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Abstract. There are a number of problems that require the counting or the enu-
meration of all occurrences of a certain structure within a given data set. We
consider one such problem, namely that of counting the number of maximal inde-
pendent sets (MISs) in a graph. Along with its complement problem of counting
all maximal cliques, this is a well studied problem with applications in several
research areas.

We present a new efficient algorithm for counting all MISs suitable for sparse
graphs. Similar to previous algorithms for this problem, our algorithm is based
on branching and exhaustively considering vertices to be either in or out of the
current MIS. What is new is that we consider the vertices in a predefined order
so that it is likely that the graph will decompose into multiple connected com-
ponents. When this happens, we show that it is sufficient to solve the problem
for each connected component, thus considerably speeding up the algorithm. We
have performed extensive experiments comparing our algorithm with the previ-
ous best algorithms for this problem using both real world as well as synthetic
input graphs. The results from this show that our algorithm outperforms the other
algorithms and that it enables the solution of graphs where other approaches are
clearly infeasible.

As there is a one-to-one correspondence between the MISs of a graph and
the maximal cliques of its complement graph, it follows that our algorithm also
solves the problem of counting the number of maximal cliques in a dense graph.
To our knowledge, this is the first algorithm that can handle this problem.

1 Introduction

Enumerating all configurations that conforms with a given specification is a well stud-
ied problem in combinatorics. Graph theory deals with many interesting problem of
this type. Enumerating all maximal independent sets (MISs) of a graph is one of these
problems that has attracted considerable attention in the past [5,10,12,14,20]. This prob-
lem is also equivalent to enumerating all the maximal cliques of a graph as there is a
one-to-one correspondence between the MISs of a graph and the maximal cliques of its
complement graph. For a recent overview of applications of this problem, see [6] and
the references therein.

In the classical MIS enumeration problem, the number of configurations to be gen-
erated is potentially exponential in the size of the input. Moon and Moser showed that a
graph on n vertices can have at most 3

n
3 MISs and that this bound is tight [16]. Thus for
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graphs coming close to this bound one can only expect to be able to list or enumerate
all MISs of graphs of fairly limited size.

In this paper we study algorithms for counting the number of MISs, a problem one
might expect can be solved more efficiently than the enumeration problem. However,
it is known that the counting problem is �P-complete even when restricted to chordal
graphs [17], and therefore no polynomial time algorithm exists unless P=NP [12].

The currently fastest algorithm for solving the MIS counting problem on general
graphs is by Gaspers et al. who presented a branch and bound algorithm that runs in
O(1.3642n) time [8]. As 3

n
3 ≈ 1.44n this shows that it is possible to count MISs

faster than by generating each one. For the case of sub-cubic graphs Junosza-Szaniawski
and Tuczyński recently gave an algorithm with running time O(1.2570n) [11]. For
trees, Wilf presented a simple linear time dynamic programming algorithm [21]. He
also showed that the number of MISs in a tree is at most 2n/2−1 + 1 and that there are
graphs that meet this bound.

The counting problem can obviously be solved by enumeration, a problem which
has seen a variety of approaches by a number of authors, see [5] for an overview. The
standard algorithm for this problem is the Bron–Kerbosch algorithm [1] which is a
recursive backtracking algorithm that searches for all maximal cliques in a given graph
G, (which in the complement graph corresponds to the MISs). This algorithm was later
improved by Tomita et al. [18] using a pivoting heuristic that reduces the number of
recursive calls. We also note that Eppstein and Strash gave a variation of the Tomita
algorithm by initially reordering the vertices using a degeneracy ordering [7], something
that is advantageous for very sparse graphs.

Experimental work on these (and other) algorithms for enumerating cliques has
mainly focused on sparse graphs [2,3,7,18]. This means that they are applicable on
dense graphs for enumerating (or counting) MISs. Enumerating MISs on sparse graphs
(or enumerating cliques in dense graphs) is a substantially harder problem as one would
expect the number of MISs to decrease as the graph becomes denser. We are not aware
of any experimental studies of algorithms for this problem.

