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Abstract

We present a depth-first search algorithm for generating all maximal cliques of an undirected graph, in which pruning methods
are employed as in the Bron–Kerbosch algorithm. All the maximal cliques generated are output in a tree-like form. Subsequently,
we prove that its worst-case time complexity is O(3n/3) for an n-vertex graph. This is optimal as a function of n, since there exist
up to 3n/3 maximal cliques in an n-vertex graph. The algorithm is also demonstrated to run very fast in practice by computational
experiments.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In an undirected graph G, a clique is a complete subgraph of G, i.e., a subgraph in which any two vertices are adjacent.
The set of vertices of a maximal clique of the complementary graph of G is a maximal independent set of G. Generating
maximal cliques or maximal independent sets of a given graph is one of the fundamental problems in the theory of graphs,
and such a generation has many diverse applications, e.g., in clustering and in bioinformatics [15,16,8]. A number of
algorithms have been presented and evaluated experimentally or theoretically for this problem [5–7,9,26,13,19,12]. In
particular, Pardalas and Xue [19], and Bomze et al. [5] conducted surveys on the maximum clique problem. Bron and
Kerbosch [6] presented a depth-first search algorithm for generating all the maximal cliques of a graph. They showed
experimentally that the computing time per clique is almost independent of the graph size for random graphs and that the
total computing time is proportional to (3.14)n/3 for Moon–Moser graphs [17] of n vertices. Furthermore, Johnston [9]
and Koch [12] presented some variations of the Bron–Kerbosch algorithm together with a considerable number of com-
putational experiments. No results, however, were ever published on the theoretical time complexity for these algorithms.
On the other hand, Tsukiyama et al. [26] devised an algorithm for generating all the maximal independent sets in a graph
G in O(nm�)-time, where n, m, and � are the number of vertices, edges, and maximal independent sets of G, respec-
tively. Lawler et al. [13] generalized this result further. Chiba and Nishizeki [7] improved the algorithm of Tsukiyama
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et al. and presented a more efficient algorithm for listing all the maximal cliques of G in O(a(G)m�)-time, where a(G)

is the arboricity of G with a(G)�O(m1/2) for a connected graph G and � is the number of maximal cliques in G.
Recently, Makino and Uno [14] presented new algorithms, which are based on the algorithm of Tsukiyama

et al. [26]. One of their algorithms enumerates all the maximal cliques of G in O(�4�)-time, where � is the maximal
degree of G (Theorem 2 of [14]). They showed by using computational experiments that the algorithms is considerably
faster than that of Tsukiyama et al. [26] for sparse graphs.

We present here a depth-first search algorithm for generating all the maximal cliques of an undirected graph, in
which pruning methods are employed as in the Bron–Kerbosch algorithm [6]. All the maximal cliques generated are
output in a tree-like form. Subsequently, we prove that its worst-case running time complexity is O(3n/3) for a graph
with n vertices. This is the best one could hope for as a function of n, since there exist up to 3n/3 maximal cliques in a
graph with n vertices as shown by Moon and Moser [17]. Our algorithm differs from that of Bron and Kerbosch in the
format of the printed maximal cliques. The difference is important theoretically, since it is essential to the establishment
of the optimal worst-case time complexity. It is also very important practically, since it saves space in the output file.
The Bron–Kerbosch algorithm and other algorithms that yield the maximal cliques in a straightforward manner may
require huge amounts of memory space compared to our algorithm.

The time complexity of our algorithm is of special interest when it is compared with the results of Tarjan and
Trojanowski [21] and Robson [20]. The former presented an O(2n/3)-time algorithm for finding only one maximum
independent set—one independent set with the largest number of vertices—and the latter showed an O(20.276n)-time
algorithm (using exponential space) for the same problem.

The time complexity of our algorithm is expressed as a function of n, the number of vertices, while the time
complexities of the algorithms developed by Tsukiyama et al. and their successors are expressed as a function of
�, the number of maximal cliques (or maximal independent sets); therefore a direct theoretical comparison of these
algorithms is difficult. We have performed extensive computational experiments and demonstrated that our algorithm
is much faster in practice than those of Tsukiyama et al. and their successors.

Earlier versions of this paper appeared in Tomita et al. [23–25]; in particular, the version of Tomita et al. [23] was
reviewed by Pardalos and Xue [19] and Bomze et al. [5] and received considerable attention.

2. Preliminaries

[1] Throughout this paper, we are concerned with a simple undirected graph G = (V , E) with a finite set V of vertices
and a finite set E of unordered pairs (v, w) of distinct vertices, called edges. A pair of vertices v and w are said to
be adjacent if (v, w) ∈ E.

