
Maximal Clique Variants

David Steiner

School of Computing Science
Sir Alwyn Williams Building

University of Glasgow
G12 8QQ

A dissertation presented in part fulfilment of the requirements of the
Degree of Master of Science at The University of Glasgow

08/09/2014

Abstract

A clique in a graph is a subgraph in which all vertices are adjacent. A maximal clique is
a clique that is not contained in any other clique. Maximal clique enumeration is one of
the longstanding problems of graph theory which has been extensively researched. There
are variants of the problem which have been investigated in less detail. This dissertation
addresses two variants, the maximal k-clique and the maximal labelled clique problem. The
concept of k-cliques is a relaxation of the original model, allowing a distance of k between
the vertices of the clique, rather than requiring direct adjacency. Maximal k-cliques can
be enumerated by maximal clique algorithms. Computational results of a notable maximal
clique algorithm, adapted for the k-clique variant, are presented to analyse whether this
approach is viable in practice. Labelled cliques are a recently introduced variant of cliques,
in which labels are assigned to edges. The maximum labelled clique problem is the problem
of finding the largest labelled cliques that are within a budget, that is, the number of labels
in the clique is limited to be less than or equal to a constant. Based on this, the maximal
labelled clique problem is formulated and a new algorithm is proposed for it. A set of
benchmark results for real life datasets is presented to show the practical feasibility of the
algorithm.

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Dr. Patrick Prosser, for his
continuous support throughout the project. Also, I would like to extend my gratitude onto
Ciaran McCreesh.

Finally, I wish to thank my family for the motivation and encouragement which enabled
me to pursue the Masters degree at the University of Glasgow.

1

Contents

1 Introduction 5

2 Survey and problem definitions 7

2.1 Preliminaries . 7

2.1.1 Graphs and notation . 7

2.1.2 Cliques and its variants . 7

2.2 Maximal Clique Enumeration Algorithms 9

2.2.1 A review of algorithms . 9

2.2.2 The Bron-Kerbosch algorithm . 10

2.2.3 Introducing a pivot . 11

2.2.4 Initial vertex ordering . 11

3 Codebase and data 13

3.1 Core library . 13

3.1.1 Overview of packages . 13

3.1.2 Implementation of clique algorithms 13

3.1.3 The Code for K-Clique Enumeration 16

3.1.4 Labelled cliques . 16

3.1.5 Helper code . 16

3.2 Experiments . 16

3.3 Graph instances used in the project and the format of graph files 17

3.4 Conclusion . 18

2

4 Maximal Clique Experiments 19

4.1 Overview . 19

4.2 Real-world data . 20

4.3 Random data . 21

4.4 Memory limitations of the BitSet algorithm 23

4.5 Conclusion . 24

5 K-cliques 25

5.1 Description . 25

5.2 Enumerating maximal k-cliques . 26

5.3 Constructing the power graph . 26

5.4 Experimental results . 29

5.4.1 The density of the power graph . 29

5.4.2 The turning point . 29

5.4.3 K-cliques in practice . 31

5.4.4 The hardness of the k-clique problem 32

5.5 Summary . 33

6 Labelled cliques 37

6.1 A maximal labelled clique algorithm . 37

6.1.1 The problem . 37

6.1.2 The algorithm . 37

6.2 The correctness of the algorithm . 39

6.3 The experiments . 40

7 Conclusion 43

A How experiments are conducted 45

A.1 Overview . 45

3

A.2 Maximal clique experiments on real life data 46

A.3 K-clique experiments for random graphs . 46

A.4 Other experiments . 47

B Important code snippets 48

B.1 BitSet Clique Algorithm . 48

B.2 Labelled Algorithm . 51

4

Chapter 1

Introduction

The clique problem is formulated in terms of undirected graphs, graphs in which the connec-
tion between vertices are two-way. A simple example of such a graph is a graph representing
a social network, in which nodes are people and edges represent acquaintanceship. In this
social network, a clique is a set of people who all know each other. Maximal cliques are all
such groups that cannot be enlarged by another person, that is, there are no other people
who they collectively know. The maximal clique enumeration problem is the problem of
finding all these groups in a graph.

Clique enumeration is one of the famous, long standing problems of graph theory. Due to
its countless theoretical and practical uses, it has been researched for decades, yet it is still
being focussed on today. The number of cliques in a graph is exponential as a function of
the graph’s size, therefore all algorithms devised for the problem inevitably take exponential
time to run. However, for real life data, there exist algorithms that can enumerate cliques
in relatively large graphs.

Real world applications of the problem include a wide range of areas. For one, social
networks are an obvious area. Boginski et al. used a maximal clique algorithm to find
maximal independent sets in a graph (this is an equivalent problem), which in turn allowed
them to count the number of completely diversified portfolios in a financial market [4].
Koch used it to solve a related problem, finding maximal common edge graphs and maximal
common induced graphs, which are used in computational biology to find structural motifs
in protein structures [12]. These are just a few of the notable application areas.

This project deals only in part with the maximal clique enumeration problem. The major
topic of it is more recent variations of the problem, for which less literature exists. It is
concerned with two problems for which the solution is closely related to the maximal clique
problem. The objective was to find out how the changes made to the base model affect the
hardness of the problem. For the original problem, we know that many practical graphs
are technically feasible to enumerate with state-of-the-art algorithms. Is it also true for its
variants as well?

One of these related problems is the maximal k-clique problem. K-cliques are like cliques,
but (to stick with the social groups example) instead of only allowing direct acquaintance,
we allow a ‘distance’ of k between people. For instance, a 2-clique is a group of people

5

who all either know each other, or have a mutual friend. This concept was the first clique
relaxation problem [19] originally formulated by Luce and has its roots in sociology [14].
The k-clique problem , in comparison to the plain maximal clique problem, is known to
be harder. Despite the definition was proposed over 60 years ago, there is still not nearly
as much literature available for it. The project sets out to find out if the problem can be
solved solved applying the most recent clique algorithms in a feasible manner.

The other area researched is the maximal labelled clique problem. Labelled cliques were
introduced recently by Carrabs et al. [7], who also defined the maximum labelled clique
problem. The maximum labelled clique problem assigns labels to edges and looks for
maximum cliques in the graph following two rules. First rule being that the clique’s cost
has to be in the budget, that is, the number of different labels in the clique cannot exceed
a given constant. Second rule; if more such maximum cliques are found, the cost is to
be minimised. That is, of two maximum cliques (they have the same size), the one using
less labels is preferred. In the project, this definition is modified to formulate the maximal
labelled clique problem. For this problem no algorithms have been proposed yet. As part
of the project, based on a notable maximal clique algorithm, a new algorithm is devised to
solve it. Benchmark results will demonstrate whether this algorithm can solve the problem
in reasonable time.

The main objective of the project is to demonstrate the hardness of the maximal clique
problem variants through vigorous testing. The dissertation consists of 6 main chapters
following this introduction. Chapter 2 explains the definitions used throughout the dis-
sertation, formulation of the problems and preexisting solutions. Chapter 3 describes the
infrastructure that was developed for the project: components of the core library and the
code to carry out the experiments. It also describes the data that was used throughout the
testing phase. Chapter 4 highlights the implemented algorithms’ correctness by verifying
their output. Their efficiency is also demonstrated by benchmarking against real and ran-
dom datasets. Chapter 5 focusses on the k-clique problem, summarising the observations
which have been made about the hardness of the problem. Moreover, Chapter 6 offers a
solution to the maximal labelled clique problem, and analyses whether it is efficient for real-
life applications. Lastly, Chapter 7 will summarise the results of the project and describes
how it could be further improved with potential extension.

6

Chapter 2

Survey and problem definitions

2.1 Preliminaries

2.1.1 Graphs and notation

Graphs model a set of objects (represented by vertices) and possible connections between
them. The connections are represented by edges. There may be directions assigned to the
edges or the edges can be undirected. Cliques are defined in undirected graphs, and in the
scope of this project graphs mean undirected graphs. Also, all the edges in the considered
graphs are proper edges, and the graphs do not contain multi-edges. The set of vertices
will usually be denoted by V and the set of edges will be denoted by E:

Definition. An (undirected) graph G = (V,E) is a mathematical structure consisting of
the set V of vertices and the set E of edges, which are unordered pairs of elements of V ,
its endpoints.

N(v) denotes the neighbourhood of a v ⊆ V , the set of vertices adjacent to v. The degree,
denoted by deg(v), is the cardinality of N(v). A complete graph is a graph in which every
vertex is joined by an edge.

An often-used term throughout the dissertation is the density of a graph. Since all consid-
ered graphs are undirected simple graphs, the density of a graph is defined as D(G(V,E)) =

2|E|
|V |(|V |−1) .

2.1.2 Cliques and its variants

Maximal and maximum cliques

A clique is a complete subgraph, a subset of V in which all vertices are pairwise connected
by an edge. A maximal clique is a clique that cannot be further extended by adding more
vertices to it. A maximum clique is the largest clique in a graph. Figure 2.1 shows an

7

example of cliques in a small graph: {4,6}, {1,2}, {1,5}, {2,3}, {2,5}, {3,4}, {4,5}, {4,6}
and {1,2,5} are examples of cliques. Maximal cliques are {4,6}, {2,3}, {3,4}, {4,5}, {4,6}
and {1,2,5}, as the other cliques can all be extended by a vertex to form {1,2,5}. {1,2,5}
is also a maximum clique, as it is the largest clique with a size of 3.

1

23

4

56

Fig. 2.1: A small graph and its maximum clique. [1]

K-cliques

The following terms are discussed in detail in Chapter 5, but they are also referred to before
that, therefore they are briefly described here as well.

Cliques are suitable to model a wide range of real life phenomena. However, it is often
too strict a restriction to allow only direct connections between the vertices. Often it is
desirable to allow a distance of k between them, where distance means the length of the
shortest path between two vertices and is denoted by dist(vi, vj). There are two approaches
to this relaxation: the distance can be calculated within the clique or in the whole graph.
The structures that are generated by the former method are called k − clubs, and are not
considered further in this project. The latter approach defines k− cliques, a major area of
research of this dissertation.

Definition. A k-clique in a graph G = (V,E) is a subgraph C ⊆ V , in which dist(vi, vj) ≤
k : vi, vj ∈ C.

Furthermore, an important notation closely related to k-cliques is the power graph of a
graph G, denoted by Gk, in which an edge between two vertices exists if and only if the
length of the shortest path between the two in the original graph is less than or equal
to k.

Labelled Cliques

Carrabs et al. [7] introduced a variant to the maximum clique problem. They assign a label
to each edge in the graph and they seek to find the largest cliques in which the number of
different labels of the edges are limited by a given constant ‘b’ (budget). Among cliques
with the same size, the one with the minimum number of different labels is preferred.

8

Enumerating maximum labelled cliques is named the Maximum Labelled Clique (MLC)
problem. An illustration of this concept (as opposed to the maximum clique problem) is
shown in Figure 2.2.

1

2

3

4 5

6

7

Fig. 2.2: Edge labels are represented by different colours. With unlimited budget, the
maximum clique is [1,2,3,4,5]. If the budget is only three, two maximum cliques are [2,3,4,5]
and [4,5,6,7] of which the latter is preferred due to using less labels. This figure is the
courtesy of Ciaran McCreesh and Patrick Prosser.

Analogously to the simple clique problem, the maximal version of the problem can be
formulated. In this case, preferring cliques with the lower cost (number of different labels)
makes less sense, as we want to enumerate all maximal cliques. However, similarly to the
maximum problem, we can specify a budget, and only look for cliques that are within the
budget, and cannot be extended. This can be due to two reasons. Either there are no
vertices left which is adjacent to all vertices in the growing clique, or there is one, but
adding it would result in exceeding the budget.

2.2 Maximal Clique Enumeration Algorithms

2.2.1 A review of algorithms

Maximal Clique Enumeration is one of the classic problems of graph theory with plenty of
literature available on the subject. There have been many algorithms proposed to solve it,
however they all take exponential time to run. J. W. Moon and L. Moser have shown that
there can exist up to O(3n/3) cliques in a graph of size n [17]. Due to this, exponential time
is the best one can hope for in general purpose algorithms.

Notable early algorithms dating back to the 70’s include the output sensitive algorithm
of Tsukiyama et al. [22] and the input sensitive ‘Bron-Kerbosch’ algorithm devised by
Coenraad Bron and Joep Kerbosch [6]. Tsukiyama’s algorithm is bounded by O(nmµ),
where n is the number of vertices, m is the number of edges and µ is the number of cliques.
It has been shown that the Bron-Kerbosch algorithm can be modified to run in O(3n/3)
time [21], which is optimal in a sense due to the observation of J. W. Moon and L. Moser.

