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Abstract

Given two graphs, a fundamental task faced by matching algorithms consists of computing either the (connected) maximal
common induced subgraphs ((C)MCIS) or the (connected) maximal common edge subgraphs ((C)MCES). In particular, computing
the CMCIS or CMCES reduces to reporting so-called c-connected cliques in product graphs, a problem for which an algorithm
has been presented in I. Koch, Fundamental study: enumerating all connected maximal common subgraphs in two graphs, Theoret.
Comput. Sci. 250 (1-2), (2001) 1–30. This algorithm suffers from two problems which are corrected in this note.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Given two graphs, partial combinatorial shape matching is the problem concerned with the calculation of common
patterns of the graphs. The natural way to address partial combinatorial shape matching consists of seeking the largest
common induced subgraph (LCIS) or largest common edge subgraph (LCES) between the graphs, which are NP-hard
problems. Alternatively, one may be interested not only in the largest common graphs, but in all maximal common
graphs. Then, one seeks maximal common induced subgraphs (MCIS) or maximal common edge subgraphs (MCES)
between the graphs. Notice that these are enumeration rather than optimization problems, so that an important parameter
of algorithms solving these problems is their output-sensitivity [1]. One may also wish to further restrict the problems by
focusing on connected MCIS or MCES, which yields the CMCIS and CMCES variants. These variants are ubiquitous
in applications, among which computational structural biology [8,3,7,2].

As noticed long ago [5], reporting the MCIS can be done using the vertex product graph of the graphs, while MCES
can be reported using the edge product graph [9,6,4]. Moreover, as noticed in [4], the problems of reporting the CMCIS
or CMCES are similar to those of MCIS and MCES, and reduce to seeking c-connected cliques in the product graphs
—see definitions below. An algorithm solving the problem, C-Clique, has been presented in [4]. Unfortunately, this
algorithm is not complete, and the purpose of this note is to correct it.
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2. Notations

A graph is denoted G = (V [G], E[G]). Given a node u ∈ G, N [u] denotes the neighbors of u, i.e. N [u] =
{v | (u, v) ∈ E[G]}. We assume a node is not a neighbor of itself. The edges of our graph will carry labels in the enum
{c, d}. For such a graph, neighbors of a node u through a c-edge and a d-edge are, respectively, denoted C[u] and D[u].
Notice that N [u] = C[u] ∪ D[u].

Given a graph, consider two disjoint subsets A and B of V [G]. Subset A is called strongly connected to B, which
is denoted A � >B, if every node of A is connected to every node of B. The notion of strongly connected disjoint
subsets extends to graphs with labeled edges. However, because of the distinct labels, we have to specify what kind of
connectivity is maintained between two disjoint sets. We introduce the following notations for graphs with edges in
enum {c, d} :

• A � c+d∗ ⇒ B : Every node of A is connected to every node of B by a c-edge or a d-edge and ∀u ∈ A ∃v ∈ B such
that (u, v) is a c-edge.

• A � c∗d∗ ⇒ B : Every node of A is connected to every node of B by either a c-edge or a b-edge.
• A � d∗ ⇒ B : Every node of A is connected to every node of B by a d-edge.

If there exists a set B such that B � r ⇒ A according to one of the previous notations, then the largest set S such that
S � r ⇒ A is given by S = SC(A, r).

Finally, given a graph whose edges are labeled, we refine the notion of clique as follows:

Definition 1 (c-clique). A c-clique is a clique consisting of c-edges and d-edges which is c-connected —i.e. connected
through c-edges.

3. The original algorithm for c-cliques

3.1. The algorithm

An Algorithm to report all maximal c-cliques in a vertex product or an edge product graph is given by [4]. Figs.1
and 2 present the pseudo-code of these algorithms —the later uses set-operations rather than individual operations on
nodes [4]. The algorithm maintains four sets R, Q, P, X. (Notice these sets are denoted C, D, P, S in [4].) Set R is
the c-clique under expansion; set P holds prospective nodes —each such node form is connected to R through c or
d edges, with at least one c-edge); set Q holds nodes strongly connected to R through d-edges only; set X contains
forbidden nodes, i.e. nodes already processed. The expansion of R runs through c-edges, which requires recovering
from Q nodes which are c-connected to the new addition —a fishing out process. A c-clique can be reported even if
Q �= ∅ since these nodes are d-connected to the set R. The algorithm is presented on Fig. 2. Although this algorithm
proceeds in the right direction, it is incomplete for two reasons.

