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Abstract

In a graph G, a k-club is a vertex set inducing a subgraph of diameter k. These structures play an important
role in several applications arising in social and behavioral sciences. We derive some properties of k-clubs
and we propose three heuristics for determining a largest k-club in a graph. Comparative computational
results con"rm the speed and e$ciency of these heuristics.

Scope and purpose

Social and behavioral scientists frequently use network analysis to study linkages between groups,
individuals or abstract entities. Applications are encountered in psychology, marketing, organization theory,
anthropology, economics, sociology, etc. A common problem is to identify dense structures in a graph. This
article is about the determination of one such type of structure called k-club. Three e$cient heuristics for the
determination of k-clubs are developed and compared. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Social and behavioral scientists frequently use network analysis to study linkages
between groups, individuals or abstract entities. Early examples are found in the work of Gestalt
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psychologists who have for long studied the structure patterns associated with thought and
perception [1], or in the writings of Moreno [2] who has investigated the relationships between
psychological well-being and structures referred to as social con"gurations. Baker [3] has used
social networks to study the type of ties existing between members of a population. Snyder and
Kick [4] present a network-based study of world-system/dependency theories of di!erential
growth among nations and provide an analysis based on ten groups of nations. Social networks
have been used to study community power by Breiger [5], the connectivity of social fabric by
Doreian [6], patterns of prevalence of interpersonal agreements in a population [7], market-areas
and market-shares [8]. Mintz and Schwartz [9] have studied data on interlocking directorates to
test three theories of corporate organization, using social networks, while Roy [10] has analyzed
interindustry interlocking directorates between the years 1886}1905. In an interesting article,
Bougon et al. [11] apply social network theory to study cognition relationships among the players
of the Utrecht jazz orchestra. Several other applications in marketing, organization theory, and
sociology have appeared in the literature. For further readings on this subject, refer to the article of
Everett [12] and to the books of Burt [13], Hage and Harary [14], Wellman and Berkowitz [15],
Scott [16] and Wasserman and Faust [17].

Some of the main concepts used in network analysis are borrowed from graph theory. The most
widely known is that of a clique which is de"ned as a set of vertices all directly linked to each other
by an edge. Several contexts, however, call for the use of looser structures in which vertices are not
required to be directly connected, but may be linked through a chain of at most k edges, as often
happens in a network of acquaintances. In other words, what is of interest is the identi"cation of
dense structures in a graph, i.e., subsets of vertices with a high density of interconnections. Several
de"nitions can be used to operationalize this concept. Social network packages such as UCINET now
include routines for the identi"cation of dense structures in a graph [18]. These are often based on
the enumerative algorithm of Bron and Kerbosch [19], but full enumerations are limited to
relatively small graph sizes. While several algorithms have been developed to enumerate dense
structures possessing some characteristics, little e!ort has been put on optimization techniques
aimed at determining largest dense structures. There are contexts where this is relevant. For
example, in the study of interlocking corporate directorates, one may wish to identify the largest
group of highly interconnected people controlling the most important American companies.
Several of the real-life problems considered in the above references are too large to be solved
optimally and can only be tackled by means of a heuristic. The contribution of this work is to
propose e$cient heuristics for the identi"cation of a family of dense structures called k-clubs.

The remainder of this paper is organized as follows. In Section 2, we introduce the notion of
k-club and identify some of its properties. In Section 3, we propose three heuristics for the
identi"cation of k-clubs in an undirected graph. This is followed by computational results in
Section 4 and by the conclusion in Section 5.

2. De5nitions and properties

The problems studied in this article are de"ned on an undirected graph G"(<, E), where
<"M1,2, nN is the vertex set and the edge set E is a subset of M(i, j): i, j3<, i(jN. Given a subset
= of <, the subgraph H of G induced by = is de"ned as H"(=, F), where

560 J.-M. Bourjolly et al. / Computers & Operations Research 27 (2000) 559}569



Fig. 1. Example showing a 2-clique that is not a 2-club.