Many of the modern algorithms are based on either of these two early algorithms. In

9

practice, the Bron-Kerbosch algorithm has been found to be very effective, and several
state-of-the-art algorithms are a modification of it.

2.2.2 The Bron-Kerbosch algorithm

The algorithm traverses the vertices of the graph in a tree-like structure, searching for
possible cliques. Once a branch is found to be impossible to result in a maximal clique or
a maximal clique is found, it uses backtracking to abandon/return from that branch.

To achieve this, three sets are defined. C is a partial solution, an incrementally grown
clique which hopes to eventually extend into a maximal clique. P is the candidate set,
which maintains all the vertices that are adjacent to every v ∈ C, meaning that if they are
added to C, C still forms a clique. Whenever a vertex is added to C, P shrinks accordingly.

Algorithm 1: The Bron Kerbosch algorithm [6]

1 BK(Set C,Set P,Set X)
2 begin
3 if P = ∅ and X = ∅ then report C as maximal clique

4 for v ∈ P do
5 BK(C ∪ {v},P ∩N(v),X ∩N(v))
6 P ← P \ {v}
7 X ← X ∪ {v}

The candidate set is initially set to V , the vertex set of the input graph. Starting a recursive
search in every vertex of P could find all the maximal cliques. However, it is not efficient
and it would find the same clique multiple times. To avoid this, Bron and Kerbosch defined
another set, denoted by X (also referred to as the NOT set hereafter), that contains all
the vertices that at some time have served as an extension to C. These vertices must be
excluded from the search.

The cornerstone of the algorithm is the recursive backtracking function. It takes the above
sets as parameter, iterates through the vertices in the candidate set – adding them to the
partial clique. When such a vertex v ⊆ P is added to C, P and X are shrunk discarding
all vertices that are not in the neighbourhood of v. The function is then called recursively
for the new sets of C, P and X. Upon return, v is moved from the candidate set to X,
excluding it from further calls in the branch.

How does the algorithm find maximal cliques? Clearly, P keeps getting smaller and smaller,
eventually becoming empty. At that point, if X is not empty, then the clique we found
is a subset of a larger clique we had found in an earlier branch and we must discard it.
However, if X is empty, a new maximal clique is found. This shows how introducing X
prevents from producing duplicates and decreases the number of recursive calls.

10

2.2.3 Introducing a pivot

The number of recursive calls can be furher reduced and the running speed enhanced by a
heuristic called pivoting. If one picks a vertex vp ⊆ P ∪X, then every maximal clique must
contain a vertex not adjacent to vp or vp itself. If a pivot is chosen carefully at every call,
this observation can greatly reduce the number of recursive calls.

The original article by C. Bron and J. Kerbosch chooses the pivot based on the following
observation: if at some stage P ⊆ N(v) for any vertex v in X, then extending the partial
clique by vertices from P will never remove v from X and therefore can never lead to a
maximal clique. This can be utilised to minimise the number of recursive calls at a stage:
the pivot is chosen to minimise the number of recursive call, the vertex from P ∪ X that
has the least amount of non-neighbours in P .

Tomita et al. propose a nearly identical way to choose the pivot [8, 21], so that |P ∩N(vp)|
is maximised (Algorithm 2). By using a different output format, they show that using this
pivot selection ensures an optimal time complexity of O(3n/3). 1

Algorithm 2: Tomita’s pivot selection [21]

1 BKTomita(Set C,Set P,Set X)
2 begin
3 if P = ∅ and X = ∅ then report C as maximal clique

4 u← max(|P ∩N(u)|), u ∈ P ∪X
5 for v ∈ P \N(u) do
6 BKTomita(C ∪ {v},P ∩N(v),X ∩N(v))
7 P ← P \ {v}
8 X ← X ∪ {v}

2.2.4 Initial vertex ordering

Eppstein et al. focused on enumerating cliques in large sparse graphs [9]. They devised
an algorithm whose time complexity is bounded by a function of the graph’s degeneracy,
which is a common measurement of the density of graphs and tends to be small for sparse
graphs.

Definition. The degeneracy ordering of a graph is an ordering of its vertices so that each
vertex has d or fewer neighbours that come later in the ordering, where d is the degeneracy
of the graph.

They prove that their algorithm’s time complexity is O(dn3d/3). The algorithm is a modi-
fication of Tomita’s algorithm, replacing the outer level of the algorithm with a loop that
processes the vertices in their degeneracy ordering. The inner levels remain unchanged,
using Tomita’s pivot selection.

1Optimal as a function of the graph’s size in the sense that there may be up to 3n/3 cliques in the graph
due to Moon and Moser [17].

11

Algorithm 3: The algorithm of Eppstein et al. [9]

1 BKDegeneracy(Graph G(V,E))
2 begin
3 for vi ∈ V in a degeneracy ordering do
4 P ← N(vi) ∩ {vi+ 1, .., vn−1}
5 X ← N(vi) ∩ {v0, .., vi−1}
6 BKTomita({vi}, P , X)

A major difference between Eppstein’s and Tomita’s implementation is that Tomita used
an adjacency matrix representation of the graph, while Eppstein used adjacency lists. The
former is much less efficient for large sparse graphs, as the adjacency matrix representation
has a space complexity of O(n2) regardless of the number of edges. Due to this, their
algorithm runs into memory issues for relatively small graphs. The main motivation for
Eppstein’s algorithm is not to surpass Tomita’s runtime efficiency for all types of graphs,
but to offer an alternative solution for large sparse graphs that Tomita’s algorithm could
not handle in terms of memory usage.

12

Chapter 3

Codebase and data

3.1 Core library

3.1.1 Overview of packages

The core library consists of classes that serve general purposes and are used by multiple
executables. It includes implementations of clique algorithms and other algorithms, classes
to represent the graphs and utility classes to help reading in data and generating graphs.
It is made up of four core packages:

algorithm Has all the code for clique algorithms using different implementations and graph
representations, various pivot selections and vertex ordering algorithms.

graph Contains the data structures that represent the data (graphs and vertices).

labelled Everything related to the labelled clique problem.

utility Helper classes and methods.

3.1.2 Implementation of clique algorithms

This section summarises the different implementations of the Bron-Kerbosch algorithm
implemented for the project. These algorithms can all be found in the algorithm package.
While the algorithms could be implemented as static methods, all of them were implemented
as a separate Java class. The classes store statistics about the algorithm’s results, such as
the number of recursive calls (nodes) it took to find all maximal cliques and the running
time, which are available via accessor methods once the algorithm has been executed.
These are all available through the CliqueAlgorithm superclass, the algorithm class that
all implementations extend.

13

A straightforward implementation

The first and probably the most simple attempt at implementing the Bron-Kerbosch algo-
rithm was to use the standard collections provided by Java. In this variant, the graph is
represented by storing the adjacency list for all vertices in an ArrayList. The three sets
of the algorithm, C, P and X are also stored in a Java ArrayList. As these are actually
sets, I also considered using a HashSet, but it turned out to be much slower than using
an ArrayList. Also, throughout the algorithm, we never check if a vertex is in a set which
could justify the use of a HashSet.

Although this implementation is more readable than other implementations and is quite
straightforward, unfortunately it proved to be very slow. Due to its slowness, it was not used
for any benchmarking purposes. Nonetheless, it served as a reference against which other
implementations could be verified. It is kept in the codebase for the sake of completeness
and can be found in the algorithm.other impl.TomitaAdjacencyList class.

Bron-Kerbosch style

Bron and Kerbosch used an adjacency matrix representation for the graph and a single
array to represent P and X. This array is an integer array of length n that stores all
vertices, marked by their index. Since P and X are disjoint sets, two integers can keep
track of the starting position of X and P . Moving vertices from or to a set can be achieved
by swapping the right labels and moving the pointers to the starting positions accordingly.

They kept track of C in the form of a stack-like global integer array. As in my code this
algorithm is implemented as a class, this array is stored as an instance variable. A detailed
explanation of this and an Algol60 source code can be found in the original article [6]. The
converted Java implementations is in algorithm.other impl.BKPointers.

Eppstein’s algorithm

Eppstein et al. use a very specific implementation for their algorithm which makes their
algorithm efficient despite the adjacency list representation of the graph. In order for their
algorithm to be compared on fair grounds, a conversion of the algorithm they call degen
– using the linear space data structure – was implemented in Java (they implemented the
algorithm in C). For details of this implementation I refer to the articles of Eppstein et al.
[9, 10]. For the Java conversion code, please see the algorithm.eppstein impl package.

BitSet algorithms

The major part of clique algorithm code is the BitSet algorithm. This implementation is
the most often used one in the project, used for most experiments, for k-clique enumeration
and serving as a base for the labelled clique algorithm, too. The Java source code for this
algorithm is included in Appendix B.1.

14

Fig. 3.1: A simplified overview of the implementation of the BitSet algorithm with ordering
and pivot selection.

The adjacency matrix and the three sets alike are represented using the standard BitSet
implementation of Java. There are certain theoretical limitations of this. For instance,
iterating through P takes O(n) time instead of an efficient representation that would require
a time proportional to the size of P . However, the BitSet implementation of Java is very
fast and it can often make up for such shortcomings in practice. Using BitSet provides
convenient solutions with regards to set operations. For instance, getting X ∩ N(v) is as
simple as writing X.and(graph.neighbours(v)). Union operations can be done by the or()
operation and complement operations by andNot(). As a result, the implementation is
rather short and readable.

For this implementation, no specific pivot selection or initial ordering was implemented in
the algorithm itself. Rather every instance of the AlgorithmBS class has a Pivot and an
Order field. These are interfaces that have a single method which chooses the pivot and
orders the vertices, respectively. This allows to separate the pivot selection and ordering
implementation from the algorithm itself, allowing for any variations of choice and ordering.
Also, this structure is flexible and enables the implementation of new orderings and pivots
separately from the main algorithm. The class structure of the algorithm is shown in
Figure 3.1. Classes ending in None are slightly confusing: OrderNone returns the vertices’
original order (as they are in the graph), however, PivotNone does not mean that there
is no pivot selection. Rather, it chooses the first element from P . This takes very little
time and helps reduce the number of elements in P and is superior to leaving out pivoting
entirely.

The ordering algorithm of OrderDegree and OrderCores are implementations of the algo-
rithm devised by V. Batagelj and M. Zaversnik [3]. This is a efficient, dedicated algorithm
for core decomposition (i.e. degeneracy), but it also orders the vertices by their degree
along the way, so it can be modified to find the degree ordering as well.

Both pivoting and ordering take GraphBitSet as parameter. This class is the BitSet
implementation of a graph. For every vertex v ∈ V , N(v) is a BitSet, with the bits
corresponding to neighbours set to 1, non-neighbours set to 0. Finding out if v and w
are neigbours takes constant time: we just need to check the bit’s value at index w in

15

the neighbourhood BitSet of v. This is rarely needed though, as in the Bron-Kerbosch
algorithm the neighbourhood of a vertex is only used to calculate N(v)∩P and N(v)∩X.
Assuming variable nV stores the neighbours of v, these operations can simply be carried
out by calling nV.and(P); and nV.and(X); respectively. These operations are very fast,
much faster than iterating through the bits in a loop for the same effect.

The BitSet based classes are in the algorithm.bitset impl package.

3.1.3 The Code for K-Clique Enumeration

To enumerate k-cliques, the above algorithms work without any modification, given that
we have an algorithm to construct a power graph for the graph (see Chapter 5). Solutions
to build the power graph can be found in the utility package, in class PowerGraph. The
class is an abstract class containing static methods to construct the graphs.

As I did not have any results against which the correctness of the algorithms could have
been verified, five different algorithms were implemented to achieve the same output. They
do produce the same power graphs, which supports the claim that they work well. Also,
having various algorithms offers the possibility to choose the quickest one.

For the list of algorithms and details about their implementation, see Section 5.3.

3.1.4 Labelled cliques

A similar approach to k-cliques does not work for labelled cliques. For labelled clique enu-
meration one needs a new graph representation for labelled graphs and new algorithms to
find maximal cliques, too. Classes for both are in package labelled, namely LabelledGraph
and classes starting with BKL, along with other helper classes that are used in carrying out
verification, tests and experiments. Labelled clique enumeration is not discussed further at
this point. Chapter 6 deals with the problem in details.

3.1.5 Helper code

In addition to the algorithms and data structures, the library has classes that help with
reading in graphs, generate random graphs and carry out minor operations. For random
graph generation, it provides means to generate graphs specified by the size and edge
probability or by the size and the exact number of edges to have. The later will had
significance when performing the experiments for k-cliques.