Initialization. First, we must point out that the initialization algorithm listed in [4], Fig. 1, does not in fact call the
function C-Clique(R, P, Q, X) with correct arguments. The problem lies in the fact that in its current form, nodes in T

can be added to Q during initialization. Q represents the set of nodes which can at some stage be added to the growing
cliques, whereas T is the set of already processed and hence forbidden nodes.

As an example, consider the graph of Fig. 3, and run the algorithm in Fig. 1 on the input product graph shown in
Fig. 3, assuming the node (b, y) is processed after (a, x) and before (c, z). We can see that when inside the outer loop,
u = (b, y), (a, x) will be in T , and yet the call to algorithm made is C-Clique({(b, y)}, {(c, z)}, {(a, x)}, ∅). In other
words, the node (a, x) appears in Q, in spite of having been processed earlier. In fact, if we follow the execution of this
algorithm further, we find that eventually (a, x) enters R via P , and hence the maximal c-clique {(a, x), (b, y), (c, z)}
is reported twice. (It has already been reported once when (a, x) was processed by the initialization algorithm.)

This flaw can be rectified by a slight change in line 14 of the algorithm in Fig. 1. A check can be made, so that node
v is added to Q only if it does not belong to T . For the following discussion, we assume this correction.

On the symmetric role of P and X. In spite of this correction, the algorithm C-Clique suffers from a second problem,
inherently related to the asymmetric way sets P and X are handled —while the two sets maintain the same connectivity
to R. According to the invariant (iii) listed on page 17 of [4], X � c∗d∗ ⇒ R holds. Note again that the initialization
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Fig. 1. Initialization algorithm for C- Clique.

Fig. 2. Algorithm C- Clique to report c-cliques.

algorithm in [4] contradicts with this, since it adds to X only nodes c-connected to u: see line 11 on Fig. 1. In any
case, we can show that regardless of whether X maintains c∗d∗ or c+d∗ connectivity to R, the algorithm C-Clique
fails.

• Assume X � c∗d∗ ⇒ R holds: In this case, consider the situation that P is empty but X is not empty and all the
elements in X are d-connected to all members of R. Clearly, we cannot extend R with any node in X because
c-connectivity is not present. Hence, the current c-clique R is maximal. But we can see that because X is not empty,
it will not be reported.
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Fig. 3. (i) Example input graphs and (ii) the resultant product graph. Dashed edges in the product graph are d-edges while all others are c-edges.
The label of a node in the product graph can be constructed from row and column labels.

Fig. 4. Part of the recursion tree formed by executing C-Clique algorithm in Fig. 2 on product graph in Fig. 3.

• Assume X � c+d∗ ⇒ R holds: We show below that the same input graph in Fig. 3 creates a failure for this algorithm.
But before that, let us intuitively examine where the flaw lies. The sets P and Q together contain all the prospective
nodes. But the algorithm assumes that X alone contains all the relevant forbidden nodes. This asymmetry is coun-
terintuitive, since P and X are supposed to maintain the same connectivity to R, and Q plays an integral role in
maintaining P ’s connectivity. In case of X, we have no counterpart of the ‘fishing out’ operation which brings nodes
from Q into P . This will result in some nodes missing in X, leading to reporting of non-maximal c-cliques.

Part of the recursion tree of execution of C-Clique algorithm on input graphs in Fig. 3 is given in Fig. 4. Note that we
follow the execution only till two branches because at the end of the second branch, a non-maximal clique is reported.
Note that during the initialization of the second branch, (a, x), which although is a d-neighbor of (b, y) is not added
to Q since we have assumed the corrected initialization algorithm.