[2] For a vertex v ∈ V , let �(v) be the set of all vertices that are adjacent to v in G = (V , E), i.e., �(v) = {w ∈ V |
(v, w) ∈ E} (�� v).

[3] For the subset W ⊆ V of vertices, G(W) = (W, E(W)) with E(W) = {(v, w) ∈ W × W | (v, w) ∈ E} is called
a subgraph of G = (V , E) induced by W. For a set W of vertices, |W | denotes the number of elements in W.

[4] Given the subset Q ⊆ V of vertices, the induced subgraph G(Q) is said to be complete if (v, w) ∈ E for all
v, w ∈ Q with v �= w. In this case, we may simply state that Q is a complete subgraph. A complete subgraph is
also called a clique. If a clique is not a proper subgraph of another clique then it is called a maximal clique.

3. The algorithm

We consider a depth-first search algorithm for generating all the maximal cliques of a given graph G = (V , E)

(V �= ∅).
Here, we introduce a global variable Q of a set of vertices that constitutes a complete subgraph found up to this

time. The algorithm begins by letting Q be an empty set, and expands Q step by step by applying a recursive procedure
EXPAND to V and its succeeding induced subgraphs to search for larger and larger complete subgraphs until they reach
maximal ones.

Let Q = {p1, p2, . . . , pd} be a complete subgraph found at some stage, and consider the set of vertices

SUBG = V ∩ �(p1) ∩ �(p2) ∩ · · · ∩ �(pd),
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where SUBG = V and Q = ∅ at the initial stage. Apply the procedure EXPAND to SUBG to search for larger complete
subgraphs. If SUBG = ∅ then Q is clearly a maximal complete subgraph, or a maximal clique. Otherwise, Q ∪ {q}
is a larger complete subgraph for every q ∈ SUBG. Now, consider the smaller subgraphs G(SUBGq) that are induced
by new sets of vertices

SUBGq = SUBG ∩ �(q)

for all q ∈ SUBG; further apply recursively the same procedure EXPAND to SUBGq to find larger complete subgraphs
containing Q ∪ {q}.

Thus far, we have described only a well-known basic framework of the algorithm for generating all the maximal
cliques (with possible duplication). This process can be represented by the following search forest, or the collection of
search trees: the set of roots of the search forest is exactly the same as V of graph G = (V , E). For each q ∈ SUBG,
all the vertices in SUBGq (defined above) are children of q. Thus, a set of vertices along a path from the root to any
vertex of the search forest constitutes a complete subgraph or a clique. We shall give an example of a search forest
(with unnecessary subtrees deleted) later in Fig. 3(b).

Now we describe two methods to prune unnecessary parts of the search forest, which are found to be the same as in
the Bron–Kerbosch algorithm [6]. We regard the previously described set SUBG (�= ∅) as an ordered set of vertices,
and we continue to generate maximal cliques from the vertices in SUBG stepwise in this order.

First, let FINI be a subset of vertices of SUBG that have already been processed by the algorithm (FINI is short for
“finished”). We then denote the set of remaining candidates for expansion by CAND: CAND = SUBG − FINI . Hence,
we have

SUBG = FINI ∪ CAND (FINI ∩ CAND = ∅).

FINI = ∅ at the beginning. Consider the subgraph G(SUBGq) with SUBGq as defined above, and let

SUBGq = FINIq ∪ CANDq (FINIq ∩ CANDq = ∅),

where

FINIq = FINI ∩ �(q) and CANDq = CAND ∩ �(q).

Following this, only the vertices in CANDq can be candidates for expanding the complete subgraph Q∪{q} to find new
larger cliques, since all the cliques containing (Q ∪ {q}) ∪ {r} with r ∈ FINIq ⊆ FINI have already been generated
for any r by application of the procedure EXPAND to FINI as stated above (see Fig. 1).

Secondly, given a certain vertex u ∈ SUBG, consider that all the maximal cliques containing Q ∪ {u} have been
generated. Then, every new maximal clique containing Q, but not Q ∪ {u}, must contain at least one vertex q ∈
SUBG − �(u). This is because if Q is expanded to a complete subgraph R = (Q ∪ S) ∩ (SUBG − {u}) with S ⊆
SUBG ∩�(u), then R ∪ {u} is a larger complete subgraph, and hence R is not maximal. Thus, any new maximal clique
can be found by expanding Q to Q ∪ {q} such that q ∈ SUBG − �(u), and by subsequently generating all the cliques
containing Q ∪ {q}.

Taking the previously described pruning method also into consideration, the only search subtrees to be expanded are
from the vertices in (SUBG−SUBG∩�(u))−FINI = CAND −�(u). Here, in order to minimize |CAND −�(u)|, we
choose a vertex u ∈ SUBG as the one that maximizes |CAND ∩ �(u)|. This is essential for the proof of Lemma 2(ii),
and consequently the main theorem, i.e., Theorem 3. In this manner, the problem of generating all maximal cliques of
G(CAND) can be decomposed into k = |CAND − �(u)| such subproblems; see Lemma 2(i) in Section 4.