3.2 Experiments

For this project, many experiments had to be conducted. Much of the code was developed
to run these experiments specifically and does not belong to the core library. These include
executable classes that produce job files, which, in turn, provide a way to produce many

16

results at once, in an automatised and reproducable fashion. They also include executable
classes that aggregate and output the results in a way that is usable for human analysis,
and readable by applications that were used to produce this dissertation (i.e. Latex and
gnuplot). Please see Appendix A for details about the experimentation process.

Since some experiments took many days (even week, on some occasions) to finish, it would
have been very inconvenient to run them on my personal laptop. Instead, they were carried
out on a university server machine. The machine was accessible from the school network
via ssh and I was granted exclusive access, therefore the experiments could run without any
interference. The CPU of the machine has sixteen cores, which allowed many experiments
to be run at the same time.

3.3 Graph instances used in the project and the format of
graph files

The following list contains the list of datasets used for benchmarks with their description
and references:

BioGRID [20] Biological General Repository for Interaction Datasets. It is a collection
of datasets that “archives and disseminates genetic and protein interaction data from
model organisms and humans”.

DIMACS instances [11] A collection of computationally challenging graphs from the
second DIMACS challenge, commonly used for benchmarking.

Mark Newman dataset [18] A compilation of free datasets gathered from various sci-
entific sources. It has graphs from a wide range of application areas, such as social
networks, collaborations of scientists, books and blogs.

Moon-Moser graphs [17] Moon-Moser graph instances used by Tomita et al. [21] and
Eppstein et al. [10] for benchmarking.

SNAP [13] Stanford Large Network Dataset Collection. A collection of data about large
social and information networks. These graphs are larger and sparser than other
datasets.

The data from these sources is stored in plain text files, each text file containing a single
graph. The format of the files is the following. The first line is the number of vertices,
the second line is twice the number of edges. Subsequent rows contain the edges, each
row having two integers separated by a comma. These two numbers are the indices of
the vertices that are connected by this edge. Edges are duplicated, so if there is an edge
connecting vi and vj , then there will be two lines showing this: ‘i,j’ and ‘j,i’. To avoid
having duplicate code for the same function, random graphs generated by my code follow
the same format.

Labelled graphs are stored similarly to unlabelled graphs with slight differences. The second
line in the text file stores the number of labels, instead of the number of edges. Edges are
stored in the same way, with the label appended to each row as a third integer. In this
case, edges are not duplicated.

17

3.4 Conclusion

This chapter gave a high level view and structure of the packages that were programmed
for the project. These include clique algorithms, helper algorithms, data structures (such
as the BitSet graph) and file I/O functions. There are also separate executable (that is,
classes with main methods) applications that provide means to run the experiments in an
automatised fashion.

The benefits of carrying out experiments automatically in the aforementioned way were
demonstrated. It reduces the probability of introducing human errors in the processing,
stores every subresult generated during the experiment and makes it possible for any substep
to be rerun, reproduced. This is very important as it makes the result traceable, followable
step by step.

The code contains methods to generate random graphs, but we also want to use real life
data from external data sources. Three data sources are used throughout the project, which
are described and referenced in Section 3.3.

18

Chapter 4

Maximal Clique Experiments

4.1 Overview

Even though the overall focus of the project is variations of the maximal clique problem, the
first step is to test the algorithms on the classic maximal clique enumeration problem. Since
the same algorithm is used for k-clique enumeration as for the classic problem, and the same
algorithm is modified for the labelled clique problem, it is crucial that the base algorithms
work properly. To ensure this, a number of experiments were dedicated to verifying their
correctness.

The verification process consisted of two steps. First step was to generate a set of random
graphs, and check that all algorithms (of which 3 are completely unrelated implementations)
yield the same number of cliques. The number of maximal cliques were counted by the
algorithms over 50 random graphs at 5 different settings (varying edge probability, size
fixed at a hundred). This gives a total number of 250 graphs, for which all algorithms
gave the same results. Second step was to test real life datasets. For the classic maximal
clique problem published results exist for many datasets. For example, Eppstein et al. [10]
published results for the BioGRID and Mark Newman datasets. The number of cliques
is shown in Table 4.2 and 4.1. Second step was to check whether the algorithms’ output
match such published results. It was found that most results are the same as the ones
published by Eppstein et al. However, there were some difference, my algorithms found:

• 39,288 in internet, in contrast to their results, 39,275

• 1,386 in celegens, they reported 856

In these instances, the number of edges they listed for their graph also differed, so they may
have used different data from mine. No differences were found in the BioGRID dataset.
Overall, the results gave enough confidence to accept the hypothesis that the algorithms
indeed are correct.

Once the algorithms were verified, I could move on to research their behaviour and show
that my BitSet implementation is efficient and a reasonable choice for further usage in the

19

project. (that is, for the k-clique problem and the labelled clique problem). Experiments
were carried out to observe the effects of pivot selection and initial ordering. The algorithms
were benchmarked to show that the BitSet algorithm is viable for all different kinds of data
used.

4.2 Real-world data

Results will be shown for 6 algorithms:

BSCT BitSet algorithm with core ordering for the outer call and Tomita’s pivot selection.

BSDT BitSet algorithm with degree ordering and Tomita’s pivot selection.

BSNN BitSet algorithm with arbitrary pivot selection (no ordering of vertices).

BSNT BitSet algorithm with Tomita’s pivot (no ordering of vertices).

EPPS Eppstein’s implementation

PT Bron-Kerbosch style implementation with the original pivot selection (no ordering).

These algorithms cover the most important options. First observation with regards to
runtimes is that all algorithms are very much viable. However, there are differences, which,
in some cases can be rather significant. While extremely fast for small graphs, PT struggled
with some of the larger graphs. For instance, it took it 40 times longer to enumerate cliques
in condmat – which is apparently the hardest of the Mark Newman graphs – than Eppstein’s
implementation (Table 4.1). Interestingly, for the other algorithms, yeast from BioGRID
was the hardest. For PT this was much easier than condmat, taking only a little over two
seconds, which made it the fastest one for yeast. This may be due to the fact that yeast
has many less vertices than condmat for roughly the same number of edges. Again, PT
appears to perform much better on smaller graphs.

Data n m cliques BSCT BSDT BSNN BSNT EPPS PT
marknewman-internet 22,963 48,436 39,288 0.986 0.907 0.753 0.716 0.542 6.783
marknewman-adjnoun 112 425 303 0.014 0.013 0.009 0.010 0.016 0.007
marknewman-astro 16,706 121,251 15,794 1.103 1.056 8.182 1.048 0.621 6.673
marknewman-dolphins 62 159 84 0.005 0.004 0.003 0.004 0.009 0.003
marknewman-condmat 40,421 175,693 34,274 2.443 2.713 4.164 2.682 0.935 38.931
marknewman-polblogs 1,490 16,715 49,884 0.764 0.824 1.379 0.456 0.332 0.156
marknewman-celegens 297 2,148 1,386 0.047 0.049 0.048 0.047 0.080 0.039
marknewman-lesmis 77 254 59 0.008 0.008 0.008 0.006 0.011 0.004
marknewman-football 115 613 281 0.020 0.019 0.017 0.018 0.023 0.010
marknewman-netscience 1,589 2,742 741 0.044 0.051 0.040 0.044 0.063 0.157
marknewman-power 4,941 6,594 5,687 0.088 0.076 0.090 0.096 0.169 0.638
marknewman-karate 34 78 36 0.002 0.002 0.001 0.001 0.006 0.000
marknewman-polbooks 105 441 199 0.009 0.015 0.007 0.007 0.017 0.005

Table 4.1: Algorithm runtimes in seconds (Mark Newman dataset)

Data n m cliques BSCT BSDT BSNN BSNT EPPS PT
biogrid-fission-yeast 2,031 12,637 28,520 262 262 500 295 198 178
biogrid-fruitfly 7,282 24,894 21,995 0.328 316 268 320 377 1.415
biogrid-yeast 6,008 156,945 738,613 6.312 4.833 37.670 5.507 2.155 2.005
biogrid-human 9,527 31,182 23,863 0.285 285 260 274 266 1.314
biogrid-worm 3,518 6,531 5,652 0.077 0.061 0.052 0.061 0.112 0.191
biogrid-plant 1,745 3,098 2,302 0.048 0.042 0.069 0.062 0.070 0.131
biogrid-mouse 1,455 1,636 1,523 0.034 0.035 0.018 0.029 0.038 0.066

Table 4.2: Algorithm runtimes in seconds (BioGRID dataset)

20

The choice of initial ordering seems to have very little effect both on runtimes and the
number of nodes (Table 4.3). Eppstein’s algorithm being the exception, which relies heavily
on the degeneracy ordering in its implementation. But for the BitSet implementation it
does not seem to make a major difference. This may be due to the fact, that in the
BitSet implementation, the initial ordering only affects the outer call, but at the inner
calls, vertices are still processed in their original order. It appears that pivot selection has a
much greater impact. While, with regards to speed, Tomita’s pivot selection is not always
better, it does consistently reduce the number of nodes visited (Table 4.3). The reason why
this does not always result in improved speed too, is that finding the optimal pivot using
the BitSet representation is an expensive operation. In many cases the benefits of reducing
the number of calls does not make up for the increased time per call.

The benefits of Tomita’s pivoting is the most apparent in marknewman−astro where it re-
duces the nodes from around 2.6 million to only about 85 thousand, but alsomarknewman−
polblogs (2.16 million to around 122 thousand) and marknewman−condmat (720 thousand
to around 160 thousand). For these graphs, this also shows in runtimes: BSNT is about
8 times, 3 times and 2 times faster than BSNN for these graphs, respectively. But these
numbers also show that the performance gain is not as good as the decrease in recursive
calls due to the extra effort of finding the pivot.

Data n m cliques BSCT BSDT BSNN BSNT EPPS PT
marknewman-internet 22,963 48,436 39,288 82,786 83,331 163,625 80,074 82,846 69,672
marknewman-adjnoun 112 425 303 561 558 755 481 562 463
marknewman-astro 16,706 121,251 15,794 83,533 84,338 2,633,377 91,694 82,786 79,333
marknewman-dolphins 62 159 84 203 195 248 185 204 170
marknewman-condmat 40,421 175,693 34,274 160,659 162,298 720,345 178,813 159,694 144,986
marknewman-polblogs 1,490 16,715 49,884 122,206 125,255 2,162,171 124,474 122,920 122,262
marknewman-celegens 297 2,148 1,386 3,129 3,146 6,234 3,038 3,123 2,796
marknewman-lesmis 77 254 59 230 237 588 192 235 188
marknewman-football 115 613 281 655 659 1,284 645 652 610
marknewman-netscience 1,589 2,742 741 2,982 2,991 5,147 3,016 2,982 2,428
marknewman-power 4,941 6,594 5687 11,156 11,149 11,886 11,181 11,158 9,391
marknewman-karate 34 78 36 100 100 103 73 100 69
marknewman-polbooks 105 441 199 548 547 999 512 551 486

Table 4.3: Algorithm nodes (Mark Newman dataset)

It may seem to be an error that the number of nodes is not the exact same for BSCT
and EPPS, which are implementations of the exact same algorithms. But it is not, there
are only slight differences, which are the result of the different data structures, because
of which vertices are processed in a slightly different order. Both EPPS and PT use a
representation where vertices are often swapped when moved between sets. Due to this, the
very same processing order cannot be achieved with BitSets in an efficient implementation.

It is worth to note the speed of Eppstein’s implementation. It is very efficient over all data
sets, and usually by far the fastest for the harder graphs. The results reproduce their claims
[10] that it is indeed as efficient as Tomita’s algorithm for real life data, despite using much
less memory for sparse graphs due to the adjacency list representation.

4.3 Random data

Random graphs can behave differently from real life data. The objective of this section is to
analyse the algorithms’ efficiency on random graphs and compare it to the results observed
in the previous section. The two data sets analysed are graphs of size 80 (as for this size,

21

graphs with any density are feasible to enumerate) and larger sparse graphs of size 5000
and 7500.

Graphs with 80 vertices are small, smaller than most real life data in our data sets. However,
a very dense small graph can be just as challenging as a large sparse graph. Figure 4.1
shows the runtimes of the algorithms for densities from 0.05 to 0.95, the runtimes are
in milliseconds. While the runtime for real life data rarely exceeded a couple of seconds
(slowest being 39 seconds for condmat), enumerating dense graphs of size 80 took more
than 100 minutes on many occasions.

1

10

100

1000

10000

100000

1e+ 06

1e+ 07

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
u

n
ti

m
es

Edge probability of G

Algorithm benchmark

BSCT
BSDT
BSNN
BSNT
EPPS

PT

Fig. 4.1: Algorithm runtimes for random graphs of size 80.