Our Results: We present the first algorithm specifically suited for counting MISs in
sparse graphs. The algorithm combines a branching approach with a divide and con-
quer strategy. This is achieved by making the branching follow vertex separators in the
graph. In this way the remaining graph will become disconnected and one can solve the
problem for each connected component separately. To find the separators we initially
use graph partitioning software to compute a nested dissection ordering on the graph.

We apply the algorithm to both real world as well as synthetic sparse graphs and show
that it outperforms other suggested algorithms designed for counting or enumerating
MISs. Although the individual aspects of our algorithm are not new, this is, as far as
we know, the first time they have been combined together to create an efficient code for
counting MISs in sparse graphs.

2 Notation

We consider an undirected finite graph G = (V,E) without loops, where V is the set of
vertices of G and E is the set of edges. We denote the neighborhood of a vertex v in the
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graphG by NG(v), that is the set of vertices u such that the edge (u, v) ∈ E. The closed
neighborhood of a vertex v is denoted by NG[v], which is NG(v)∪{v}. The degree of a
vertex dG(v) = |NG(v)|. If I is a set of vertices in G then NG(I) = (∪v∈ING(v)) \ I .
Also, the induced subgraph of I in G is the graph G[I] = (I, EI) where (v, w) ∈ EI if
and only if v, w ∈ I and (v, w) ∈ E.

A set of vertices S is an independent set if no two vertices in S are adjacent. A
vertex v �∈ S which is adjacent to a vertex w ∈ S is said to be dominated by w, or
just dominated. A vertex not in S which is not dominated is undominated. A maximal
independent set is an independent set that is not a subset of any other independent set.

3 Previous Algorithms for Counting and Enumerating MISs

In the following we present previously suggested algorithms for counting or enumerat-
ing all MISs of a graphG. For the enumeration problem we present algorithms that have
been used in experimental studies and that are fairly straight forward to implement. We
also outline the counting algorithm by Gaspers et al. Since our main interest is to count
the number of MISs, we describe all algorithms as applied to this problem.

The Bron-Kerbosch algorithm in its basic form uses recursive backtracking to list
all maximal cliques in a given graph [1]. In the following we present the dual of this
algorithm, so that instead of cliques the algorithm counts all MISs in G.

Given three vertex sets R,P, and X , Algorithm 1: BKMIS(R,P,X) finds all MISs
that include all vertices in R, any possible legal subset of the vertices from P , and
none of the vertices in X . The recursion is initiated by setting both R and X to ∅ and
P = V . Within each recursive call, the algorithm considers in turn every vertex in P for
inclusion in R. Thus for each v ∈ P the algorithm makes a recursive call in which v is
moved from P to R and any neighbor of v is removed from P and X . In any subsequent
call where both P and X are empty, R is counted as a MIS. This will find all maximal
independent set extensions of R that contain v. When the recursive call returns, v is
moved from P to X before the algorithm continues with the next vertex in P .

Intuitively, one can think of the algorithm as having already found the MISs that
contain any vertex from X . Thus any set that does not dominate every vertex in X
cannot be a new MIS.

Algorithm 1. BKMIS(R,P,X)

Input: Three vertex sets R,P , and X .
Output: Number of MISs containing all vertices in R, some from P and none from X .
if P ∪X = ∅ then

Count R as a MIS
for each vertex v ∈ P do

BKMIS(R ∪ {v}, P \NG[v], X \NG(v))
P ← P \ {v}
X ← X ∪ {v}

The Bron–Kerbosch algorithm is not output-sensitive meaning that it does not run in
polynomial time per generated set. The worst-case running time of the Bron–Kerbosch
algorithm is O(3

n
3 ), matching the Moon and Moser bound [18].
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Tomita et al. presented an improved variant of the Bron-Kerbosch algorithm by using
a pivoting heuristic [18]. Here we present its dual for computing MISs. In Algorithm 1,
|P | recursive calls are made, one for each vertex in P . The pivoting strategy seeks to
reduce this number. Consider a vertex u ∈ P ∪ X . It follows that no vertex in NG[u]
has been added to R so far. But for the current R to be expanded to a MIS at least one
vertex of P∩NG[u] must be included in R, otherwise R will not be maximal. Thus once
the pivot u has been selected, it is sufficient to iterate over the vertices in P ∩ NG[u]
for inclusion in R. The idea in Algorithm 2: TOMITAMIS(R,P,X) is then to choose u
such that this number is as small as possible. Computing both the pivot and the vertex