4. Corrected C-Clique algorithm

Having discussed the two troubles of algorithm C-Clique, let us examine the corresponding fixes. First, the correct
initialization is presented on Fig. 5. Second, we handle the fishing out process of forbidden nodes through a new set Y ,
which is the counterpart of Q for X. See Fig. 6 for connectivities that are preconditions for the parameters.

One can check by direct inspection from the way the new sets Pnew, Qnew, Xnew, Ynew are formed, that these
preconditions are maintained, and they are enforced by the initialization algorithm to begin with. The two completeness
invariants may not be obvious, hence we shall prove them :

Lemma 1. Algorithm C-Clique maintains the following connectivities: SC(R, d∗) = Q ∪ Y and SC(R, c+d∗) =
P ∪ X.
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Fig. 5. Corrected initialization algorithm for C-Clique.

Fig. 6. Corrected algorithm C-Clique.

Proof. We start with SC(R, d∗) = Q∪Y . The fact that the initialization algorithm enforces this invariant to begin with
is trivial. All the prospective nodes d-connected to ui are added to Q and all the forbidden nodes with same connectivity
are added to Y . To show how the invariant is maintained during algorithm C-Clique, we observe the following property:
SC(A ∪ {v}, d∗) = SC(A, d∗) ∩ D[v]. Hence we have

SC(Rnew, d∗) = SC(R ∪ {ui}, d∗)
= SC(R, d∗) ∩ D[ui]
= (Q ∪ Y ) ∩ D[ui]
= (Q ∩ D[ui]) ∪ (Y ∩ D[ui])
= Qnew ∪ Ynew.
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Consider next SC(R, c+d∗) = P ∪ X.Again the initial enforcement of the invariant is easy to verify. To prove the main-
tenance, we observe the following property : SC(A ∪ {v}, c+d∗) = (SC(A, c+d∗) ∩ N [ui]) ∪ (SC(A, d∗) ∩ C[ui]).
Again solving and substituting like above, one arrives at SC(Rnew, c+d∗) = Pnew ∪ Xnew. �

Notice in above-mentioned preconditions and in the algorithm in Fig. 6 the symmetry between P and X, as well as
between Q and Y , in term of their connectivities and the way they change during the course of the algorithm. Finally,
we prove the correctness of the algorithm, that is

Theorem 1. Algorithm C-Clique is such that:

1. Only maximal c-cliques as defined in Section 2 are reported.
2. A maximal c-clique is reported at most once.
3. All c-cliques are reported.

Proof. 1. The stated preconditions, i.e. connectivities of various sets with R automatically imply that R, at each stage is
a c-clique. Note that R is extended only by nodes in P which are c+d∗ connected to R. To prove that only maximal c-
cliques are reported, observe that we report a c-clique only when P = ∅ and X = ∅. Since SC(R, c+d∗) = P ∪X = ∅
no larger subgraph satisfying required properties can be formed by adding a node to R. Hence R must be maximal,
and is reported.

2. We prove this by induction on the recursive calls.
Hypothesis : Consider a call C1 to the function C-Clique. Let C11, C12, ..., C1k be the recursive calls made from C1.

If none of the C1i’s report a maximal c-clique more than once in their recursive tree, no subgraph is reported more than
once in the whole recursion tree of C1 either.

Base case : A recursive call which is at the leaf of the recursion tree of the whole algorithm obviously does not report
any c-clique more than once. A leaf call occurs when P is empty, and in such a case, it is evident from the algorithm
that at most one c-clique can be reported.

Induction : Assume condition for the hypothesis is true. In this case, in order to be reported more than once, a c-clique
has to be reported once by at least two calls out of C11, C12, ..., C1k . Let u1, u2, ..., uk be the nodes from P added to
R to make calls C11, C12, ..., C1k , respectively. Consider any two calls C1i and C1j with i < j . Since the call C1i

is made with Rnew = R ∪ ui , it is clear that all the c-cliques reported in the recursion subtree of C1i will contain ui .
However, ui will be in X when call C1j is made, implying ui is a forbidden node for C1j and will never be added to
R in its recursion subtree. All c-cliques reported in subtree of C1j then will not contain ui . Thus we have proved that
no two C1i and C1j can report the same c-clique.