Generally, PT performed much better on random small graphs than on real life graphs.
This is not entirely surprising; it was the fastest among the algorithm for small graphs
of the Mark Newman data sets too. As the density is increased, the inefficiency of the
random pivot selection becomes more obvious. For very dense graphs, it is more than ten
times slower than the same algorithm with Tomita’s pivot selection. The other algorithms’
performance is similar to what was observed for real life data. EPPS and the BitSet
algorithms all perform well with Tomita’s pivot. Again, the initial vertex ordering does not
make a major difference.

Size p BSCT BSDT BSNN BSNT EPPS PT

5000
0.005 0.351 0.331 0.267 0.332 0.408 0.514
0.01 0.667 0.668 0.519 0.708 0.582 0.644
0.015 1.104 1.042 0.664 1.034 0.793 0.835

7500
0.005 0.851 0.813 0.574 0.788 0.765 1.139
0.01 1.339 1.414 0.822 1.579 1.301 1.689
0.015 2.360 2.395 1.353 2.404 2.116 2.178

Table 4.4: Algorithm times in seconds for sparse random graphs.

For sparse graphs, the results are slightly different. Table 4.4 shows that for the analysed

22

graphs, BSNN beats BSNT in every case, even if only by a small margin. This is unlike
the case of dense graphs, where the reduced number of nodes could make up for the extra
cost of choosing the pivot. In sparse graphs, the well chosen pivot does not result in a
much reduced number of recursive calls (see Table 4.5). Now, finding the pivot is not
very efficient with the BitSet implementation. Calculating P ∪ X takes O(n) time, then
we iterate through every vertex in the union BitSet which takes O(n) time again. For
every bit set to 1 (the number of 1’s can be any value from 0 to n), we then calculate
P ∩N(v), taking linear time again. Finally, the cardinality of the resulting set is counted in
linear time. Therefore, the runtime complexity of this operation is 2n+ n(n+ n) ∼ O(n2).
Apparently, the reduced number of calls is not enough in this case to even out the cost of
this calculation.

Size p BSNN BSNT

5000
0.005 69,771 66,898
0.01 149,391 142,114
0.015 260,090 248,371

7500
0.005 156,160 149,591
0.01 355,975 341,506
0.015 660,430 635,863

Table 4.5: In sparse graphs, Tomita’s pivot selection does not reduce the number of nodes
by a great extent.

4.4 Memory limitations of the BitSet algorithm

The SNAP dataset is a collection of very large, sparse graphs and it would have been nice
to be able to test the algorithms on them as well. However, most of the graphs were too
large to enumerate in terms of memory usage (with 6 gigabytes of RAM allocated for the
heap). This rendered the experiment described in 4.2 useless, as most of the time the
programme exited with raising an out of memory exception. Therefore, instead of running
benchmark tests, I just measured which graphs fit in memory from the SNAP graphs. Table
4.6 summarises the results. Note, that the memory usage of the BitSet representation of

Data n m cliques Could be enumerated?
amazon0601 403,394 2,443,408 * No
berkstan 685,231 6,649,470 * No
cit-Patents 3,774,768 16,518,947 * No
email-Eu 265,214 364,481 * No
email-enron 36,692 183,831 226,859 Yes
epinions1 75,888 405,740 1,775,074 Yes
google 875,713 4,322,051 * No
roadNet-CA 1,965,206 2,766,607 * No
roadNet-PA 1,088,092 1,541,898 * No
roadNet-TX 1,379,917 1,921,660 * No
slashdot0902 82,168 504,230 890,041 Yes
wiki-Talk 2,394,385 4,659,565 * No
wiki-Vote 7,115 100,762 459,002 Yes

Table 4.6: Memory issues with the SNAP dataset.

graphs does not depend on the number of edges, only the size of the graph. It is very

23

inefficient for such sparse graphs, like the ones in the SNAP dataset. It appears that there
are no issues below a hundred thousand vertices. Over that, every attempt failed to run
the algorithm (in fact, the exception is raised when the graph is being loaded – running
the algorithm itself would not take much extra memory). In conclusion, memory usage is
a significant drawback of the adjacency matrix representation when the data we wish to
model is very sparse.

4.5 Conclusion

The correctness of the algorithms was verified through their output: they all match, and
they match the results found in published articles. In addition to their correctness, it had
to be decided whether they are reasonably fast too. All 6 algorithms (of which 4 use the
same base algorithm, the BitSet implementation) were found to be viable.

For small graphs, the code converted from the original Bron-Kerbosch algorithm source
code was very efficient, slightly faster on average than any other algorithm. For larger
graphs of over a thousand vertices, it often struggled to keep up with the other algorithms.
The other algorithm that was significantly slower on some data sets, was the algorithm
with random pivoting instead of Tomita’s pivot selection. In some cases it was 10 times
slower than the same algorithms with the better pivot selection.

The initial vertex ordering did not have a similar significant impact on their efficiency. For
the BitSet implementation with Tomita’s pivot, various orders were tested. Although they
resulted in small changes in the number of calls and runtimes, they did not change the
outcome to a great extent. The pivot selection does change the outcome. For dense graphs,
choosing a good pivot vastly reduces the number of calls. However, finding the pivot with
the BitSet implementation takes O(n2) which is fine for small dense graphs. But for sparse
graphs, where the pivot selection has a smaller effect on the recursive calls, and for which
n is greater, a fast arbitrary pivot selection was found to be faster.

In conclusion, choosing the pivot as described in the original Bron-Kerbosch article [6]
or Tomita’s article [21] is well worth it even for BitSet algorithms, despite finding the
pivot being a costly operation. Both the BitSet algorithm and Eppstein’s algorithm are
consistently fast over various data sets. For further benchmarks, BSNT algorithm was
used, as it was found to perform well and as it is very flexible.

24

Chapter 5

K-cliques

5.1 Description

In a clique, vertices are joined pairwise by an edge, i.e. the distance between vertices is one.
This requirement could be relaxed to allow a distance of larger than one. There are two
ways this can be done: the distance can be calculated within the subgraph (the diameter of
the subgraph has to be less than or equal to k), in which case we are talking about k-clubs,
or the distance is calculated using all edges of the graph, resulting in k-cliques.

Definition. A k-clique in a graph G = (V,E) is a subgraph C ⊆ V , in which dist(vi, vj) ≤
k : vi, vj ∈ C.

Definition. The diameter of a graph G = (V,E) is diam(G) = max
vi,vj∈G

dist(vi, vj).

Definition. A k-club in a graph G = (V,E) is a subgraph C ⊆ V , such that diam(C) ≤ k.

The maximum k-clique problem is possible to solve with algorithms used for solving the
maximum clique problem due to a simple observation: the problem of finding maximum
k-cliques in a given G graph can be reduced to finding maximum cliques in Gk; where Gk

is defined as Gk = (V,Ek), Ek = {(v1, v2) : 0 ≤ dG(v1, v2) ≤ k} [2]. Therefore, one can use
for example Tomita’s algorithm to find maximum k-cliques.

We are faced with more difficulties regarding the maximum k-club problem. The root of the
difficulties lies in the non-hereditary nature of k-clubs: if we remove a vertex from a k-club,
the remaining subgraph is not necessarily a k-club [19], which renders an approach similar
to the one used for k-cliques useless. Nonetheless, exact algorithms for the problem exist,
notably the algorithm of Bourjolly et al. [5], but they are less efficient than maximum clique
algorithms. Significantly less literature is available on the maximum k-club problem than
on the maximum clique problem, and there is even less literature to be found on maximal
k-club enumeration.

For simplicity, the focus of the dissertation is problems that can be reduced to the maximal
clique problem, and existing maximal clique algorithms can be used or modified for their
enumeration. As the maximal k-club problem is not such a problem, it is out of this project’s

25

scope. However, using the aforementioned technique, the maximum k-clique problem can
easily be reduced to the maximum clique problem. It will be shown that the same is true
for the maximal cliques.

5.2 Enumerating maximal k-cliques

First, it must be shown that analogously to maximum cliques, the maximal k-clique problem
can indeed be reduced to finding the maximal cliques in the power graph. This ensures
that maximal clique algorithms can solve the maximal k-clique problem too.

Statement 1. Every maximal k-clique in G = (V,E) is a maximal clique in Gk, and every
maximal clique in Gk is a maximal k-clique in G.

Proof. The first statement can easily be shown. Let C ⊆ V be a maximal k-clique in G.
By definition, dG(vi, vj) ≤ k for all vi, vj ∈ C, therefore, every vertices in C are pairwise
joined by an edge in Gk, so they form a clique. If this clique wasn’t maximal, that would
mean that there is a v ∈ V which is not in C and C ⊆ N(v). However, this would mean
that there is a v /∈ C for which dG(v, vi) ≤ k : ∀vi ∈ C, contradicting with the maximality
of C in G.

The other direction can be shown as follows. Let C ⊆ V be a maximal clique in Gk, meaning
that dG(vi, vj) ≤ k for all vi, vj ∈ C, therefore by definition, C is a k-clique in G. C is a
maximal clique in Gk, therefore, there is no vertex v /∈ C for which dG(v, vi) ≤ k : ∀vi ∈ C,
so C is a maximal k-clique in G.

Theoretically, this means that if a graph can be efficiently raised to k, then maximal k-
clique enumeration is reduced to a maximal clique problem. In practice the maximal k-
clique problem is much harder than the maximal clique problem for the same graph[16].
The reason for this is that the running time of the clique algorithms heavily depends on
the sparsity of the graph and other characteristics. Gk is usually much denser than the
original G graph for any k > 1. The following sections in this chapter will analyse the
characteristics of Gk as a function of G and k. Benchmark results will also be presented to
support the claim that finding can k-cliques can indeed require orders of magnitude more
time. Even for relatively small graphs (n ∼ 200), finding the maximal cliques in G2 can
provide significant technical challenges.

5.3 Constructing the power graph

There are numerous ways to build Gk. A common approach is initiating a breadth-first
search in every vertex and stopping at depth k, adding visited vertices to the adjacency list
of the vertex. Another viable solution – if the graph is represented as an adjacency matrix
– is to raise the adjacency matrix to the power of k using a matrix multiplication algorithm.
None of these algorithms require exponential time, so any should be feasible, taking less
time than the actual clique algorithm. In reality, constructing Gk can be surprisingly time
consuming if the wrong algorithm or implementation is chosen. As it was stated in Chapter

26

3, five different algorithms were implemented for constructing the power graph. Since the
power graph tends to be dense, these algorithms focus on BitSet adjacency matrix graphs.
Memory usage turned out to be less of an issue as the bottleneck is the running time of
clique algorithms for such graphs.

raiseBBS Straightforward breadth-first search implementation for BitSet adjacency ma-
trix graphs.

raiseBAL Straightforward breadth-first search implementation for graphs using adjacency
lists.

raiseMM This algorithm works on adjacency matrix representations, calculating Gk by
raising the adjacency matrix to the power k.

raiseGMA and raiseGMB Alternatives proposed to the above algorithms, described in
more details below.

The latter 2 algorithms use a helper method multiply which takes G1 and G2 graphs of the
same size as parameter and produces another graph G – if vi and vj are neighbours in G1

and vj and vk are neighbours in G2, then vi and vk are neighbours in G. This means that
Gk+l = multiply(Gk, Gl). The algorithm is implemented for BitSet adjacency matrices.

Algorithm 4: Helper method for raiseGMA and raiseGMB

1 multiply(Graph G1(V,E1),Graph G2(V,E2))
2 begin
3 Graph G← new Graph
4 for vi ∈ V do
5 NG(vi)← NG1(vi)
6 for vj ∈ NG1(vi) do
7 NG(vi)← NG(vi) ∪NG2(vj)

8 NG(vi)← NG(vi) ∪NG2(vi)

Given the helper method, raiseGMB and raiseGMA produce the final result in two different
ways. The former uses a simple for loop to call multiply k-1 times, while raiseGMA
attempts to save time by reducing the number of calls to multiply. It splits the power
k to the sum of powers of 2, e.g. 11 = 8 + 2 + 1. Calculating G8 requires 3 calls to
multiply; G2 = multiply(G,G), G4 = multiply(G2, G2) and G8 = multiply(G4, G4). The
lower powers are calculated on the way to get G8, therefore all is given to calculate G11:
G3 = multiply(G,G2) and G11 = multiply(G3, G8). The helper function is called 5 times
in comparison to 10, required by raiseGMB.

The five algorithms gave the same results on all tested instances. For small graphs the
correctness of the output can also be verified by visual inspection, however, the fact that
they all result in the same output graph gives extra confidence of their correctness. Although
the major motivation for five different implementations is to test the correctness of them,
the running time of the algorithms is also interesting, which is analysed in the next section.