We present an algorithm CLIQUES for generating all the maximal cliques without duplication in Fig. 2. Note here
that some branches may not generate a maximal clique, as in the case where SUBG is not empty but CAND − �(u) is
empty.

If Q is a maximal clique that is found at statement 2, then the algorithm only prints out a string of characters “clique,”
instead of Q itself at statement 3. Otherwise, it is impossible to achieve the worst-case running time of O(3n/3) for an
n -vertex graph, since the printing of Q itself requires time proportional to the size of Q. Instead, in addition to printing
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Fig. 1. An illustration of the procedure EXPAND.

Fig. 2. Algorithm CLIQUES.
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Fig. 3. An example (a) An input graph G; (b) A search forest for G; and (c) A resulting printed sequence.

“clique" at statement 3, we print q followed by a comma at statement 7 every time q is selected as a new element of a
larger clique; further we print out a string of characters “back,” at statement 12 after q is moved from CAND to FINI
at statement 11. We can easily obtain a tree representation of all the maximal cliques from the sequence printed by
statements 3, 7, and 12. In Fig. 2, the primed statements (0′, 7′, and 12′) are solely for the sake of explanation.

Example. Let us apply the algorithm CLIQUES to the graph in Fig. 3(a). The whole process is represented by the
search forest in Fig. 3(b), and we show the resulting printed sequence in Fig. 3(c) with appropriate indentations. In
Fig. 3(b), each set of vertices surrounded by a flat circle represents SUBG at that stage. A vertex with a 
 mark is in
FINI ⊆ SUBG at the beginning. The vertex u chosen at statement 4 is marked by �◦ or �
 depending on whether it is
in CAND or FINI, respectively. Other vertices in CAND − �(u) are marked by ◦, while vertices in CAND ∩ �(u) are
marked by •. As a result, all the maximal cliques of G are {4, 6, 7, 8}, {4, 6, 5}, {4, 3, 8}, {1, 2, 9}, and {2, 3, 9}.

Given only the resulting printed sequence in Fig. 3(c) without indentations, we can easily obtain essentially the same
result as above by reconstructing from it a tree that represents a principal component of the previous search forest in
Fig. 3(b). Here, a dot · (/∈ V ) is introduced as a virtual root of the tree. Subsequently, every time “q,” is encountered in
the sequence, we expand a downward edge whose end-point is labeled by q. If and only if “q,” is followed by “clique,”,
the set of all the vertices along the path from the root to the vertex q excluding the root ( · ) represents a maximal clique.
Every time “back,” is encountered in the sequence, we go up the tree backward by one edge to find other maximal
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"cl." is an abbreviation for clique

Fig. 4. A tree representation of the result of the example in Fig. 3.

cliques. See Fig. 4 for a tree representation of the result of the Example. It is clear that this transformation can be done
in a time that is proportional to the length of the resulting sequence.

We conclude this section by the following theorem.

Theorem 1 (Correctness of the algorithm CLIQUES). Given a graph G = (V , E) (V �= ∅), the algorithm CLIQUES
generates all and only maximal cliques without duplication.

Proof. See Appendix A.1.

4. The worst-case time complexity

Given G = (V , E) with V �= ∅, we evaluate the worst-case running time of the algorithm CLIQUES(G). This is
equivalent to evaluating the worst-case running time of EXPAND(V , V ).

We begin with the following definitions.
[1] Let T (n) be the worst-case running time of EXPAND(SUBG, CAND) when |SUBG| = n (n�1).
[2] Let Tk(n) be the worst-case running time of EXPAND(SUBG, CAND) when |SUBG| = n, and |EXTu| = |CAND−

�(u)| = k at the first entrance to statement 5.
[3] Let us consider a nonrecursive procedure EXPAND0(SUBG, CAND) that is obtained from EXPAND(SUBG,

CAND) by replacing a recursive call 10: EXPAND(SUBGq , CANDq ) by 10′:EXPAND(∅, ∅). The running time of
EXPAND0(SUBG, CAND) when |SUBG| = n can be made to be O(n2) (in which, selection of u at statement 4
can be done in O(n2)), and so we assume that the running time of EXPAND0(SUBG, CAND) is bounded above by
the following quadratic formula

P(n) = p1n
2 where p1 > 0.

From the above definitions, we have

T (n) = max
k

{Tk(n)}, (1)

where 1�k� |CAND|.
The following lemma is a key for evaluating T (n).