Algorithm 2. TOMITAMIS(R,P,X)

Input: Three vertex sets R,P and X .
Output: Number of MISs containing all vertices in R, some vertices from P and no vertex
from X .
if P ∪X = ∅ then

Count R as a MIS
Choose a pivot u ∈ P ∪X that minimizes |P ∩NG(u)|
for each vertex v ∈ P ∩NG[u] do

TOMITAMIS(R ∪ {v}, P \NG[v], X \NG(v))
P ← P \ {v}
X ← X ∪ {v}

sets for the recursive calls can be done in time O(|P |(|P | + |X |)) within each call
to the algorithm using an adjacency matrix, giving an overall running time of O(3

n
3 ).

Experimental comparisons have shown that the maximal clique algorithm by Tomita
et al. is faster by orders of magnitude compared to other algorithms [18]. However,
both the theoretical analysis and implementation rely on the use of an adjacency matrix
representation of the input graph. For this reason, the algorithm has limited applicability
for large graphs, whose adjacency matrix may not fit into working memory [7].

Eppstein et al. [6] also proposed a variant of the Bron-Kerbosch algorithm. On the
top level this algorithm is similar to the Bron-Kerbosch algorithm, although the ver-
tices are processed according to a degeneracy ordering. Such an ordering can be found
by repeatedly selecting and removing a minimum degree vertex. The algorithm then
makes |V | calls to the algorithm by Tomita et al., each time with R initially set to the
next vertex in the ordering and with P and X updated accordingly. With this setup the
algorithm can be implemented to list all maximal cliques of an n-vertex graph in time
O(dn3

d
3 ), where a graph has degeneracy d if every subgraph has a vertex of degree

at most d. In a recent study Eppstein and Strash [7] show that the algorithm is highly
competitive with the algorithm by Tomita et al. This is particularly true for large sparse
graphs where it in many cases outperform the algorithm by Tomita et al. by orders of
magnitude.

Gaspers et al. gave a fast exponential time algorithm of complexity O(1.3642n) for
counting the number of MISs in a graph [8]. This running time is lower than the Moon
and Moser bound, something that is possible since the algorithm, unlike the previous
mentioned ones, does not enumerate the MISs but only counts their number.
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The structure of the algorithm is similar to TOMITAMIS in that a vertex u ∈ P ∪
X is selected as a pivot according to a degree based criterion before branching on
the vertices in P ∩ N [u]. But unlike the previous algorithms, it will in each call first
try if any of seven reduction rules can be applied to achieve a smaller but equivalent
instance. If this is possible then the instance is reduced accordingly before calling the
recursive function again. We note that all rules but one, will return the value given by
the following recursive call. The only exception being a rule which checks if there exist
two vertices u and v such that their current neighborhoods are identical. In this case v
will be removed from the graph and the value of the recursive call will be returned plus
the number of MISs discovered in this call that contained u. Another difference is that
the algorithm tests if there is a vertex in X having no neighbor in P indicating that the
current configuration cannot be expanded to a MIS. If this is the case then the algorithm
returns immediately. In the paper it is also noted that if the graph at some stage should
become disconnected then the algorithm is called (recursively) for each of its connected
components, and the product of the returned values then gives the number of MISs. As
far as we know there has been no study of how practical the algorithm is. We refer the
interested reader to [8] for the details of the algorithm.

4 A New Algorithm

In the following we present a simple recursive branching algorithm for counting the
number of MISs in a graph. Our algorithm is based on locating and exploiting vertex
separators of the graph, and is similar in spirit to the algorithm by Lipton and Tarjan for
computing a maximum independent set in a planar graph [13].

The Lipton and Tarjan algorithm initially finds a vertex separator S ⊂ V such that
|S| = O(

√
n) and such that no component of G \ S contains more than 2

3 |V | vertices.
This is possible since G is assumed to be planar. Then for every independent set IS
of S the algorithm recursively finds a maximum independent set for each connected
component of G \ (S ∪NG(IS)). The solution giving the combined largest solution is
then the maximum independent set of G. The running time of the algorithm is 2O(

√
n).