The algorithms were benchmarked on various random graphs of interest for the purposes
of this project. All algorithms perform reasonably well for such data and for the purposes

27

of the project any would suffice. To stretch their performance, tests were also performed
for large sparse graphs. This showed a clear

The algorithms were benchmarked on various random graphs and using a k values ranging
from 2 to 16. Selected results are shown in Table 5.1.

Data Algorithm

k n p raiseAL raiseBBS raiseMM raiseGMA raiseGMB

2

2500
0.01 0.672 0.012 0.610 0.012 0.005
0.05 7.396 0.010 0.587 0.026 0.016
0.1 15.204 0.013 0.556 0.062 0.032

10000
0.005 18.029 0.050 28.265 0.160 0.126
0.05 * 0.052 27.568 1.170 1.018

25000
0.001 7.928 0.219 293.182 0.323 0.346
0.01 * 0.220 * 2.934 2.680

5

2500
0.01 2.071 0.310 1.453 0.094 0.015
0.05 7.649 0.301 1.518 0.245 0.054
0.1 16.031 0.262 1.424 0.268 0.110

10000
0.005 57.611 18.908 101.373 3.887 0.485
0.05 * 17.272 97.983 12.379 3.928

25000
0.001 * 90.297 * 7.479 1.427
0.01 * 179.444 * 178.040 10.306

Table 5.1: Benchmark results for power graph algorithms (random data) measured in
seconds. Best times in bold.

There is no clear winner among the algorithms that would perform the best on all graph
types. However, raiseGMB consistently performs the best on critical graphs (large graphs,
large k) and its results are not far from the best on all other inputs as well. On the other
hand, raiseBBS performed very well on denser, smaller graphs. Interestingly, raiseGMA
takes significantly more time to run than raiseGMB for large k’s. It has a simple ex-
planation: even though the number of calls to multiply is reduced, the running time of
multiply depends on the sparsity of its first input graph. When using raiseGMB, this first
parameter is always the input graph G itself, while for raiseGMA it is a power of G. These
graphs are much denser then the original G, therefore multiply takes much longer time.

Due to its consistent performance, raiseGMB was used for all purposes to build Gk (it
had decent runtimes for small dense graphs too). There may be more efficient algorithms
to achieve the same, but it performs at a desired level. Any case where building the power
graph takes more than a few seconds results in a graph of whose maximal cliques are
technically infeasible to enumerate. In the following sections, the time to construct Gk is
not included in the indicated runtimes.

28

5.4 Experimental results

5.4.1 The density of the power graph

Clearly, the power graph must be at least as dense as the plain graph. Usually, it is much
denser. Experiments were run to measure the relationship between the density of the power
graph as a function of the original graph’s edge probability. In a random graph, generated
by specifying its edge probability, the expected density equals the edge probability, because
the expected number of edges is µ[|E|] = p ∗ 1/2 ∗ |V | ∗ (|V | − 1), substituted into the
definition of the density yields µ[D] = p.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

D
en

si
ty

Edge probability of G

Density of the power graphs

G
G2

G3

Fig. 5.1: Density of the power graph as a function of the original graph’s density (n = 80).

Therefore, for the plain graph a linear relationship is expected between the edge probability.
This, and the densities of G2 and G3 are shown in Figure 5.1. Of course, D(G3) ≥ D(G2)
and D(G2) ≥ D(G).

Generally, finding cliques in denser graphs are harder. Figure 5.1 supports the claim that
the maximal k-clique problem is a much harder problem than the maximal clique problem
for the same graph. However, there are exceptions to this. For example, in dense graphs, if
diam(G) = k, then Gk will be a complete graph, which makes finding the maximal clique
obvious and Figure 5.1 also suggests that the this happens for relatively low p and k values.

5.4.2 The turning point

Due to Figure 5.1 I became interested in the density of G for which Gk is a complete
graph, as that makes k-clique enumeration trivial and pointless. In the first experiment,
random graphs were tested. For this, a Java program called TurningPoint was coded,

29

which takes a size, a k value, a starting probability and a increment value as parameter.
Starting at the starting probability, it produces a random graph with that probability and
checks if Gk is complete. If not, the probability is incremented by the given value and the
calculation is repeated. It is repeated until a complete graph is constructed, at which point
the probability is stored.

This process is repeated a number of times, say 50 (the case of the actual experiment
carried out for the project). The average of these runs gives an idea of the density for
which Gk for a G of given size will have a diameter of k. By no means is this an accurate
statistical measurement. For instance, doing the same, but starting from a high probability
and decrementing it until a non-complete graph is found would give higher average results.
Yet, it gives an idea of the trends.

0.001

0.01

0.1

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
ro

b
ab

il
it

y

Size of G

Complete graph probabilities

k = 2
k = 3
k = 4

Fig. 5.2: A rough (under)estimation for the density of G for which Gk will be a complete
graph.

Figure 5.2 shows the results for k = 1, 2, 3 for sizes 50 to 2000. This shows that the larger
the graph, the less density it takes for the power graph to be complete. For example, the
values for n = 2000 are as low as 0.085 (k=2), 0.018 (k=3) and 0.009 (k=4). The results
lead to two observations: for a wide range of graphs and values of k, the k-clique problem
is actually trivial and easier than the corresponding maximal clique problem and for many
graphs the problem only makes sense for relatively low values of k.

Motivation is typically real life applications. Does the above observation hold true for real
life datasets? Tests were run to calculate the diameter of real life data (Table 5.2 and Table
5.3).

It is quite apparent, that the real world graphs are sparse and their diameters tend to be
larger than what was observed in the case of random graphs. Therefore, finding k-cliques
in this graph generally makes sense for a range of k values. For all instances the diameter is
larger than 3, which is the largest k this project deals with. Please note, that my algorithm

30

Data Density Diameter
marknewman-internet 0.000 >9
marknewman-astro 0.001 >9
marknewman-lesmis 0.087 5
marknewman-adjnoun 0.068 5
marknewman-power 0.001 >9
marknewman-polblogs 0.015 >9
marknewman-karate 0.139 5
marknewman-polbooks 0.081 7
marknewman-celegens 0.049 5
marknewman-netscience 0.002 >9
marknewman-football 0.094 4
marknewman-dolphins 0.084 8
marknewman-condmat 0.000 >9

Table 5.2: Density and diameter of Mark Newman graphs.

Data Density Diameter
biogrid-worm 0.001 >9
biogrid-yeast 0.009 5
biogrid-human 0.001 >9
biogrid-fission-yeast 0.006 >9
biogrid-plant 0.002 >9
biogrid-mouse 0.002 >9
biogrid-fruitfly 0.001 >9

Table 5.3: Density and diameter of BioGrid graphs.

did not check if the graphs are connected in the first place. Probably, some of the real life
graphs are not connected, therefore the diameter is infinity.

5.4.3 K-cliques in practice

Arguably, benchmark results of real data is more interesting than k-clique enumeration
for random graphs. Social networks, for example, are a natural application area, where
it is easy to interpret the structures enumerated by 2-clique and 3-clique algorithms. It
would show all people who have an acquaintance in common, or know someone who knows
someone who knows the other person. But is it technically feasible to find such structures?
Can these cliques be enumerated reasonably fast for the real world datasets?

Data Cliques Time Calls
biogrid-worm 189,353 5.551 1,011,623
biogrid-yeast * * *
biogrid-human * * *
biogrid-fission-yeast * * *
biogrid-plant 1,018 0.079 7,426
biogrid-mouse 906 0.092 5,658
biogrid-fruitfly 167,888,720 2,298.622 530,375,379
marknewman-internet * * *
marknewman-astro * * *
marknewman-lesmis 29 0.017 276
marknewman-adjnoun 1,679 0.090 5,904
marknewman-power 3,942 0.279 20,466
marknewman-polblogs * * *
marknewman-karate 12 0.005 92
marknewman-polbooks 275 0.051 1,393
marknewman-celegens 13,341,191 49.693 60,354,157
marknewman-netscience 519 0.066 3,472
marknewman-football 5,435 0.149 20,083
marknewman-dolphins 198 0.024 717
marknewman-condmat * * *

Table 5.4: K-clique enumeration for the Mark Newman and BioGRID datasets (k = 2).

The short answer is no. While most of the Mark Newman and BioGRID graphs took only
a couple of seconds at most to enumerate maximal cliques, k-clique enumeration took too
long for several graphs. The program was stopped if it had not finished within an hour.
Table 5.4 shows the overall results of the experiment. The cases where the algorithm did
not finish are marked by an asterix. Many of the harder graphs did not finish, and this

31

is only for 2-cliques, 3-cliques were not even attempted. Larger k values are even harder.
As a result, I concluded that k-clique enumeration is too hard a problem for a lot of real
applications.

5.4.4 The hardness of the k-clique problem

As it was seen with real data, the k-clique problem is much harder than the clique problem.
The same is true for random graphs. When enumerating maximal cliques takes only a
couple of milliseconds, the corresponding 2-clique and 3-clique problem may take minutes
or even hours. Figure 5.3 shows, for instance, that for a graph with 80 vertices and an edge
probability of 0.08, finding maximal cliques takes less than 10 milliseconds, whereas finding
3-cliques takes almost a hundred times longer. However, what I was interested in is does its
hardness depend solely on the density? Or do power graphs possess other characteristics
that make it an easier or even harder problem than what their density would indicate?

To find the answer for the questions, a number of random power graphs were generated.
Then, for every power graph an equivalent graph was generated. Equivalency simply means
that they have the same number of vertices and edges. As a result, we have a number of
power graphs and the same amount of equivalent graphs which have the exact same density.
The purpose of the experiment is to see which set of graphs is harder to enumerate. Is it
the random set or power graph set? The following experiments provide the answer. For all
runs, the BitSet algorithm was used with no ordering and Tomita pivot selection. At each
setting, 50 random graphs were generated, for which all power graphs were constructed and
for each power graph, an equivalent random graph was generated.

The first experiment used random G(V,E) graphs, where |V | = 80. For this size, the full
range of edge probabilities could be covered. However, from p = 0.4 onwards, every power
graph became a complete graph, so the p > 0.4 range was excluded from the experiment.
Figure 5.3 clearly shows that on the most critical settings (that is, around p = 0.2 for
G2 and p = 0.08 for G3), power graphs are significantly easier to enumerate than random
graphs of the same density. Please note that the y axis uses a log scale: runtimes for the
power graphs are about a hundred times better.

Figures 5.4 and 5.5 show the number of nodes (recursive calls) it took the algorithm to find
all maximal cliques and the number of cliques found. They roughly follow the same shape
as the runtimes. Apparently, there is a strong correlation between the three values (as it
could be expected).

While based on these graphs, it would seem that finding maximal k-cliques is easier than
what the density of the power graph would indicate, this is not entirely true. For one, what
we really see from this experiment is the hardness of the hardest case for small graphs:
when the power graph is very dense but not complete yet. However, the very hard cases
for even slightly larger graphs are infeasible to enumerate.

This is often not an issue, as real world data is often sparse. Using this setting, it cannot be
told what happens for low probabilities in terms of runtimes; the differences are very minor
and it takes very little time so the measurement is possibly inaccurate too. Nonetheless, it
seems that at some point, the lines cross each other, and for low probabilities, the maximal

32

1

10

100

1000

10000

100000

0.05 0.1 0.15 0.2 0.25

T
im

e(
m

s)

Edge probability of G

Runtimes

G
G2

G2R

Fig. 5.3: Runtimes of enumeration for graphs of size 80.

k-clique problem is actually harder than enumeration in the equivalent graph. To investigate
this further, experiments were run using other settings:

• n = 500, probabilities ranging from p = 0.001 to p = 0.01, k = {2, 3}

• n = 1000, probabilities ranging from p = 0.005 to p = 0.02, k = 2

Unfortunately, a wider range of probabilities proved to be infeasible to enumerate. The
experiment backs up the hypothesis formulated in the experiment for dense graphs. For
sparse graphs the k-clique problem is not easier than the corresponding random graphs at
all, rather, it is harder at a number of settings. For example, where n = 500 and p = 0.01,
it took less than 1,000 seconds to find cliques in the equivalent graph, while finding cliques
in G3 took nearly 10,000 seconds (Figure 5.6). For k = 2 the differences are less apparent
(Figure 5.7), but the power graph is steadily harder.

This suggests that for many important applications, the k-clique problem is even harder
than a maximal clique problem of a graph with the same density as the power graph.

5.5 Summary

It was shown that the maximal k-clique problem can be solved using a standard maximal
clique algorithm, if we feed the power graph to it as input. It is possible to construct the
power graph with relative ease, although, doing this efficiently was not a major focus of the
project. Because of this, the time to build the power graph was not included in the results
of the experiments.