Lemma 2. Consider EXPAND(SUBG, CAND) when |SUBG| = n, |EXTu| = |CAND − �(u)| = k �= 0, and
|CAND ∩ �(u)| = |CAND| − k at the first entrance to statement 5. In what follows, CAND stands exclusively for this
initial value, although it is repeatedly decreased at statement 11 in the while loop. Let CAND−�(u) = {v1, v2, . . . , vk}
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Fig. 5. An illustration for Lemma 2.

and let the vertex at statement 6 be chosen in this order. Let

SUBGvi
= SUBG ∩ �(vi), and

CANDvi
= CAND ∩ �(vi)

(See Fig. 5.)
Then the following hold.

(i) Tk(|SUBG|)�∑k
i=1 T (|SUBGvi

|) + P(n).
(ii) |SUBGvi

|�n − k�n − 1.

Proof. (i) This is obvious from the procedure EXPAND(SUBG, CAND) and the definition of P(n).
(ii) Since the vertex u in SUBG is chosen so that it maximizes |CAND ∩ �(u)| we have |CAND ∩ �(vi)|� |CAND ∩

�(u)| = |CAND| − k. Hence, |SUBGvi
| = |SUBG ∩ �(vi)| = |FINI ∩ �(vi)| + |CAND ∩ �(vi)|� |FINI| + |CAND ∩

�(vi)|�(n − |CAND|) + (|CAND| − k) = n − k�n − 1, since k�1. �

Theorem 3. For all n�1

T (n)�C3n/3 − Q(n) ≡ R(n), (2)

where

Q(n) = q1n
2 + q2n + q3,

with

q1 = p1/2 > 0, q2 = 9p1/2 > 0, q3 = 27p1/2 > 0,

and

C = max{C1, C2, C3},
with C1 = 3q2/ ln 3 = 27p1/2 ln 3, C2 = 39p1/(2 · 31/3), and C3 being the maximum over n of 3(1 − 2 · 3−2/3)−1·
Q(n − 3)/3n/3. (Note that Q(n − 3)/3n/3 is bounded above, since it approaches 0 as n tends to infinity. Hence, C3 is
well-defined.)
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Here, R(n) ≡ C3n/3 − Q(n) is monotone increasing with R(n)�0 for all integers n�0.

Proof. By considering a continuous function R(x) with x being a real variable and the fact that C�C1, R(x) can be
easily proved to be monotone increasing for x�0 (Lemma A.2 in Appendix). Hence, R(n) is monotone increasing for
all integers n�0. Furthermore, R(1) = C31/3 − Q(1)�C231/3 − 37p1/2 = p1, since C�C2 = 39p1/(2 · 31/3).
Therefore, R(n)�p1 > 0 for all integers n�1.

Now, we prove that inequality (2) holds by induction on n.
Basis: n = 1. We have T (1) = P(1) = p1 by the definition of P(n). Therefore, inequality (2) holds for n = 1, since

R(1)�p1.
Induction step: We assume that inequality (2) holds for all integers n, 1�n�N , and prove that it also holds for

n = N + 1.
Consider EXPAND(SUBG, CAND) when |SUBG| = n = N + 1, |EXTu| = |CAND − �(u)| = k �= 0 with

CAND − �(u) = {v1, v2, . . . , vk} at the first entrance to statement 5. Then, just as in Lemma 2(i), we have

Tk(n) = Tk(|SUBG|)�
k∑

i=1
T (|SUBGvi

|) + P(n),

where |SUBGvi
|�n − 1 = N by Lemma 2(ii). Then, by the induction hypothesis we have

k∑

i=1
T (|SUBGvi

|)�
k∑

i=1
R(|SUBGvi

|).

Since R(n) is monotone increasing and |SUBGvi
|�n − k, we have

k∑

i=1
R(|SUBGvi

|)�kR(n − k).

Combining these inequalities yields

Tk(n) � kR(n − k) + P(n)

≡ kC3(n−k)/3 − kQ(n − k) + P(n)

= k3−k/3 · C3n/3 − {kQ(n − k) − P(n)}. (3)

In the case k = 3, we have

T3(n)�C3n/3 − {3Q(n − 3) − P(n)}.

Now, consider the case where k �= 3 (with k�1). We shall show that

k3−k/3 · C3n/3 − {kQ(n − k) − P(n)}�C3n/3 − {3Q(n − 3) − P(n)} (4)

for all integers n�1, provided that C�C3. Modifying inequality (4), the problem is equivalent to proving the following
inequality.

3Q(n − 3) − kQ(n − k)

(1 − k3−k/3) · 3n/3 �C where k �= 3. (5)

Here, kQ(n − k)�0 for 1�k�n. Therefore, for the left-hand side of inequality (5), we have

3Q(n − 3) − kQ(n − k)

(1 − k3−k/3) · 3n/3 � 3Q(n − 3)

(1 − 2 · 3−2/3) · 3n/3 �C3. (6)
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Here, the first inequality holds since k3−k/3 �2 · 3−2/3 (Lemma A.3 in Appendix) and the second inequality comes
from the definition of C3.