We modify the Lipton and Tarjan algorithm to compute the number of MISs by using
ideas from BKMIS and TOMITAMIS. Note however first that it is not possible to use
the algorithm of Lipton and Tarjan to count MISs. The reason for this is that if we pick
a particular independent set IS from a separator S in G and (recursively) calculate the
number of MISs in each component of G[V \ (S ∪NG(IS))], then it is not given that
IS together with every combination of MISs from each of the components will form a
MIS in G as some combinations might leave undominated vertices in S \ IS .

The new algorithm, Algorithm 3: CCMIS, is recursive and uses two vertex sets P
and X to count the number of MISs in G[P ∪X ] containing any combination of vertices
from P while using none of the vertices in X . Thus if P ∪X = ∅ this will be counted
as one MIS. Also, similar to the algorithm by Gaspers et al. if there exist a vertex in X
that is not adjacent to any vertex in P then the algorithm will return 0, as this indicates
that the current solution cannot be expanded into a complete MIS. The algorithm also
tests at each level of recursion if G[P ∪X ] is connected. If this is not the case then the
recursive procedure will be called once for each connected component and the product
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of the number of MISs in each component will be returned. Checking for connectedness
and listing the components is done using a linear depth first search through G[P ∪X ].

In the case that none of the mentioned conditions apply, the algorithm picks one
remaining vertex v from P and then performs two recursive calls, first to compute
the number of MISs containing v and then to compute the number of MISs excluding
v. Finally, the sum of these two numbers is returned. When counting the number of
MISs containing v, any vertex in N [v] is first removed from P and X as these will be
dominated by v. Similarly, when counting the number of MISs not containing v, the
vertex v is moved from P to X as it must then be dominated by some other vertex in
P in a MIS. Note that it is only following a recursive call where v is set to be in the
current MIS that the structure of G[P ∪X ] will change so that there is any possibility of
getting a disconnected graph. The recursion is initiated by setting X = ∅ and P = V .

Algorithm 3. CCMIS(P,X)

Input: Two vertex sets P and X .
Output: Number of MISs in G[P ∪X] containing only vertices from P .
if P ∪X = ∅ then

return 1
if ∃w ∈ X with no neighbor in P then

return 0
if G[P ∪X] is not connected then

count← 1
for each connected component CC(VCC , ECC) of G[P ∪X] do

count← count ∗ CCMIS(Vcc ∩ P, Vcc ∩X)
return count

Select a vertex v ∈ P to branch on
count← CCMIS(P \NG[v], X \NG(v))
count← count+ CCMIS(P \ {v}, X ∪ {v})
return count

As we explain in the following CCMIS differs substantially from the previous al-
gorithms in which order the vertices are selected from P to branch on. It is clear from
the description of CCMIS that one can select any vertex v ∈ P to branch on. Thus
one could similar to the previous algorithms use degree based information when select-
ing the branching vertex v. Picking a maximum degree vertex could be advantageous
for the the first recursive call as it would give a maximum reduction in the size of
G[P ∪X ], thus making it more likely that the remaining graph is disconnected. Picking
a minimum degree vertex could be advantageous for the second recursive call as there
would be fewer remaining vertices in P that could dominate v. However, as our main
interest is in computing the number of MISs for sparse graphs we use a different selec-
tion criterion that exploits this. Algorithm 3: CCMIS has a considerable advantage over
the Bron-Kerbosh type enumeration algorithms whenever the remaining graph becomes
disconnected. This follows since the CCMIS algorithm does not have to generate ev-
ery MIS but only needs to find the number of MISs in each connected component and
then to multiply these numbers together. Although the algorithm by Gaspers et al. also
exploit connected components in this way, their algorithm is bound to using a degree
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based criterion when selecting a pivot. Thus this might limit how often the remaining
graph becomes disconnected. Since we have no restrictions in CCMIS when selecting
the branching vertex v ∈ P we do so with the sole objective that the remaining graph
should become disconnected.