33

10

100

1000

10000

100000

1e+ 06

1e+ 07

1e+ 08

1e+ 09

0.05 0.1 0.15 0.2 0.25

C
a
ll

s

Edge probability

Number of calls

G
G2

G2R
G3

G3R

Fig. 5.4: Number of calls it took to enumerate all maximal cliques in the power graphs
and their equivalent graphs. (n = 80)

The power graph turned out to be much denser than the original graph. This makes
the problem at least as hard, and typically much harder, than the classic maximal clique
problem. The exception to this is when the power graph is a complete graph, which happens
when k ≥ diam(G). It is not unusual for dense random graphs to have a relatively small
diameter. In real life data, the diameter was typically larger, and the k-clique problem
made sense for k = 2 and k = 3 in all observed graphs.

Even though the problem is solved by constructing the power graph and enumerating
maximal cliques in them, it is not clearly a feasible solution in practice. For the experiments,
only the Mark Newman and the BioGRID dataset were used, which contain relatively small
graphs. Processing data from the SNAP dataset was not even attempted. Results were
only obtained for k = 2. Even with these strong restrictions, some runs took an extremely
long time.

In the literature, no faster alternative was found to the approach used in this project. As
it is now, maximal k-clique enumeration is a hard problem, even too hard for a number of
practical applications. It would be worth researching if different viable approach existed, a
special purpose algorithm that suits k-clique enumeration more.

34

1

10

100

1000

10000

100000

1e+ 06

1e+ 07

1e+ 08

0.05 0.1 0.15 0.2 0.25

C
li

q
u

es

Edge probability of G

Number of cliques

G
G2

G2R
G3

G3R

Fig. 5.5: Number of cliques in the power graphs and their equivalent graphs. (n = 80)

1

10

100

1000

10000

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

T
im

e(
m

s)

Edge probability of G

Runtimes

G
G2

G2R
G3

G3R

Fig. 5.6: Runtimes of the k-clique problem and equivalent graphs problem for graphs of
size 500.

35

10

100

1000

10000

100000

1e+ 06

0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

T
im

e(
m

s)

Edge probability of G

Runtimes

G
G2

G2R

Fig. 5.7: Runtimes of the k-clique problem and equivalent graphs problem for graphs of
size 1000.

36

Chapter 6

Labelled cliques

6.1 A maximal labelled clique algorithm

6.1.1 The problem

Carrabs et al. introduced a variant of the maximum clique problem for labelled graphs,
G = (V,E, L) [7]. The set of possible labels is denoted by L. They defined a function
l : E → L that represents the label assignments to the edges, and λ : V → L that returns
all the different labels of the edges which connect vertices in a V ′ ⊆ V subset of vertices
given as input. A constraint is introduced which limits the number of different labels that
are allowed in the cliques. This number is the budget b. For budgets b ≥ |L|, the problem
does not differ from the basic maximum clique problem, therefore, the interesting cases
are |L| > b > 0. The cliques that satisfy this constraint are named feasible cliques. The
problem is finding the maximum feasible cliques. If more than one such maximum cliques
exist, the one with a smaller cost is preferred, that is, the one using less different labels.

Analogously, the maximal labelled clique problem can be formulated: we wish to enumerate
all maximal labelled cliques that are within a budget. A maximal labelled clique C ⊆ V is
a feasible clique (within the budget) that cannot be enlarged either because it is a maximal
clique (there is no vertex that is adjacent to all v ∈ C) or there exist vertices that could
be added to it, but doing so would result in an infeasible clique. To my knowledge, no
algorithm has been proposed for this problem.

6.1.2 The algorithm

P. Prosser and C. McCreesh devised an alternative [15] to the mathematical programming
model proposed by Carrabs et al. Their algorithm is similar to other clique algorithms
in the sense that it is a branch and bound, recursive algorithm. However, it also takes
into account that the clique has to be feasible by keeping track of the labels used in the
growing clique in a variable. When a vertex is added to the growing clique, a new label set
is calculated, and if its size is over the budget, the branching is stopped. Inspired by this,
I adapted the Bron-Kerbosch algorithm to suit the maximal labelled clique problem. The

37

core idea is that at each recursive call, when P and X are recalculated, we also consider
the budget. For every vertex in P and X, at each call, we calculate what would be the size
of the label set if the vertex was added to the growing clique. If this exceeds the budget,
the vertex is removed from the set containing it. A maximal labelled clique is found, when
P and X are empty. Hereafter, I call this algorithm BKL.

Statement 2. Algorithm BKL finds all and only the maximal labelled cliques in a labelled
graph.

Proof. At each recursive call, when a new vertex v is added to the growing clique, P and X
are recreated. First, the non-neighbours of v are removed from P and X. This means that
the vertices that remain in them are all adjacent to C, the growing clique, therefore, if they
are added to C, the result is a clique as well. Then, for all v ∈ P ∪X, c(v) = |λ(C ∪ v)|
is calculated. This is the cost of the clique, if v was added to C. If c(v) > b, v is removed
from P or X. This ensures, that all remaining vertices, if added to C, would result not
only in a clique, but a feasible clique too.

Clearly, the algorithm branches into feasible cliques, as every vertex that is in the candidate
set is adjacent to all vertices in C, and adding it to C does not exceed the budget, by the
definition of how P is maintained. We must only show that, when P and X become empty,
C is a maximal labelled clique. Since P is empty, the clique cannot be further extended.
However, if X is not empty at this point, that means that there exist a vertex, which has
been visited before, that could be added to C and the result would be a larger feasible
clique. On the other hand, if X is empty, C is a maximal labelled clique, as if it wasn’t,
then the vertex that could extend it would still be in either P or X.

Algorithm 5: The BKL algorithm.

1 BKL(Set C,Set P,Set X, int b)
2 begin
3 if P 6= ∅ then
4 for v ∈ P do
5 Set C ′ ← C ∪ v
6 Set P ′ ← P ∩N(v)
7 Set X ′ ← X ∩N(v)
8

9 for v ∈ P ′ do
10 if c(v) > b then P ′ ← P ′ \ {v}
11

12 BKL(C ′, P ′, X ′, b)
13

14 P ← P \ {v}
15 X ← X ∪ {v}

16 else
17 for v ∈ X do
18 if c(v) > b then X ← X \ {v}
19 if X = ∅ then report C as maximal labelled clique

38

Calculating c(v) = |λ(C ∪ v)| is a rather expensive operation to perform at each recursive
call for all v in P and X. Fortunately, the NOT set does not have to be maintained
continuously, as we only need to check its emptiness once there are no candidates left.
I found that if we keep removing vertices that are not adjacent to the next candidate,
but we only remove infeasible vertices once P is empty, the runtime of the algorithm is
better in every case (and the algorithm still gives the same results). Sometimes the benefits
are marginal, in other cases it can be significant, depending on the type of input. For
the complete algorithm with this modification, see Algorithm 5, and Appendix B.2 for
the Java implementation. Similarly to the algorithm of P. Prosser and C. McCreesh, my
implementation passes another argument to the recursive function, the label set of the
growing clique. This speeds up the calculation of c(v), because the labels within C do not
need to be calculated. Instead, we only need to add the labels of the edges joining the
candidate and the vertices of C. The cardinality of the resulting label set equals c(v).

6.2 The correctness of the algorithm

To ensure that the algorithm is indeed correct, and also that my code implements it cor-
rectly, it had to be tested. The difficulty was that there are no published results for the
problem against which the output could have been easily verified. Yet, there were ways to
confirm it. The first step was to run the algorithm on small graphs, for which the results
can be calculated on paper. This is an error-prone and inefficient process but it worked
well as a first filter. The second – still informal – test was to modify the algorithm to
enumerate maximum labelled cliques. The maximum labelled clique problem is a subset
of the maximal labelled clique problem. Once we have the maximal solutions, we can then
discard the non-maximum ones, thus solving the maximum problem, although, it is a a
much slower technique than using a dedicated algorithm. As I have written, P. Prosser
and C. McCreesh have devised an efficient maximum labelled clique algorithm [15]. C.
McCreesh kindly sent me the results for some of the data I had generated. My modified
algorithm found the same maximum cliques as him.

The third and most formal test, was to solve the problem using only the classic Bron-
Kerbosch algorithm whose correctness had been verified. I calculated all b−combinations of
the labels, where b is the budget, and constructed unlabelled graphs for every combination
from the labelled graph (that is, an unlabelled graph that has all the edges from the
labelled graph which have a label that is in the combination). In the resulting graphs,
classic maximal cliques can then be enumerated. However, this will find duplicates and
even non-maximal labelled cliques, too. To find the correct number of maximal labelled
cliques, all the results need to be merged, and then the duplicates, and sets of vertices that
are a subset of another solution need to be discarded. This is a very inefficient way to
solving the problem. The number of combinations is

(|L|
b

)
, which grows at a factorial rate

for fixed budgets as a function of the cardinality of the label set. Then, cleaning the results
can be very slow, too. Nonetheless, it is still fast enough to enumerate graphs of a hundred
vertices, if there are not many labels (i.e. it worked for |L| = 5). And it only uses tested
algorithms. Again, the output of BLK matched the results produced this way.

39

6.3 The experiments

I could not find appropriate real life data of labelled graphs. Instead, labels were generated
uniformly at random for unlabelled graphs to construct labelled graphs. There is a wide
range of possible settings that could be used for the experiments, random or real life data,
different number of labels and varying budgets. The focus of the project is to find out
whether the maximal clique variants can feasibly be solved in practice, therefore, I narrowed
down the data set to real life graphs. The number of labels was also set to 5 for all tests,
which seemed a reasonable value for real life uses. The budget varied from 2 to 4.

Data
budget = 2 budget = 3

Cliques Runtime Nodes Cliques Runtime Nodes
marknewman-internet 49,355 0.815 100,634 57,784 1.246 180,027
marknewman-astro 220,866 7.376 792,527 578,577 68.016 6,797,798
marknewman-lesmis 224 0.021 602 258 0.029 1,087
marknewman-adjnoun 334 0.015 687 354 0.016 843
marknewman-power 6,098 0.104 11,876 5,795 0.100 12,221
marknewman-polblogs 35,684 0.560 89,075 77,486 1.309 382,163
marknewman-karate 54 0.003 136 47 0.003 161
marknewman-polbooks 335 0.021 849 374 0.025 1,234
marknewman-celegens 1,850 0.056 4,215 2,287 0.072 6,508
marknewman-netscience 2,242 0.075 6,596 2,393 0.097 12,033
marknewman-football 496 0.030 1,180 543 0.036 1,854
marknewman-dolphins 113 0.006 273 109 0.006 328
marknewman-condmat 166,443 4.492 444,559 205,999 10.173 997,484

Table 6.1: Labelled Clique Enumeration results for the Mark Newman datasets.

Data
budget = 2 budget = 3 budget = 4

Cliques Runtime Nodes Cliques Runtime Nodes Cliques Runtime Nodes
biogrid-worm 6,190 0.097 11,187 6,267 0.093 12,678 5,954 0.103 13,623
biogrid-yeast 353,809 3.446 822,573 804,010 14.272 3,705,854 1,343,894 127.453 31,528,745
biogrid-human 27,986 0.328 50,186 28,599 0.421 63,359 26,097 0.522 75,711
biogrid-fission-yeast 20,121 0.277 43,722 34,099 0.543 116,189 40,595 0.869 274,785
biogrid-plant 2,903 0.061 6,264 3,099 0.075 8,602 2,799 0.099 11,374
biogrid-mouse 1,578 0.040 3,157 1,553 0.042 3,231 1,534 0.042 3,263
biogrid-fruitfly 23,212 0.245 34,872 22,954 0.249 37,962 22,363 0.262 39,109

Table 6.2: Labelled Clique Enumeration results for the BioGRID datasets.

Table 6.1 shows the results for the Mark Newman dataset. All graphs were could be
enumerated within reasonable time. However, we can observe that the higher the budget,
the harder the problem gets. While the algorithm finished reasonably quickly for b = 2,
larger budgets caused issues, especially for marknewman− astro. This corresponds to the
results we got for the classic clique enumeration problem in Chapter 4. In that case, on
average, marknewman − condmat was the hardest, BSNN struggled with enumerating
marknewman− astro. This is probably due to the structure of the graph, which makes it
much harder to enumerate if Tomita’s pivot selection is not applied to it. Unfortunately,
pivoting does not work with the labelled clique algorithm, as the observation that enabled
it is no longer true for the labelled case. This may be the cause why the runtime is more
for astro than for condmat. The results for the BioGRID dataset are very similar (Table
6.2. For b = 2, the runtimes are low, around the same as for the unlabelled problem. For
larger budgets, the runtimes are higher, but they are still in a reasonable range.