Now from the fact that C�C3, inequality (4) holds for all integers n�1 and 1�k�n.
Combining inequalities (3) and (4) yields

Tk(n)�C3n/3 − {3Q(n − 3) − P(n)} = C3n/3 − Q(n) (from the definition of Q(n)).

Substituting this inequality into Eq. (1), we have

T (n)�C3n/3 − Q(n).

Thus, inequality (2) also holds for n = N + 1. Therefore, inequality (2) holds for all integers n�1. Hence the
result. �

Therefore, we conclude that the worst-case running time of the algorithm CLIQUES(G) is O(3n/3) for an n-vertex
graph G = (V , E).

Here, we note that if we output a list of all the individual maximal cliques, it takes O(n3n/3)-time in the worst case.

5. Computational experiments

In addition to the preceding theoretical analysis of the algorithm CLIQUES, we have implemented CLIQUES in the
programming language C and have performed computational experiments to evaluate it in practice [18]. The computer
used had a Pentium4 2.20 GHz CPU with 2 GB main memory and a Linux operating system. The compiler and flags
used are gcc-O2. These are the same as those in [22]. (So, Clique Benchmark Results in Appendix of [22] and dfmax
CPU time for DIMACS benchmark graphs in Table 3 of [22] can be effectively used for calibrating CPU times in
different computer environments.)

For comparison, we have also implemented and evaluated the algorithm CLIQUE of Chiba and Nishizeki [7], the
algorithms ALLMAXCLIQUES (AMC for short) and ALLMAXCLIQUES* (AMC* for short) of Makino and Uno [14] in
the same manner as above. In these experiments, the algorithms other than CLIQUES are modified to yield only the
number of maximal cliques in order to exclude the requirement of a huge amount of memory space for listing all the
maximal cliques.

It is to be noted that the working of AMC* of [14] depends on the value of �∗ for the input graph G such that only
some number (�) of vertices in G have a degree larger than �∗. To evaluate the overall performance of AMC* that
is independent of the input graphs, we set �∗ = n/100 for any input graph of n vertices. This is because it is not
necessarily easy to choose an appropriate value of �∗ for an unknown graph. In addition, we have confirmed in the
following experiments that AMC* with �∗ = n/100 is much faster than the basic algorithm of Makino and Uno that
is based on Theorem 2 of [14]; that was used in their computational experiments in Section 8 of [14]. Moreover, this
AMC* is faster than AMC*s with other settings of �∗ for a wide variety of graphs.

First, a random graph is generated for each pair of n (the number of vertices) and p (edge probability) in Table 1 so
that every pair of vertices has an edge with a probability p. The third column titled “�cliques” in Table 1 shows the
number of maximal cliques of each random graph generated as discussed above. The CPU time in seconds needed to
yield the number of maximal cliques for each random graph using CLIQUE [7], AMC, and AMC* [14] are listed in
the fourth, fifth, and sixth columns, respectively (24 h = 86, 400 sec). The last but one column presents the CPU time
using CLIQUES for each random graph. The bold-faced entries are the fastest in a given row. The final column titled
“/cliques” shows the average CPU time in seconds for generating 106 maximal cliques, i.e., (CPU time/�cliques) ×106,
for each graph.

Table 2 shows the corresponding CPU time using CLIQUE, AMC, AMC*, and CLIQUES for Moon–Moser graphs
[17] and DIMACS benchmark graphs [10], where M–M–n stands for Moon–Moser graphs of n vertices, and den-
sity stands for edge density of the graph, i.e., (the number of edges in the graph)/{n(n − 1)/2} for an n-vertex
graph.

To compare our experimental results with those of [14], we have also examined sparse locally random graphs
proposed in [14]. Their locally random graphs are generated such that edges exist randomly only in certain limited
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Table 1
CPU time (sec) for random graphs

Graphs CLIQUE AMC AMC* CLIQUES /cliques

n p �cliques [7] [14] [14]

0.6 65,216 10.38 2.81 1.60 0.088 1.30
100 0.7 415,412 107.13 16.64 9.52 0.54 1.21

0.8 5,467,664 2,035.18 179.51 112.06 6.63 1.05
0.9 313,069,088 > 24 h 7,434.26 6,533.98 330.19 4.41

0.1 3,882 0.62 0.26 0.067 0.0041 1.06
0.2 18,737 5.33 3.26 1.04 0.022 1.17
0.3 96,298 41.28 26.77 9.55 0.14 1.45