Prior to running the algorithm we compute a nested dissection ordering
α = {v1, v2, . . . , v|V |} on the vertices of G [9]. Such an ordering strives to number
vertices that make up a (preferably small) separator S of G first, with the added con-
straint that the remaining components of G \ S should be of roughly equal size. This
is then repeated recursively for each connected component. One can also view a nested
dissection ordering as an elimination tree [4]. This tree displays the separators in α,
with vertices in a separator S making up a path hanging of the preceding separator S′

on the component containing S. Within each separator, a vertex vj ∈ S will be a child
of the highest numbered vertex vk ∈ S where k < j. If vj , j �= 1, is the first ordered
vertex in S then vj will be a child of the last ordered vertex of S′, where S′ is as defined
above. It follows that a low elimination tree height is an indication that it was possible
to (recursively) partition the graph using small separators.

As an example of a nested dissection ordering, consider the graph in Figure 1a. Then
a possible α could be {d, c, a, b, f, e, g, h}. The d vertex is the first separator and c and
f the two remaining ones. Note that the relative ordering between the vertices of the
two components of G\{d} can be changed as long as c is ordered before a and b, and f
is ordered before e, g, and h. Also, when a separator consists of multiple vertices their
relative order is not necessarily important.
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Fig. 1. A possible execution of Algorithm 3

The strategy we employ is now to choose the first vertex w ∈ α that is also in P ∪X .
We have two cases for selecting the vertex v to branch on. If w ∈ P then we set v = w
and if w ∈ X then we select v to be a vertex in P ∩NG(w). Such a vertex must exist
since the algorithm would already have returned if w ∈ X had no neighbor in P . The
effect of followingα in this way is that we will only expand solutions where each vertex
in S has either been included in the current MIS or is being dominated. Thus we are
ensured that the remaining graph will be disconnected. Note that the strategy of picking
a vertex in NG(w) to branch on whenever w ∈ X is similar to the pivoting strategy in
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TOMITAMIS. Comparing with the algorithm by Lipton and Tarjan the difference is that
even though we follow the separator structure, for a particular separator S we allow for
vertices in NG(S) to be assigned values before deciding exactly which vertices from S
should be in the MIS.

The tree in Figure 1b shows the recursion tree of the algorithm when applied to the
graph in Figure 1a. Each time the algorithm branches on a particular vertex is denoted
by a round node, where the left branch denotes that the branching vertex is in the current
MIS and the right branch that it is not. Whenever the remaining graph consist of just
one vertex in P we only show the name of the vertex as it must be in any MIS. When
the remaining graph is empty we write ∅, and if a particular branch cannot be extended
to a MIS we write s. We use a square node to indicate when the graph has become
disconnected and then draw one branch for each connected component. The number
inside each node is the number of MISs returned by a particular branch.

With the current description of the algorithm there is still some freedom as to the
order in which the branching vertices are selected. As already pointed out, we can re-
order the vertices within a separator in α. Also, once a vertex v ∈ S has been chosen to
branch on then in the configuration where v is considered to be out of the current MIS,
we are free to decide the order in which we pick vertices from NG(v) ∩ P to dominate
v. We will expand further on these issues in Section 5.

5 Experiments

In the following we describe experiments performed to evaluate the presented algo-
rithms. All implementations have been performed on a Linux workstation running 64-
bit Fedora 14, with Intel Core 2 Duo E6500 processors, and with 2GB of main memory.
The programs are written in C (compiled with gcc (version 4.5.1) with the -O3 flag)
and Java (compiled with javac version 1.6.0 30). Each reported running time is the
average of five runs.

We use graphs from TreewidthLIB [19]. This is a collection of approximately 700
graphs, among which we have chosen a set of 22 graphs drawn from areas such as
computational biology, frequency assignment, register allocation problem, evaluation
of probabilistic inference systems. The graphs were chosen so that in most cases our
implementation of TOMITAMIS would terminate within 24 hours. This limited the max-
imum size to about 200 vertices. Moreover we also avoided most graphs having fewer
than 106 MISs as all algorithms would spend less than a second on these. Table 1 gives
the statistics for the chosen 22 graphs. Here p gives the edge density, eth gives the
elimination tree height, while MISs gives the number of maximal independent sets. In
addition to these graphs we have performed experiments using rectangular grids.