In general, the lower the budget, the more restrictive the constraint is which makes the
problem easier. The problem also becomes easier if there are more possible labels. If the
cardinality of the label set would have been increased to, say, 10, then the runtimes for
b = 3 and b = 4 would be much lower as well.

One could think that the number of cliques should decrease with the introduction of labels,
as it is a restriction after all. While this is true in some cases, it is not the case in general.

40

The above tables show that the number of cliques is usually more for larger budgets. On the
other hand, if we compare the results to those for the unlabelled graphs, we see that there
are consistently less maximal cliques than labelled cliques in most graphs. Overall, the
introduction of labels in fact increases the number of maximal cliques. A simple example
of this is 3 vertices that are all connected. These form a maximal clique if the edges are
unlabelled. If we assign three different labels to the edges, then, for b = 2 and b = 3, the
number of maximal labelled cliques is 3, as all three vertices cannot be in a single clique
due to the budget.

Extremes of this phenomenon can be observed in the results I got for the test data used by
Tomita et al. [21] (DIMACS graphs and Moon-Moser graphs). There are 7 and 8 maximal
cliques in c−fat−200 and c−fat−500 and these can be enumerated in roughly a hundredth
second. However, the labelled clique problem is much harder – for a b = 3, in c−fat−500,
there exist over 18 million maximal labelled cliques on average and the algorithm took well
over an hour to find these (Table 6.3 and 6.4. Similar

Data
budget = 2 budget = 3

Cliques Runtime Nodes Cliques Runtime Nodes
dimacs-brock200-2 46,974 0.708 133,543 164,493 1.674 674,624
dimacs-c-fat200-5 47,692 1.447 243,132 262,004 21.096 4,628,462
dimacs-c-fat500-10 933,360 55.728 6,463,984 18,054,637 4949.231 5,978,614
dimacs-johnson8-4-4 6,538 0.218 21,512 22,602 0.707 128,433
dimacs-johnson16-2-4 35,892 0.801 130,254 208,502 3.547 1,181,333
dimacs-hamming6-2 7,838 0.320 34,411 35,346 1.719 406,541
dimacs-hamming6-4 701 0.035 1,279 903 0.037 1,822
dimacs-keller4 66,038 1.094 223,963 353,045 4.542 1,844,077
dimacs-MANN-a9 2,801 0.140 11,183 9,249 0.633 92,497
dimacs-p-hat300-1 30,906 0.394 60,629 56,075 0.673 161,656
dimacs-p-hat300-2 216,432 4.046 861,849 1,495,837 44.389 12,904,256
m-m-30 865 0.078 2,901 1,977 0.159 14,804
m-m-45 3,003 0.159 12,605 10,533 0.745 118,530
m-m-48 3,689 0.185 16,035 13,995 0.931 167,318
m-m-51 4,505 0.218 20,178 18,349 1.203 234,293

Table 6.3: Labelled Clique Enumeration results for Moon-Moser and DIMACS graphs.

Data n m Cliques Runtime Nodes
dimacs-brock200-2 200 9,876 431,586 1.028 1,103,895
dimacs-c-fat200-5 200 8,473 7 0.011 588
dimacs-c-fat500-10 500 46,627 8 0.020 1,548
dimacs-hamming6-2 64 1,824 1,281,402 1.674 3,094,420
dimacs-hamming6-4 64 704 464 0.011 1,362
dimacs-johnson8-4-4 70 1,855 2,027,025 5.927 14,158,473
dimacs-johnson16-2-4 120 5,460 114,690 0.281 273,062
dimacs-keller4 171 9,435 10,284,321 6.205 14,319,049
dimacs-MANN-a9 45 918 590,887 0.530 964,208
dimacs-p-hat300-1 300 10,933 58,176 0.192 133,744
dimacs-p-hat300-2 300 21,928 79,917,408 122.328 196,461,994
m-m-30 30 405 59,049 0.154 88,573
m-m-45 45 945 14,348,907 6.432 21,523,360
m-m-48 48 1,080 43,046,721 24.458 64,570,081
m-m-51 51 1,224 129,140,163 64.632 193,710,244

Table 6.4: Labelled Clique Enumeration results for Moon-Moser and DIMACS graphs.

This is not true for other data, though. Interestingly, in most of the DIMACS graphs,
and especially in the Moon-Moser graphs (data starting with m-m), the opposite can be
observed. There are less maximal labelled cliques than simple maximal cliques and the
algorithm run much faster in the labelled case. For instance, in m − m − 51, there are
around 129 million maximal cliques. With a budget of 2, there are only 4,505 cliques and
the runtime also drops from over a minute to 0.2 seconds. Great difference can be seen
in the case of many other graphs, e.g. m −m − 45, m −m − 48, p − hat − 300 − 2 and
johnson− 8− 4− 4. Typically, the assignment of labels seems to have a greater impact on
these graphs than on the Mark Newman and BioGRID graphs. I suspect this is due to their
density and special characteristics that make them hard for classic clique enumeration.

41

In conclusion, it remains unclear whether the labelled clique problem is harder or easier
than the classic maximal clique problem. It depends on the input – in some cases it has very
different characteristics, but depending on the graph, this can mean that it is much easier
or that it is much harder a problem. Admittedly, my maximal labelled clique algorithm has
shortcomings. For example, pivot selection greatly improves the original Bron-Kerbosch
algorithm, and it is not implemented for the labelled algorithm. Also, there may exist more
efficient approaches to implement the algorithm with regards to data structures and how
the cost of adding a vertex to the growing clique is calculated.

42

Chapter 7

Conclusion

The aim of the project was to find out the extent to which maximal k-cliques and maximal
labelled cliques are feasible to be enumerated by classic maximal clique algorithms. While
there is no definite answer to this question, the project has been successful in producing
valuable results.

Overall, k-clique enumeration was found to be a hard problem. With the implemented Bron-
Kerbosch algorithm, many of the real life data sets proved to be too hard. Larger graphs,
such as SNAP graphs, were not even attempted due to memory limitations. I assume that
they would have turned out to be even harder. The hardness of the problem comes from
the technique: we enumerate maximal cliques in the power graph using general purpose
maximal clique algorithms. The power graph is very dense, which makes the problem much
harder than the original problem. For instance, for random graphs with n = 80 and p = 0.05
the density of G3 is as high as 60% on average. Power graphs built from random graphs
cannot be considered random, though. Therefore, enumerating maximal cliques in power
graphs is not the same as doing so in randomly generated graphs with the same density. I
analysed whether power graphs or equivalent graphs are the harder. For small graphs, in
cases where the power graph got very dense, finding maximal cliques in the power graph
was easier. Unfortunately, these results are less interesting, as real life graphs tend to be
larger and sparser. Experiments were also run using larger (n = 500 and n = 1000), sparser
graphs. It was shown that with these settings, the power graphs are equally hard (even
harder) as the equivalent graphs.

Although labelled cliques had been defined due to Carrabs et al. [7], the maximal labelled
clique problem was formulated in this project. An adaptation of the Bron-Kerbosch algo-
rithm was proposed to enumerate maximal clique. This method was shown to be viable for
all used real life graphs. However, for some graphs, with the settings I used, the labelled
clique variant was still harder than the unlabelled problem. This is highly setting depen-
dent. Ultimately, the hardness of the labelled clique problem depends on the quotient of
the cardinality of the label set and the budget. Using five labels and b = 2 was usually
enough restriction for the problem to become easier than the unlabelled one. Whether
introducing labels increases or decreases the hardness of the problem is also much input
dependent. This could be seen in the results for Moon-Moser and DIMACS instances. The
same setting resulted in a great increase in the number of cliques and runtimes in some
graphs, while in some other graphs it reduced them.

43

In general, the labelled clique problem is much harder than the k-clique problem, and is
generally feasible for all input for which the classic maximal clique algorithms are feasible.
It is somewhat disappointing that it is not clearly easier, as it is an additional constraint.
It is not only harder in some cases with regards to runtimes, which could be an effect of the
extra operations, but often the number of recursive calls is greater for the labelled problem.

The experimental results are not the only achievements of the project. The code con-
tains several different implementations of the Bron-Kerbosch algorithm. Altogether, the
code makes up a library for whoever needs a tested implementation in Java. The BitSet
implementation is both faster than a straightforward implementation and more efficient
memory-wise, than, for example, using a 2D boolean array for the adjacency matrix.

The project has also some shortcomings and it could be improved and extended in a number
of ways. The labelled clique algorithm could possibly be further optimised. As it is now, it
does not implement any pivoting, from which the Bron-Kerbosch algorithm has been shown
to greatly benefit. I feel that given enough time, it could be implemented in a more efficient
way. It would be worthwhile to try the algorithm’s speed using other data structures, like
the one used in the original Bron-Kerbosch article – maybe these would allow to maintain
the candidate and the NOT set with less effort. Also, the vertices could be initially ordered
based on the labels of their edges. Unfortunately, these modifications were out of scope for
this project.

A possible extension of the project would be to implement code for the maximal common
subgraphs problem. Similarly to k-cliques, it is a problem that can be solved by an adapted
maximal clique algorithm, by transforming to input (instead of power graphs, here we need
to produce the product graph from the input, which is 2 undirected graph). The problem
has practical uses with applications in theoretical biology, for example [12]. It was planned
for this project, but was never implemented.

Regardless of the above shortcomings, the main goals of the project were to gain insight into
the hardness of the clique variants and providing a library to whomever needs a solution in
Java. These objectives have been fulfilled.

44

Appendix A

How experiments are conducted

A.1 Overview

The core library has all the reusable classes – data structures, algorithms, often used utility
methods – that are needed throughout the project. It also has several executables which
serve as an entry point to obtaining certain results. One could go about doing the ex-
periments by calling these methods, storing and analysing them manually. However, some
experiments take weeks to execute, process thousands of graphs and result in thousands of
result files. To automatise the process, for each experiment type, several additional Java
classes were implemented. The exact process varies from experiment to experiment, but
they all share certain characteristics. The Java applications of the experiments do not do
any of the real work, they just print out a list of calls to applications in the core library.
These calls can be printed to a text file, which can be made executable to run them. I call
such a batch of Java calls a job file.

This method of conducting the experiments have several benefits. The major objective is
to make the results repeatable and traceable. This way, this objective is satisfied, because
even though the experiments themselves are automatic, they consist of individual Java
calls. For example, when we need the average runtime of an algorithm over 50 random
graphs, an experiment can do that automatically. However, it also saves each generated
graph and results for each graph to text files. Therefore, not only the overall result is saved,
but individual results too; and if any of the results is suspicious, it can be recalculated by
running the algorithm just for that graph again. Other benefits include the separation of
the core functionality from the experiment code. That is, the experiment code does not use
any of the classes from the core library, it just prints calls to the job files. This is not even
Java specific, the same job files could be written in any language or even manually.

The main steps of the experiments are also separated. For instance, generating the data and
running the algorithms are separate jobs. Analysing the results is another. An example
when this is beneficial is when we want different statistics for the same results. Let us
assume that I calculated the average, the maximum and the minimum of runtimes over a
set of data. Eventually I may wish to find the median as well. The experiment needs not
be redone wholly, the individual results are available. Only a new analyser job needs to be
coded that also calculates the median.

45

The following sections give a quick overview how three of the important experiments work
to give a general idea how the experiments were conducted.

A.2 Maximal clique experiments on real life data

Every experiment has a separate folder that contains the executables and the folders
used in the experiment. For simple maximal clique experiments, this folder is called
experimentclique. Since the same experiment had to be run on different data and settings,
the folder was first copied and given a custom name, for instance experimentcliquemarknewman,
when the clique experiment was run on the Mark Newman dataset.

The first step is to put the graphs to be enumerated in the data folder. Second, the
MakeExperiment Java application needs to be run. This takes a single argument, the
number of times the algorithms are to be run on each graph. The runtime is the average
of these runs. The application prints out all the Java calls to the core library that need
to be run. Executing the job file puts the results in the results folder. This experiment
enumerates cliques using 6 different algorithms. The results are save in text files in a way
that every result can be easily found. For instance, the result file called marknewman −
karateepps contains the results for karate from the Mark Newman dataset produced by
Eppstein’s algorithm.

Once the results are available, they need to be aggregated. The experiment offers a Java
application called LatexTable which constructs and prints a Latex table from the results.
This way, I could simply print it to a .tex file and include it directly in the dissertation.

