79 36.954 3.858 2.966

Randomly Connected Graphs, fixed size.
D MC EC MT ET D MC EC MT ET

Size = 18 Size = 22
0.2 5.927 0.739 0.763 0.141 0.1 6.366 2.007 0.469 0.220
0.3 16.68 1.323 4.29 0.346 0.15 75.005 14.696 8.365 3.599
0.4 19.82 1.745 5.92 0.476 0.2 264.17 22.162 30.29 7.871
0.5 31.078 0.950 9.718 1.600

Irregular 2d Meshes.
D MC EC MT ET D MC EC MT ET

Size = 9 Size = 16
0.333 0 0 0 0 0.208 1.394 0.092 0.008 0.0064
0.417 0.009 0.0018 0 0 0.3 3.119 0.229 0.649 0.081
0.528 0.01 0 0 0 0.4 4.418 0.261 1.337 0.113
0.611 0.01 0 0 0 0.5 6.048 0.248 1.427 0.13
0.722 0.03 0 0 0 0.6 12.55 0.898 1.702 0.267
0.833 0.125 0.019 0 0 0.7 52.403 6.697 2.842 1.298
0.917 0.716 0.066 0.004 0.0064 0.75 127.571 12.325 4.995 1.836
1 13.173 0.0042 0 0

S : Size of the input graphs, D : Density of the input graphs,

C-CLIQUE :
– MC : Mean duration of the calculus (in seconds).
– EC : Standard deviation.

T-TOCCS :
– MT : Mean duration of the calculus (in seconds).
– ET : Standard deviation.

170 B. Cuissart and J.-J. Hébrard

in C, and compiled the code with the GNU gcc 3.3 compiler with appropriate
optimizations.

The algorithms were tested on two kinds of graphs : randomly connected
graphs and irregular 2D meshes. These graphs are described by M. De Santo et
al. in [13, 14]. Notice that they are always connected. In a randomly connected
graph, the probability of an edge connecting two vertices is independant on the
vertices themselves. We adopted the model proposed in [15] to generate our
instances. Since it is generally agreed that irregular 2D meshes represent a worst
case for general graph matching algorithms [15], we also considered these graphs.

Results. We have compared the performances of the two algorithms on the same
instances. The results are displayed on three tables (see Table 1). The first two
tables concern the results obtained with randomly connected graphs, the third
table is dedicated to irregular 2D meshes. A cell of these tables corresponds to
a measure on a sample of ten instances. For example, the cell at the top left
corner of the first table indicates that C-CLIQUE has taken on average 5.235
seconds to find a LCCIS between two randomly connected graphs of size 21 and
of density 0.1. For each series, the measures were stopped as soon as the time
required to solve one instance exceeded 500 seconds.

Discussion. The examination of the tables shows that T-TOCCS operates faster
than C-CLIQUE on these instances.

When the input graphs are randomly connected graphs of density η = 0.5,
T-TOCCS solves the problem 3 times faster than C-CLIQUE. This difference
increases as the density of the input graphs moves away from 0.5. T-TOCCS
operates on average 10 times faster than C-CLIQUE when the density is equal
to 0.1. It operates 40 times faster when the input graphs have high density
(D = 0.85).

The observations are similar for the 2D meshes. When the density of the
meshes is close to 0.5, T-TOCCS operates about 3 times faster than C-CLIQUE.
This ratio rapidly increases to reach 170 when the input graphs are the regular
2D meshes with 16 vertices. On the other side, this ratio reaches 25 when the
input graphs have a density of 0.75.

References

1. Rosen, K., ed.: 8 : Graph theory, 9 : Trees. In: Handbook of discrete and combi-
natorial mathematics. CRC Press (2000) 495–628

2. Koch, I., Lengauer, T., Wanke, E.: An algorithm for finding common subtopologies
in a set of protein structures. J. Comput. Biol. 3 (1996) 289–306

3. Koch, I., Lengauer, T.: Detection of distant structural similarities in a set of
proteins using a fast graph based method. In Gaasterland, T., Karp, P., Karplus,
K., Ouzounis, C., Sander, C., Valencia, A., eds.: Proc. 5th Int. Conf. on Intelligent
systems for molecular biology, Menlo Park, AAAI Press (1997) 167–178

4. Raymond, J., Gardiner, E., Willett, P.: Heuristics for similarity searching of chem-
ical graphs using a maximum common edge subgraph algorithm. J. Chem. Inf.
Comput. Sci. 42 (2002) 305–316

A Direct Algorithm to Find a LCCIS of Two Graphs 171

5. Raymond, J., Gardiner, E., Willett, P.: RASCAL : calculation of graph similarity
using maximum common edge subgraphs. Comp. J. 45 (2002) 632–643

6. Garciá, G., Ruiz, I., Gómez-Nieto, M.: Step-by-step calculation of all maximum
common substructures through a constraint satisfaction based algorithm. J. Chem.
Inf. Comput. Sci. 44 (2004) 30–41

7. Cuissart, B., Touffet, F., Crémilleux, B., Bureau, R., Rault, S.: The maximum com-
mon substructure as a molecular depiction in a supervised classification context:
experiments in quantitative structure/biodegradability relationships. J. Chem. Inf.
Comput. Sci. 42 (2002) 1043–1052

8. Garey, M., Johnson, D.: Computers and Intractability: a guide to the theory of
NP-completeness. Freeman (1979)

9. Koch, I.: Enumerating all connected maximal common subgraphs in two graphs.
Theor. Comput. Sci. 250 (2001) 1–30

10. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: 22. Elementary graph algorithms.
In: Introduction to algorithms. McGraw-Hill (2001)

11. Bunke, H., Foggia, P., Guidobaldi, C., Sansone, C., Vento, M.: A comparison of
algorithms for maximum common subgraph on randomly connected graphs. In
Caelli, T., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D., eds.: Joint IAPR
International Workshops SSPR 2002 and SPR 2002, Proceedings. Volume 2396 of
Lecture Notes in Computer Science., Springer-Verlag (2002) 123–132

12. Conte, D., Guidobaldi, C., Sansone, C.: A comparison of three maximum common
subgraph algorithms on a large database of labeled graphs. In Hancock, E., Vento,
M., eds.: IAPR Workshop GbRPR. Volume 2726 of Lecture Notes in Computer
Science., Springer-Verlag (2003) 130–141

13. Foggia, P., Sansone, C., Vento, M.: A database of graphs for isomorphism and
subgraph isomorphism benchmarking. In: Proc. 3rd IAPR TC-15 GbR Worshop.
(2001) 176–187

14. DeSanto, M., Foggia, P., Sansone, C., Vento, M.: A large database of graphs and
its use for benchmarking graph isomorphism algorithms. Pattern Recogn. Lett. 24
(2003) 1067–1079

15. Ullman, J.: An algorithm for subgraph isomorphism. Journal of the Association
for Computing Machinery 23 (1976) 31–42

	Introduction
	Preliminaries
	Connected Subgraphs Generation
	Generation of the Common Connected Subgraphs of Two Graphs
	The Algorithm
	Experimental Results