300 0.4 559,838 364.89 197.20 78.26 0.88 1.57
0.5 4,874,385 5,645.05 1,759.61 789.23 8.54 1.75
0.6 132,240,024 > 24 h 24,104.49 12,937.56 140.75 1.06
0.7 3,356,452,714 > 24 h > 24 h > 24 h 6,279.51 1.87

0.1 15,252 6.04 3.13 0.69 0.018 1.18
500 0.2 99,259 72.84 48.60 14.17 0.13 1.31

0.3 728,567 812.10 814.98 196.63 1.19 1.63
0.5 97,419,729 > 24 h > 24 h 42,612.27 208.16 2.14

0.1 37,563 29.91 21.86 3.15 0.051 1.36
700 0.2 325,479 485.38 367.96 98.64 0.51 1.57

0.3 3,094,828 9,197.77 5,201.25 1,806.24 5.42 1.75
0.5 917,376,496 > 24 h > 24 h > 24 h 2,144.31 2.34

0.1 99,062 179.80 143.03 19.39 0.21 2.12
1,000 0.2 1,183,584 3,750.59 4,486.30 829.52 2.25 1.90

0.3 15,362,096 > 24 h > 24 h 20,615.89 33.18 2.16

2,000 0.1 747,300 6,384.56 10,149.20 665.59 2.32 3.10

3,000 0.1 2,945,211 > 24 h 5,905.18 11.26 3.82

5,000 0.1 18,483,855 > 24 h > 24 h 86.60 4.67

0.001 49,738 282.40 13.30 10.86 218.34
0.003 141,651 2,335.88 111.78 11.18 78.93
0.005 215,129 6,138.69 364.29 11.74 54.57

10,000 0.01 348,552 22,426.63 645.75 14.78 42.40
0.03 3,738,814 > 24 h 11,315.03 41.29 11.04
0.05 12,139,182 > 24 h > 24 h 109.78 9.04
0.07 42,572,404 > 24 h > 24 h 338.23 7.94
0.1 229,786,397 > 24 h > 24 h 1,825.45 7.94

local regions. In other words, given n and r, a locally random graph with n vertices is generated such that different
vertices vi and vj are adjacent with a probability 1/2 if i + n − j (mod n)�r or j + n − i(mod n)�r .

Table 3 shows the results for (a) r = 10 and (b) r = 30.
Table 4 shows the CPU time for sparse locally random graphs with 10,000 vertices for several values of r.
From the above experimental results, it is observed that CLIQUES is considerably faster than CLIQUE. Further, it

is also confirmed to be considerably faster than the algorithm of Tsukiyama et al. [26] via the computational results in
Section 8 of [14]. CLIQUES is faster than AMC and AMC* for most of the graphs tested here, while AMC and AMC*
can be faster than CLIQUES when the number of maximal cliques is extremely small (e.g., c-fat200-5, c-fat500-10).
AMC* can be faster than CLIQUES when the input graph is very sparse with localized edges, especially if �∗ is chosen
appropriately according to the individual graph. Makino and Uno [14] reported interesting results for very large sparse
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Table 2
CPU time (sec) for Moon–Moser (M–M) graphs and DIMACS benchmark graphs

Graphs CLIQUE AMC AMC* CLIQUES /cliques

Name �cliques [7] [14] [14]
(n, density)

M-M-30 59,049 1.89 0.12 0.15 0.020 0.34
( 30, 0.931)
M-M-45 14,348,907 1,309.23 46.44 67.47 4.80 0.33
( 45, 0.954)
M-M-48 43,046,721 5,057.65 153.21 224.41 12.41 0.29
( 48, 0.957)
M-M-51 129,140,163 16,532.50 496.76 740.57 32.95 0.26
( 51, 0.960)
M-M-60 3,486,784,401 > 24 h 16,585.75 26,152.31 894.90 0.26
( 60, 0.966)
M-M-63 10,460,353,203 > 24 h 47,817.37 > 24 h 2,666.90 0.25
( 63, 0.968)
MANN_a9 590,887 52.64 2.24 2.93 0.23 0.39
( 45, 0.927)
brock200_2 431,586 181.42 75.16 35.91 0.65 1.51
(200, 0.496)
c-fat200-5 7 0.30 0.0029 0.0031 0.0054 771.4
(200, 0.426)
c-fat500-10 8 6.62 0.025 0.028 0.058 7250.0
(500, 0.374)
hamming6-2 1,281,402 301.00 11.97 16.98 1.21 0.94
( 64, 0.905)
hamming6-4 464 0.018 0.0086 0.0056 0.00043 0.93
( 64, 0.349)
johnson8-4-4 114,690 13.85 1.82 1.95 0.11 0.96
( 70, 0.768)
johnson16-2-4 2,027,025 907.51 150.68 153.42 4.38 2.16
(120, 0.765)
keller4 10,284,321 3,446.61 1,145.66 490.76 4.98 0.49
(171, 0.649)
p_hat300-1 58,176 19.23 13.52 3.52 0.07 1.20
(300, 0.244)
p_hat300-2 79,917,408 > 24 h 16,035.71 4,130.20 99.72 1.25
(300, 0.489)

bipartite graphs obtained from real world data. Note in CLIQUES, that the ratio of CPU time to the number of cliques
varies depending on the graphs; the variation is generally not large, except for a few cases.