A.3 K-clique experiments for random graphs

For the experiments that use random graphs, numerous graphs need to be generated at
different settings (for instance various size and edge probability). The RandomGraph class
in the core library provides means to generate a single random graph taking two arguments:
the size and the edge probability. The MakeGenerator class in the experiment folder takes
parameters such as the starting edge probability, ending edge probability, the step size
between them, the number of vertices and the number of graphs to be constructed at each
setting. It prints out the calls to RandomGraph which produce the graphs specified in
the arguments. The printed output can be directed to a text file, which can in turn be
made executable by chmod. The graphs are saved in a folder of a specified name. Each
experiment folder contains a data folder in which this folder is placed. The graphs are saved
under names which use a specific format: nnnn − ppp − cccc. The first block shows the
number of vertices in the graph, the second block shows the edge probability (per thousand)
and the last block is the number of the graph generated at the setting: e.g. 0100−015−003
stores the third graph generated at the setting n = 100, p = 1.5%. This allows to identify
the graphs stored in the files.

Once the graphs have been generated, their corresponding power graphs need to be con-
structed. The program MakeRaise creates a list of calls to Raise – which builds Gk for a
given G and k – to build the desired power graphs for all graphs in a given folder. These

46

resulting graphs are stored in another folder by the name of the folder which contains the
input files with ˆk appended to it. For instance, if the original graphs are stored in folder
/data/GRAPH/ and k = 2 then the output graphs will be stored GRAPHˆ2. Each power
graph is stored under the same file name as the original graph, therefore, it is very easy to
look it up: if G is stored in data/GRAPH/0100-015-003 then data/GRAPHˆ2/0100-015-
003 contains G2. In the experiment this data is generated for, I was interested in whether
the hardness of k-clique enumeration comes solely from the density of the power graphs,
or the power graphs possess unique characteristics that make it a harder or easier than
a random graph with the same density. For this, equivalent graphs are generated for the
power graphs. An equivalent graph is a graph that has equal number of vertices and edges,
but is randomly generated. These graphs are stored in a separate folder under with the
same name as the power graph folder with R appended to it. For instance, the equivalent
graphs for the graphs stored in data/GRAPHˆ2/ are stored in data/GRAPHˆ2R/.

Obtaining the results is nearly identical to how it was done with regular cliques, but in
this case only one algorithm was used. However, instead of building a Latex table from the
results, in this case I wanted to plot the results. The code that aggregates the results does
it so that the format of the output is directly usable by gnuplot, an application used in the
project to plot graphs of the results.

A.4 Other experiments

Other experiments are either carried out in a very similar manner, or they even reuse
steps from other experiments. Take enumerating k-cliques in the Mark Newman graphs for
example. The k-clique experiment for random graphs provides a step that constructs the
power graphs for all graphs in a specified folder. We can put the Mark Newman graphs in
a folder and perform this step to build the power graphs. Then by moving these graphs
to the data folder of the plain clique experiment, we can enumerate cliques in the power
graphs and by doing so, enumerate k-cliques in the original graphs.

47

Appendix B

Important code snippets

B.1 BitSet Clique Algorithm

package algorithm.bitset_impl;

import algorithm.CliqueAlgorithm;

import graph.GraphBitSet;

import java.util.BitSet;

/**

* BitSet implementation of the Bron-Kerbosch algorithm with pivot selection and

(optionally) initial vertex ordering.

*/

public class AlgorithmBS extends CliqueAlgorithm {

private final GraphBitSet graph;

private final int size;

private Order order;

private Pivot selector;

/**

*

* @param graph a BitSet graph for which maximal cliques are to be

enumerated

* @param order vertex ordering for outer loop

* @param selector pivot selector

*/

public AlgorithmBS(GraphBitSet graph, Order order, Pivot selector) {

this(graph, order, selector, false);

}

/**

*

* @param graph a BitSet graph for which maximal cliques are to be

enumerated

* @param order vertex ordering for outer loop

* @param selector pivot selector

48

* @param verbose if set to true, every maximal clique is printed to

stdout (used mainly for testing)

*/

public AlgorithmBS(GraphBitSet graph, Order order, Pivot selector, boolean

verbose) {

super(verbose);

this.graph = graph;

this.size = graph.size();

this.order = order;

this.selector = selector;

}

/**

* Runs the algorithm.

*/

@Override

public void run() {

int[] order = this.order.order(graph);

BitSet P = new BitSet(size);

P.set(0, size);

BitSet R = new BitSet(size);

BitSet X = new BitSet(size);

if (order == null) {

extend(R, P, X);

return;

}

for(int v : order) {

// Add v to R

BitSet newR = (BitSet)R.clone();

newR.set(v);

// intersection of P and the neighbourhood of v

BitSet newP = (BitSet)P.clone();

newP.and(graph.neighbours(v));

// intersection of X and the neighbourhood of v

BitSet newX = (BitSet)X.clone();

newX.and(graph.neighbours(v));

// call recursion (Tomita’s recursive call, implemented in

its superclass)

extend(newR, newP, newX);

// remove v from candidates

P.flip(v);

// add v to X

X.set(v);

}

}

49

private void extend(BitSet R, BitSet P, BitSet X) {

inc();

// If the candidate set is not empty, continue the algorithm

if (P.nextSetBit(0) > -1) {

// Tomita pivot selection: maximise the size of the

intersection of P and N(pivot)

int pivot = selector.selectPivot(graph, P, X);

// Create P - N(pivot)

BitSet S = (BitSet) P.clone();

S.andNot(graph.neighbours(pivot));

for (int v = S.nextSetBit(0); v > -1; v = S.nextSetBit(v +

1)) {

// Add v to R

BitSet newR = (BitSet) R.clone();

newR.set(v);

// intersection of P and the neighbourhood of v

BitSet newP = (BitSet) P.clone();

newP.and(graph.neighbours(v));

// intersection of X and the neighbourhood of v

BitSet newX = (BitSet) X.clone();

newX.and(graph.neighbours(v));

// call recursion

extend(newR, newP, newX);

// remove v from candidates

P.flip(v);

// add v to X

X.set(v);

}

}

// If maximal clique is found, print it and return

else if (X.nextSetBit(0) == -1) {

reportClique(R);

}

}

}

50

B.2 Labelled Algorithm

package labelled;

import algorithm.CliqueAlgorithm;

import java.util.BitSet;

/**

* Labelled clique algorithm final version. Takes a labelled graph and a budget

as arguments in the constructor.

* Should be started by calling {@link algorithm.CliqueAlgorithm#execute()}

instead of calling run directly.

*/

public class BKL_PostX extends CliqueAlgorithm {

LabelledGraph graph;

int budget;

/**

* Constructor.

* @param graph the input graph.

* @param budget a maximum allowed number of different labels in the

cliques.

* @param verbose set this to true if all cliques should be printed.

*/

public BKL_PostX(LabelledGraph graph, int budget, boolean verbose) {

super(verbose);

this.graph = graph;

this.budget = budget;

}

/**

* Alternative constructor with verbosity set to false.

* @param graph the input graph.

* @param budget a maximum allowed number of different labels in the

cliques.

*/

public BKL_PostX(LabelledGraph graph, int budget) {

this(graph, budget, false);

}

@Override

public void run() {

BitSet labels = new BitSet(graph.l);

BitSet P = new BitSet(graph.n);

P.set(0, graph.n);

BitSet R = new BitSet(graph.n);

BitSet X = new BitSet(graph.n);

extend(R, P, X, labels);

}

private void extend(BitSet R, BitSet P, BitSet X, BitSet labels) {

51

inc();

int firstSet = P.nextSetBit(0);

// If the candidate set is not empty, continue the algorithm

if (firstSet != -1) {

for (int v = P.nextSetBit(firstSet); v > -1; v =

P.nextSetBit(v + 1)) {

BitSet newLabels = (BitSet)labels.clone();

updateLabels(R, v, newLabels);

// Add v to R

BitSet newR = (BitSet) R.clone();

newR.set(v);

// intersection of P and the neighbourhood of v

BitSet newP = (BitSet) P.clone();

newP.and(graph.neighbourhood(v));

// intersection of X and the neighbourhood of v

BitSet newX = (BitSet) X.clone();

newX.and(graph.neighbourhood(v));

// fill in labels for vertices in the candidate set

and remove those over the budget

updateSet(newR, newP, newLabels);

// call recursion

extend(newR, newP, newX, newLabels);

// remove v from candidates

P.flip(v);

// add v to X

X.set(v);

}

}

// If maximal clique is found, report it and return

else {

updateSet(R, X, labels);

if (X.nextSetBit(0) == -1) {

reportClique(R);

}

}

}

private void updateSet(BitSet R, BitSet set, BitSet labels) {

for (int i = set.nextSetBit(0); i > -1; i = set.nextSetBit(i + 1))

{

BitSet bs = (BitSet)labels.clone();

for (int j = R.nextSetBit(0); j > -1; j = R.nextSetBit(j +

1)) {

if (i != j) { bs.set(graph.label(i, j) - 1); }

}

if (bs.cardinality() > budget)

set.clear(i);

}

52

}

private void updateLabels(BitSet R, int v, BitSet labels) {

for (int i = R.nextSetBit(0); i > -1; i = R.nextSetBit(i + 1)) {

labels.set(graph.label(i, v) - 1);

}

}

}

53

Bibliography

[1] Clique problem - Wikipedia. http://en.wikipedia.org/wiki/Clique_problem. Ac-
cessed: 23/03/2014.

[2] B. Balasundaram, S. Butenko, and S. Trukhanov. Novel approaches for analyzing
biological networks. Journal of Combinatorial Optimization, 10(1):23–39, 2005.

[3] V. Batagelj and M. Zaversnik. An o(m) algorithm for cores decomposition of networks,
2002.

[4] Vladimir Boginski, Sergiy Butenko, and Panos M. Pardalos. Statistical analysis of
financial networks, 2005.

[5] J. Bourjolly, G. Laporte, and G. Pesant. An exact algorithm for the maximum k-club
problem in an undirected graph. European Journal of Operational Research, 138(1):21
– 28, 2002.

[6] C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques of an undirected graph
[h]. Communications of the ACM, 16(9):575–579, 1973.

[7] F. Carrabs, R. Cerulli, and P. Dell’Olmo. A mathematical programming approach
for the maximum labeled clique problem. Procedia - Social and Behavioral Sciences,
108(0):69 – 78, 2014. Operational Research for Development, Sustainability and Local
Economies.

[8] F. Cazals and C. Karande. A note on the problem of reporting maximal cliques.
Theoretical Computer Science, 407(1-3):564–568, 2008.

[9] D. Eppstein, M. Löffler, and D. Strash. Listing all maximal cliques in sparse graphs
in near-optimal time. In Otfried Cheong, Kyung-Yong Chwa, and Kunsoo Park, edi-
tors, ISAAC (1), volume 6506 of Lecture Notes in Computer Science, pages 403–414.
Springer, 2010.

[10] D. Eppstein and D. Strash. Listing all maximal cliques in large sparse real-world
graphs. In SEA, volume 6630 of Lecture Notes in Computer Science, pages 364–375.
Springer, 2011.

[11] David J. Johnson and Michael A. Trick, editors. Cliques, Coloring, and Satisfiability:
Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993. Ameri-
can Mathematical Society, 1996.

[12] I. Koch. Enumerating all connected maximal common subgraphs in two graphs. The-
oretical Computer Science, 250(1-2):1–30, 2001.

54

[13] J. Leskovec. Stanford large network dataset collection. http://snap.stanford.edu/

data/index.html. Accessed: 29/06/2014.

[14] R. Luce and Albert Perry. A method of matrix analysis of group structure. Psychome-
trika, 14(2):95–116, June 1949.

[15] C. McCreesh and P. Prosser. A Branch and Bound Algorithm for the Maximum
Labelled Clique Problem. 2014.

[16] C. McCreesh and P. Prosser. Maximum cliques, k-cliques and k-clubs: Computational
experiments. 2014.

[17] J. W. Moon and L. Moser. On cliques in graphs. Israel J. Math., 3(1):23–28, 1965.

[18] M. E. J. Newman. Mark Newman data sets. http://www-personal.umich.edu/~mejn/

netdata/. Accessed: 27/06/2014.

[19] S. Shahinpour and S. Butenko. Distance-based clique relaxations in networks: s-clique
and s-club. In Boris I. Goldengorin, Valery A. Kalyagin, and Panos M. Pardalos,
editors, Models, Algorithms, and Technologies for Network Analysis, volume 59 of
Springer Proceedings in Mathematics & Statistics, pages 149–174. 2013.

[20] C. Stark, BJ Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers. A
General Repository for Interaction Datasets. http://thebiogrid.org/download.php.
Accessed: 24/08/2014.

[21] E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complexity for generat-
ing all maximal cliques and computational experiments. Theoretical Computer Science,
363(1):28–42, 2006.

[22] S. Tsukiyama, M. Ide, and I. Shirakawa. A new algorithm for generating all the
maximal independent sets. SIAM J. Comput., 6(3):505–517, 1977.

55

