
A Connectivity Constraint using Bridges
Patrick Prosser1 and Chris Unsworth2

1 Introduction
We present a specialised constraint for enforcing graph connectiv-
ity. It is assumed that we have a square symmetrical array A of
0/1 constrained integer variables representing potential undirected
edges in a simple graph, such that variable A[u, v] corresponds to
the undirected edge (u, v). A search process is then at liberty to
select and reject edges. The connectivity constraint ensures that no
critical edge may be deleted from A, i.e. an edge that if deleted
disconnects the graph. This connectivity constraint might then be
used when modelling network design problems, modelling molec-
ular structures, problems in bioinformatics [4], or graph problems
where connectivity is an essential property [3, 1].

The constraint’s internals are founded on the depth first search
(dfs) process. The dfs process generates two sets of edges: the set
of tree edges T , and the set of back edges B. The connectivity con-
straint associates a counter nc[u, v], initialised to zero, with each tree
edge. On creation of a back edge (t, w) we increment the counters on
the tree edges spanned by that back edge, i.e. we increment the set of
counters {nc[u, v] | (u, v) ∈ path(t, w)} where path(t, w) delivers
the set of edges that make up the path from t to w in T . A counter
is incremented to indicate that there is at least one more cycle in the
graph involving edge (u, v), i.e. nc[u, v] is a count of the number
of cycles passing through edge (u, v) using edges in T and B. If on
termination of the dfs process any counter, say nc[v, w], equals zero
then that edge (v, w) is a bridge (also known as an isthmus or cut-
edge) and must be forced. Consequently the value 0 is removed from
the domain of variable A[u, v].

2 Depth First Search with Tree and Back Edges
We assume we have a graph G with vertices V and edges E. The
dfs algorithm [2] will produce two sets of edges: T the tree edges,
and B the back edges. A vertex may be given one of three colours:
white, grey, or black. Initially all vertices are white, signifying that
they have not been visited. A vertex v is coloured grey when it has
first been visited, i.e. a call to dfs(v) is made. On completing the call
to dfs(v) the vertex is coloured black. Therefore a vertex starts white,
may then turn grey, and eventually black. In the dfs algorithm, given
below, two types of edges may be created.

(a) Edge (v, w) is a tree edge when v is adjacent to w in G and v

is grey and w is white. In the algorithm the call treeEdge(v,w)
adds the edge (v, w) to T . A tree edge is created as dfs expands
forwards to a new descendant.

(b) A back edge (v, w) is created when w is adjacent to v, w has
already been visited by dfs (i.e. w is grey), the processing of v

1 Department of Computing Science,University of Glasgow, Scotland,
pat@dcs.gla.ac.uk

2 Department of Computing Science,University of Glasgow, Scotland,
chrisu@dcs.gla.ac.uk

is not yet complete (i.e. v is grey), and (w, v) is not already a
tree edge. The call backEdge(v,w) does nothing if (w, v) ∈ T ,
otherwise the edge (v, w) is added to B and the set of counters
{nc[x, y] | (x, y) ∈ path(v,w)} are incremented, i.e. increment
the cycle counters on the tree edges on the path from v to w.

procedure dfs(v)
begin
colour[v] := grey;
for w in adjacent(v)
do begin

if colour[w] = white
then begin

treeEdge(v,w)
dfs(w)
end

else if colour[w] = grey
then backEdge(v,w)

end
colour[v] := black;
end

3 The Methods of the Constraint
We now present the methods that act upon the constraint. First we
describe the actions that take place when the constraint is initially
added to a model. Then we describe the methods that are performed
when an edge is rejected by the search process. Note that no action
need be taken when an edge is selected by the search process as this
cannot result in the graph becoming disconnected.

3.1 On Awakening
When the constraint is initially awoken (i.e. added to the model) a
dfs is performed from an arbitrary vertex. As noted above we asso-
ciate cycle counters with each tree edge, i.e nc[u, v] is a count of the
number of cycles through the edge (u, v) resulting from back edges
and tree edges that span or include edge (u, v). These counters are
initially zero and are incremented when spanned by a back edge. On
termination of dfs, any cycle counter nc[u, v] equal to zero indicates
that edge (u, v) is a bridge in G and that edge must be selected other-
wise G will be disconnected. In addition, if on completion of the call
to dfs any vertex is white then that vertex is isolated and the graph
cannot be connected; consequently we can raise an exception.

3.2 On Deletion of a Back Edge
If an edge (u, v) is deleted from the graph and (u, v) is a back
edge then we decrement the set of counters {nc[x, y]|(x, y) ∈
path(u, v)}, i.e. decrement all cycle counters on the path from u

to v in T . If any counter reaches zero then the corresponding edge is
a bridge and must be forced.



3.3 On Deletion of a Tree Edge
If a tree edge (u, v) is deleted a new subtree must be produced and
one of the back edges spanning (u, v) will become a tree edge. Such
a candidate back edge must exist otherwise (u, v) will have been a
bridge and that bridge will have been detected and its selection al-
ready forced. The following actions (also shown pictorially in Figure
1) need to be performed when tree edge(u, v) is deleted where we
assume that u is the parent of v:

Figure 1. Tree edge (u,v) is deleted on the left and repaired on the right.