6. Concluding remarks

We have presented an algorithm for generating all the maximal cliques in a graph of n vertices and have proved
that its worst-case time complexity is O(3n/3) that is optimal as a function of n. It is expected to be very complicated
to analyze the time complexity of our algorithm theoretically as a function of the number of maximal cliques in the
graph.

The algorithm CLIQUES is very simple and consequently easy to implement. Our computational experiments
demonstrate that CLIQUES runs very fast in practice.

In addition, our depth-first search algorithm can be coupled with some heuristics to yield fast algorithms MCQ and
others for finding a maximum clique [22]. They have been successfully applied to interesting problems in bioinformatics
[1–4], the design of DNA and RNA sequences for biomolecular computation [11], and other problems.
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Table 3
CPU time (sec) for sparse locally random graphs

Graphs CLIQUE AMC AMC* CLIQUES /cliques

n Density �cliques [7] [14] [14]

(a) r = 10
1,000 0.010 4,487 2.38 0.45 0.04 0.016 3.57
2,000 0.0051 9,369 18.76 4.70 0.38 0.075 8.01
4,000 0.0025 19,166 31.48 1.55 0.86 44.87
6,000 0.0017 29,192 88.91 3.56 3.30 113.04
8,000 0.0013 39,179 160.16 6.25 6.25 159.52

10,000 0.0010 48,975 261.27 9.51 10.49 214.19
(b) r = 30
1,000 0.030 13,043 8.93 3.38 0.38 0.025 1.92
2,000 0.016 25,803 57.13 44.79 1.49 0.10 3.88
4,000 0.0075 53,059 243.66 9.31 0.89 16.77
6,000 0.0050 81,145 693.60 25.35 3.11 38.33
8,000 0.0038 110,354 1,271.13 46.92 5.98 54.19

10,000 0.0030 139,304 2,075.70 73.55 10.02 71.93

Table 4
CPU time (sec) for sparse locally random graphs with n = 10, 000

Graphs AMC AMC* CLIQUES /cliques

r Density �cliques [14] [14]

10 0.001 48,975 261.27 9.51 10.49 214.19
20 0.002 95,120 952.25 49.45 10.20 107.23
40 0.004 181,424 3,601.09 130.76 9.90 54.57
80 0.008 386,360 14,448.21 431.20 10.95 28.34

120 0.012 746,852 35,866.69 530.53 12.97 17.37
160 0.016 1,408,360 > 24 h 1,066.62 16.85 11.96
240 0.024 4,306,123 > 24 h 4,350.94 33.75 7.84
320 0.032 11,488,405 > 24 h 15,655.05 65.06 5.66
480 0.048 66,513,724 > 24 h > 24 h 293.97 4.42
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Appendix

A.1. Proof of Theorem 1 (Correctness of the algorithm CLIQUES)

As in Fig. 1, let Q = {p1, p2, . . . , pd} be a complete subgraph that has been found at some stage, and consider a set
of vertices

SUBG = V ∩ �(p1) ∩ �(p2) ∩ · · · ∩ �(pd),

where SUBG = V and Q = ∅ when d = 0.
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Assume that

SUBG = FINI ∪ CAND (�= ∅),

and that all and only maximal cliques containing Q∪{q ′} have been generated without duplication for every q ′ ∈ FINI .
Then we consider EXPAND(SUBG, CAND), and let a vertex u in SUBG be chosen at statement 4 in Fig. 2. In what
follows, CAND stands exclusively for this initial value at the first entrance to statement 5. Further, let

CAND − �(u) = {v1, v2, . . . , vk} �= ∅

and vertex q at statement 6 be chosen in the order v1, v2, . . . , vk . Let

SUBGvi
= SUBG ∩ �(vi),

CANDvi
= CAND ∩ �(vi), and

CAND(i) = CAND − {v1, v2, . . . , vi−1}.

(See Fig. 5.)
Then, we have the next claim:

Claim A.1. (i) For every vi ∈ CAND − �(u) (1� i�k) chosen as q at statement 6, the following holds:
The expansion from vertex vi by an application of EXPAND(SUBG, CAND(i)) generates all and only maximal cliques

without duplication that contain Q ∪ {vi} and does not contain any vertex in FINI ∪ {v1, v2, . . . , vi−1}.
(ii) When all the maximal cliques in G(Q ∪ {q}), q ∈ FINI ∪ (CAND − �(u)) have finished being generated, we

have no new maximal cliques that contain Q.