Our first set of experiments concerns a comparison between the algorithm by Gaspers
et al. and TOMITAMIS. In addition to the regular algorithm by Gaspers et al. we also
implemented variants of it where we only apply the reduction rules at regular intervals,
the most extreme case being when the reduction rules are not used at all. Since the
algorithm by Gaspers et al. is by far the most complex of the considered algorithms,
we have performed these comparisons using Java as this offers better support for more
complex data structures such as sets. The results of the comparisons on nine represen-
tative graphs can be seen in the left plot of Figure 2. Here the first seven graphs are the
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ones marked with a * in Table 1, while the 8th graph is a path on 40 vertices, and the
9th and 10th graphs are grids of size 7 × 7 and 8 × 8, respectively. The numbers are
reported relative to the performance of the regular algorithm by Gaspers et al. (G100).
G50 denotes the algorithm where the reduction rules are only applied in 50% of the
recursive calls and G0 where they are not used at all.

Table 1. Description for benchmark real world graphs from TreewidthLIB [19]

Graph No. Graph name V E p eth MISs
1∗ risk 42 83 0.01 13 66498
2∗ pigs-pp 48 137 0.12 17 131402
3∗ 1sem 57 570 0.35 41 12405
4∗ BN 100 58 273 0.16 31 134201
5∗ 1r69 63 692 0.35 46 22993
6∗ 1ail 69 631 0.26 44 160312
7 macaque71 71 444 0.18 30 182044
8 jean 80 508 0.16 22 1251960
9∗ 1aba 85 886 0.25 54 1067404
10 david 87 406 0.11 22 4.41x107

11 celar02 100 311 0.06 29 2.87x1010

12 celar06 100 350 0.07 22 2.72x1010

13 1lkk 103 1162 0.22 62 1.44x107

14 1fs1 114 1351 0.21 73 5.10x107

15 1a62-pp 120 1507 0.21 73 7.56x107

16 miles250 128 387 0.05 36 1.75x1013

17 anna 138 493 0.05 23 2.75x1010

18 mulsol1.i.5 186 3973 0.23 47 3.33x109

19 celar05 200 681 0.03 36 7.86x1020

20 zeroin.i.3 206 3540 0.17 43 1.29x107

21 zeroin.i.2 211 3541 0.16 43 1.81x107

22 BN 93 422 1705 0.02 38 4.55x1011

As can be observed there is no advantage in using the reduction rules, and when they
are not used at all the performance is very similar to that of TOMITAMIS. Based on these
results we did not pursue the algorithm by Gaspers et al. any further. For the remaining
experiments all algorithms have been implemented in C as this gave considerable faster
code compared to using Java.

We then compared BKMIS, TOMITAMIS, and the algorithm by Eppstein et al. These
experiments showed that, as expected, TOMITAMIS outperformed BKMIS, while there
was little difference between TOMITAMIS and the algorithm by Eppstein et al. We note
that this last observation does not contradict the results in [7] as these were concerned
with enumerating cliques in sparse graphs which is equivalent to enumerating MISs in
dense graphs, while we are enumerating MISs in sparse graphs. Due to space constraints
we omit these results.

Our next set of experiments concerns different variants of CCMIS where we use
Metis [15] to precompute a nested dissection ordering. The time spent on this was
insignificant compared to the algorithm itself and is not included in the timings.
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Fig. 2. Relative performance of TOMITAMIS compared to the algorithm by Gaspers et al. (left),
and relative performance of different CCMIS algorithms (right).

The versions we tried include the basic algorithm (NDCC) where the vertices are pro-
cessed for branching according to the ordering given by Metis and versions where we
reorder the vertices within each separator and also the relative order of the neighbor
lists. Similar in spirit with TOMITAMIS we tried a version where one branches on a
vertex v in the current separator such that |P ∩NG[v]| is minimized. This slowed down
the algorithm compared to NDCC and we therefore switched to presorting each sepa-
rator based on their degree in G. We label this algorithm SortSep. Next we considered
the order in which the neighbor lists are ordered. This is of importance when trying
to dominate a vertex v currently in X . Consider a vertex w with several undominated
neighbors in the current separator S. In the configuration where w is in the current MIS
all neighbors of w will be dominated, thus reducing the number of undominated ver-
tices in S. In the configuration where w is in X each undominated neighbor of w will
have one vertex less that must be tried to dominate it. Based on these observations we
implemented a version (SortAdl) where the adjacency list of every vertex v was pre-
sorted according to the number of neighbors each vertex has in the same separator as
v belonged to. We also tried to compute this ordering on the fly using the number of
remaining undominated vertices in the current separator but this only increased the run-
ning time. In the right plot of Figure 2 we display the relative running time for all four
combinations of these approaches. For each graph we report the relative performance
compared to the best algorithm for that graph. In all of these implementations we only
check if the graph is disconnected if the previous call to CCMIS moved a vertex into
the current MIS.