1. Let V ′ be the set of vertices in the subtree rooted on v (and in-
cludes v), T ′ the set of tree edges in that subtree, and B′ the set
of back edges {(t, w) | (t, w) ∈ B ∧ w ∈ V ′}.

2. Decrement the multi-set of cycle counters {{nc[x, y] | (x, y) ∈
path(t, w) ∧ (t, w) ∈ B′}}, where path(t, w) delivers the set of
edges on the path from t to w in T .

3. Find the back edge (t, w) ∈ B′ where depth(t) ≤ depth(u) <

depth(v) < depth(w) and depth(t) is a maximum. (The back
edge (t,w) is shown on the left of Figure 1).

4. Colour the vertices in the set V ′ white (i.e. mark them as not vis-
ited by dfs).

5. Remove the tree edges T ′ and back edges B′, i.e T = T \ T ′ and
B = B \ B′.

6. Colour grey the set of vertices on the path from t to the root of T.
Note, that if this was not done then no new back edges could be
produced involving ancestors of t in step 7 below.

7. Add new tree edge (t, w) to T , i.e. what was back edge (t, w)
becomes a tree edge. Now make a call to dfs(w). (The repaired
subtree is shown on the right of Figure 1).

8. Colour black the set of vertices on the path from t to the root of
T . This needs to be done to prevent forward edges being produced
by subsequent calls to dfs

9. If any cycle counter nc[x, y], where (x, y) ∈ T , is zero then the
edge is a bridge and must be selected.

Note that in step 3 we must select the deepest spanning back edge
otherwise a cross edge may be produced in step 7 and the cycle coun-
ters would be corrupted, and that such a back edge must exist. On the
termination of step 7 there will be no white vertices. This could only
happen if edge (u, v) was a bridge, and that would be a contradiction.

4 Complexity

The complexity of the algorithm is O(n3) for a graph with n vertices.
The principal activity of the algorithm is the number of times the
cycle counters are incremented. The worst case graph would be the
clique Kn. A clique would have a dfs tree with back edges as shown
in Figure 2, using K6 as an example. As can be seen, the vertices of
the graph have been linearised, and the remaining edges in the clique

Figure 2. A dfs tree (straight lines) for K6 with back edges (curved lines).

The sum of the number of times edges participate in cycles is n
3
−7n

6
+ 1

become back edges. The tree has n − 1 tree edges, and therefore
n−1 cycle counters. A tree edge emanating from a vertex at position
i (where the first position is i = 1 and the last i = n − 1) will be
involved in at most i(n− i)−1 cycles. That is, for a vertex at depth i

there will be n− i vertices below it. Each one of these n− i vertices
can then have back edges to each of the first i vertices. However,
the vertex in position i + 1 cannot have a back edge to the vertex in
position i, otherwise we have a cycle that involves only 2 vertices.
Therefore we must remove 1 from our calculation. Consequently the
sum of the cycle counters on the dfs tree T for the clique Kn will be
as follows:

n−1∑

i=1

[i(n − i) − 1] =
n3 − 7n

6
+ 1

We should expect that the performance of this can be improved by
taking a lazy approach, possibly based on [5].

5 Data Structures and Potential Enhancements
A number of reversible data structures are required to realise the
above. Since we need to traverse a subtree in order to delete tree and
back edges we associate with each vertex a boolean set of length n,
representing the immediate children of that vertex. We also associate
with a vertex a boolean set of length n representing the back edges
from a vertex. Each vertex also has a parent attribute so that we can
traverse from a vertex upwards towards some other vertex downdat-
ing the cycle counters. We also associate a depth with a vertex so that
we can compare back edges. All of the above additional space is of
order O(n2) where n is the number of vertices in G.

The constraint can be enhanced to deal with multi-edges. Assum-
ing that an array variable A[u, v] can have a value greater than 1, if
the constraint forces the edge (u, v) rather than setting A[u, v] to 1
we remove the value 0. The efficiency of step 2 in 3.3 can be im-
proved by setting counters in the tree edges rooted on v to zero, and
decrementing counters on tree edges above u.

REFERENCES
[1] Ken Brown, Patrick Prosser, J. Christopher Beck, and Christine Wu, ‘Ex-

ploring the use of constraint programming for enforcing connectivity
during graph generation’, in The 5th workshop on modelling and solv-
ing problems with constraints (held at IJCAI05), (2005).

[2] T.H. Corman, C.E. Leirson, and R.L. Rivest, Introduction to Algorithms,
Sept 2001.

[3] Gregorie Dooms, Yves Deville, and Pierre Dupont, ‘CP(Graph): Intro-
ducing a Graph Computation Domain in Constraint Programming’, in
CP2005 (LNCS 3709), (2005).

[4] Ian P. Gent, Patrick Prosser, Barbara M. Smith, and Christine Wu
Wei, ‘Supertree Construction with Constraint Programming’, in CP2003
(LNCS 2833), (2003).

[5] R. Endre Tarjan, ‘A note on finding the bridges of a graph’, Information
Processing Letters, 2, 160–161, (1974).

Acknowledgements: We would like to thank our five reviewers.