Proof of Claim A.1. We prove the claim by induction on n = |SUBG|.
Basis: In the case 1�n�2, the properties are easily confirmed to hold by the analysis of each case.
Induction step: We assume that the properties hold for all positive integers n�N , and prove that they also hold for

n = N + 1.
(i) First, we are concerned with the case where i = 1 and CAND(1) = CAND.

(a) Case SUBGv1 = ∅: “clique,” is printed after “v1,”. The generated set of vertices Q ∪ {v1} is clearly a maximal
clique and does not contain any vertex in FINI.

(b) Case SUBGv1 �= ∅: let a vertex u′ ∈ SUBGv1 be chosen at statement 4, and consider EXPAND(SUBGv1 , CANDv1 ).
(b-1) If CANDv1 − �(u′) �= ∅, then application of EXPAND(SUBGv1 , CANDv1 ) guarantees to generate without

duplication all and only maximal cliques that contain Q ∪ {v1} and does not contain any vertex in FINI =
SUBG − CAND, since |SUBGv1 |�N and the induction hypothesis then holds true for SUBGv1 .

(b-2) If CANDv1 − �(u′) = ∅, application of EXPAND(SUBGv1 , CANDv1 ) does nothing but prints “back,”
immediately after “v1,”. Then, the set of vertices Q ∪ {v1} is not regarded as a maximal clique since
SUBGv1 �= ∅. This is because there exist no new maximal cliques containing Q ∪ {v1} than the previously
generated ones.

After the application of EXPAND(SUBGv1 , CANDv1 ), the vertex v1 is moved from CAND to FINI at statement 11.
If CAND − �(u) − {v1} �= ∅, then we choose vi at the following stages step by step for i = 2, 3, . . . , k, and the above
argument follows.

(ii) All maximal cliques that contain Q are in Q ∪ SUBG. We are under the assumption that all maximal cliques in
G(Q∪{q}), q ∈ SUBG −�(u) have finished being generated, then any remaining possibility of a new maximal clique
R is such that R = Q ∪ S for some S ⊆ SUBG ∩ �(u). However, R ∪ {u} is a larger clique, and this implies that R is
not maximal. Hence, the result follows.

Summarizing the above, the claim has been shown to hold for any positive integer n = |SUBG| as a consequence of
induction. �
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Now if we let Q = ∅ (d = 0) and SUBG = CAND = V (FINI = ∅), then consideration of CAND − �(u) =
{v1, v2, . . . , vk} gives the proof of Theorem 1. �

Lemma A.2 (For the first part of Proof of Theorem 3 in Section 4). Consider the following continuous function R(x)

with x being a real variable:

R(x) = C3x/3 − Q(x),

where

Q(x) = q1x
2 + q2x + q3, with q1, q2, and q3 as in Theorem 3.

If C�C1 = 3q2/ ln 3, then R(x) is monotone increasing for x�0.

Proof. Differentiating the function R(x), we have

dR(x)/dx = ln 3 · C3x/3−1 − 2q1x − q2.

In addition,

d2R(x)/dx2 = (ln 3)2 · C3x/3−2 − 2q1 �(ln 3)2 · C13x/3−2 − 2q1 = {(3 ln 3/2)3x/3 − 1} · p1 > 0 for x�0,

since p1 > 0. Hence, dR(x)/dx is monotone increasing for x�0. Thus, for x�0,

dR(x)/dx�[dR(x)/dx]x=0 = ln 3 · C/3 − q2 � ln 3 · C1/3 − q2 = 0.

Therefore, R(x) is monotone increasing for x�0. �

Lemma A.3 (For the denominator of inequality (6) in Proof of Theorem 3 in Section 4). For all positive integers k �= 3,
it holds that

k3−k/3 �2 · 3−2/3.

Proof. Consider the following continuous function f (x) with x being a real variable:

f (x) = x3−x/3.

Here, we have df (x)/dx = 3−x/3(1 −x · ln 3/3). Then df (x)/dx > 0 for x < 3/ ln 3, df (x)/dx < 0 for x > 3/ ln 3,
and [df (x)/dx]x=3/ ln 3 = 0. Subsequently, f (x) is monotone increasing for x < 3/ ln 3 = 2.7307 . . . , f (x) is
monotone decreasing for x > 3/ ln 3, and f (x)�f (3/ ln 3) for all x. In addition, f (2) = 0.9614 . . . > f (4) =
0.9244 . . . . Thus, the result is obtained. �
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