3. First, observe each recursive call made during the execution of the algorithm can be identified by the value of set
R passed to it as parameter, i.e. each call has a unique value of R. Henceforth in this proof, by S-call, we shall mean
the recursive call to which value of set R passed as parameter is R = S.

Now let M be any maximal c-clique. We define u1 to be a node such that {u1}-call is the first recursive call made
by the initialization algorithm, with u1 ∈ M . Trivially, such a u1 and S1 = {u1} must exist, since all nodes in the
given graph are processed by the intialization algorithm. With this base case, we inductively define un and Sn as
follows :

• un is the node such that (Sn−1 ∪ un)-call is the first recursive call made by Sn−1-call with un ∈ M .
• Sn = Sn−1 ∪ un.

Note that above definitions hold for n ≤| M | only. To ensure that M is indeed reported by the algorithm, all
we need to prove is that u|M| and S|M| can be found in the recursion tree formed by the execution of the algorithm.
We prove this by induction.

Hypothesis : If un−1 and Sn−1 exist in the recursion tree, then un and Sn exist as well, for n ≤| M |.
Base case : u1 and S1 definitely exist, since all nodes are processed by the initializer algorithm.
Induction : Assume we have found un−1. Since Sn−1 � M is a c-clique, there must be at least one node in M which

is c+d∗-connected to Sn−1. (If not, M is not a c-clique) According to the invariants listed in Fig. 6, all node must be
in P ∪ X during Sn−1-call. We claim that no such node can be in X. As a proof by contradiction, assume that a node
v which is c+d∗-connected to Sn−1 is in X. Note that v cannot have been added to X by the initialization algorithm,
because if it was, then v ∈ M was processed earlier than u1 ∈ M by the initialization algorithm, and this violates the
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definition of u1. Thus, let Sk-call be the parent recursive call in which v was added to X. Since v was in X when uk

was added to R, v must have been processed before uk . This violates the definition of uk .
To conclude, no node v which is c+d∗-connected to Sn−1 can be in X. Since at least one such v must exist, it must

be in P . And hence at least one recursive call with such a node will be made, and by definition un will be the first such
node, with Sn = Sn−1 ∪ un.

We have proved that for any M , u|M| and S|M| can be found in the recursion tree of the algorithm. During S|M|-call,
P and X shall be empty (otherwise M cannot be maximal). Hence M = R = Sn shall be reported. �

Acknowledgment

C. Karande acknowledges the support of the INRIA internship program.

References

[1] F.Cazals, C.Karande, Reporting maximal cliques: new insights into an old problem, Tech. Report 5615, INRIA, 2005
[2] E.J. Gardiner, P. Willett, P.J. Artymiuk, Graph-theoretic techniques for macromolecular docking, J. Chem. Inf. Comput. Sci. 40 (2000).
[3] H.M. Grindley, P.J.Artymiuk, D.W. Rice, P. Willett, Identification of tertiary structure resemblance in proteins using a maximal common subgraph

isomorphism algorithm, J. Mol. Biol. 229 (1993).
[4] I. Koch, Fundamental study: enumerating all connected maximal common subgraphs in two graphs, Theoret. Comput. Sci. 250 (1–2) (2001)

1–30.
[5] G. Levi, A note on the derivation of maximal common subgraphs of two directed or undirected graphs, Calcolo 9 (1972) 341–352.
[6] V. Nicholson, C.C. Tsai, M. Johnson, M. Naim., A subgraph isomorphism theorem for molecular graphs, in: Internet. Conf. on Graph Theory

and Topology in Chemistry, 1987, pp. 226–230
[7] R. Samudrala, J. Moult, A graph-theoretic algorithm for comparative modelling of protein structure, J. Mol. Bio. 279 (1998).
[8] B.K. Stoichet, D.L. Bodian, I.D. Kuntz, Molecular docking using shape descriptors, J. Comput. Chem. 13 (3) (1992).
[9] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932) 150–168.