The average distances from the best algorithm was for SortSep + SortAdl 36%, for
NDCC 185%, for SortSep 172%,for NDCC + SortAdl 167%. Thus it is clear that sorting
both the the separators and the neighbor lists is crucial for performance.

Finally we tried two versions of CCMIS where the selection criterion for which
vertex to branch on was strictly based on the degree of the remaining vertices, one
where we always selected the vertex of minimum degree and one where we selected
the vertex of maximum degree (MaxDegCC). Both of these were considerably slower
than any of the other CCMIS variations. The absolute running times for MaxDegCC,
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Table 2. CPU time(sec) for benchmark real world graphs from TreewidthLIB [19]

Graph 1 2 3 4 5 6 7 8 9 10 11
TomitaMIS 0.07 0.22 0.02 0.25 0.03 0.14 0.31 0.69 1.09 29.05 20095.5
NDCC 0.01 0.08 0.02 0.26 0.04 0.09 0.11 0.13 1.04 1.03 0.06
MaxDegCC 0.02 0.23 0.02 0.46 0.05 0.14 0.15 0.09 1.59 0.31 4.56
SortSep+SortAdl 0.01 0.05 0.01 0.22 0.03 0.07 0.06 0.24 0.73 0.22 0.06
Graph 12 13 14 15 16 17 18 19 20 21 22
TomitaMIS 10648.1 16.24 61.5 87.85 - 32716.1 2722.0 - 23.81 32.66 135407.1
NDCC 0.38 8.7 16.4 84.38 3.56 1.18 0.03 187.63 0.06 0.06 1303.0
MaxDegCC 8.67 15.3 40.9 82.06 7.17 0.69 0.18 - 0.84 0.86 1658.85
SortSep+SortAdl 0.07 5.7 8.7 24.37 0.81 0.2 0.04 290.57 0.22 0.22 76.12

TOMITAMIS, NDCC, and SortSEp+SortAdl are given in Table 2. We note that the av-
erage distance from the best algorithm for each graph was for MaxDegCC 1371% and
for TOMITAMIS 1.6× 106%.

As can be seen the running time of TOMITAMIS is by far the highest, for some
graphs the algorithm did not finish. Also, following a nested dissection ordering is ad-
vantageous in most cases, and as already noted presorting the separators and neighbor
lists further emphasizes this effect.

We have also experimented with how often one should check if the graph is discon-
nected in CCMIS. We tried version where we only checked for a certain percentage of
the calls, where we only checked once a separator had been dominated, and checking
when the remaining graph is at least of some predefined size. From these tests we con-
clude that when the remaining graph has at least 10 vertices, then checking every time
after some vertex has been added be in the current MIS was the best option.

6 Conclusion

We have shown the first practical algorithm for counting MISs in moderately sized
sparse graphs. Comparisons with other algorithms showed that our algorithm is highly
competitive for this problem. One can get an indication of how good the algorithm is
likely to be by looking at the height of the elimination tree. These results also extend
to counting cliques in dense graphs. We note that searching for a (small) separator in
a graph is equivalent to searching for a (large) complete r-partite graph, r ≥ 2, in
its complement graph. For r = 2 this is equivalent to searching for a (not necessarily
induced) bi-clique.

We are currently working on implementing the algorithm by Gaspers et al. in C to
be able to perform a more complete comparison of it with the other algorithm, although
we do not expect that this will change any of our conclusions. We would also like to
experiment further with what impact the partitioning strategy has on the running time.

Finally, we note that the presented ideas could be used to compute a maximum in-
dependent set in a graph in a similar fashion as the algorithm by Lipton and Tarjan. We
are not aware of any practical studies of how to solve this problem on sparse graphs,
although the complement problem of finding the maximum size clique has been studied
extensively on sparse graphs.
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