F"M(i, j)3E: i, j3=N. A chain of length p is a sequence of p di!erent edges in which every
intermediate edge shares a vertex with its predecessor and the other vertex with its successor.
A cycle is a chain whose extremities coincide. The diameter of a subgraph H of G is the length
of the longest chain among all shortest chains in H between any two of its vertices. Our
purpose is to identify large vertex sets inducing subgraphs of diameter at most k in G, called
k-clubs. This concept is related to that of a k-clique. A k-clique is a subset of < in which
every vertex pair is connected by a chain of G of length at most k. Note that a k-clique
may not be fully interconnected, as is required in some applications, in the following sense:
if C

k
is a k-clique, all the chains of length at most k between two vertices of C

k
may contain

some vertices not included in C
k
. This has led some researchers to de"ne `self-containeda

structures, such as k-clubs. Therefore, every pair of vertices of the k-club D
k

is linked by
a chain of length at most k, totally included in D

k
. In keeping with modern usage, (see,

e.g., Johnson and Trick [20]), our de"nitions depart from those used by certain authors in social
sciences (e.g., Alba [21,22] and Mokken [23]) in that we do not require that k-cliques and k-clubs
be maximal with respect to inclusion. We thus make a distinction between a k-clique and
a maximal k-clique, and between a k-club and a maximal k-club. While all k-clubs are k-cliques, the
converse is not true, as shown in the graph depicted in Fig. 1, taken from Alba [21] and Scott [16].
The set S"M1, 2, 3, 4, 5N is a 2-clique but not a 2-club since the only two-edge chain connecting
vertices 4 and 5 passes through vertex 6 which does not belong to S. The set S@"M1, 2, 3, 4, 5, 6N is
both a 3-clique and a 3-club.

In the case of a k-clique, the notion of maximality is easily checked, but this is not the case for
k-clubs. In the example depicted in Fig. 2 and adapted from Mokken [23], the vertex set
S"M1, 2, 3, 4N is a 2-club. It is not maximal since M1, 2, 3, 4, 5, 6N is also a 2-club. However,
M1, 2, 3, 4, 5N, M1, 2, 3, 4, 6N, and M1, 2, 3, 4, 7N are not 2-clubs.

We will refer to the k-clique (resp. k-club) problems as the problems consisting of determining
a largest k-clique (resp. k-club) in an undirected graph. It is common to omit k when it is equal to 1.
It is well known that the clique problem is NP-hard [24]. Exact algorithms and heuristics for this
problem are described or quoted in Johnson and Trick [20].
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Fig. 2. Example illustrating a maximality check.

Fig. 3. A K
2,4,1,3

graph.

The k-clique problem is easily transformed into a clique problem on Gk"(<, Ek), where
(i, j)3Ek (i(j) if and only if there exists a chain of length at most k between i and j in G (see, e.g.,
Scott [16]). The k-club problem is NP-hard as can be shown by polynomially transforming an
instance of the clique problem into a k-club instance. The following properties of the k-club
problem can be stated without proof. They will be used to develop heuristics or to compute upper
bounds on the optimal value zH

k
, the size of the largest k-club.

Property 1. zH
k{
*zH

k
whenever k@*k.

Property 2. Let uH
k

be the value of an optimal solution to the k-clique problem, then

uH
1
)zH

k
)uH

k
.

Property 3. If G contains a cycle of length l)2k#1, then zH
k
*l.

Now denote by K
r1
,2,

rk
a k-layered subgraph of G in which r

i
is the number of vertices in layer i,

and all pairs of vertices from two successive layers are linked by edges (see Fig. 3).
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Fig. 4. Construction of the "rst two stars in CONSTELLATION.

Property 4. If k*2 and K
r1
,2,

rk`1
is a subgraph of G, then

zH
k
*

k`1
+
h/1

r
h
.

Property 5. If K
r,s

is a subgraph of G, then zH
k
*r#s for k*2.

The star graph K
r,1

will play a special role in one of our heuristics.

3. Heuristics

We describe three heuristics for the k-club problem.
Heuristic 1: CONSTELLATION. This heuristic stems from Property 5 which states that the

K
r,1

star graph provides a 2-club. This idea is generalized to "nd k-clubs (k*3). Step 1 identi"es
a t-club for t"2, and each application of Step 2 increases t by 1 until k is reached.

Step 1 (First star): Set t :"2. Obtain a "rst 2-club by determining the vertex of maximum degree
in G and by using it as the center of a star graph of maximum size. The 2-club is the vertex set= of
this star graph.

Step 2 (Next star): If t"k or ="<, stop. Otherwise, set t :"t#1. Determine the vertex of
= having the largest set S of neighbour vertices in <C=. Set= :"=XS. Repeat this step.

The complexity of CONSTELLATION is determined as follows. Assume an adjacency list repres-
entation for G which requires h(DED) space, and a bit-vector representation of = which requires
h(D<D) space. Step 1 can be executed in O(D<D#DED) time and each of the k!2 applications of Step 2
requires O(D<D#DED) time. Therefore, the overall complexity is O(k(D<D#DED)).

To illustrate, consider the subgraph of G"(<, E) shown in Fig. 4. The initial set= determined
in Step 1 consists of vertex 1 and of its six neighbours. In Step 2, the procedure will select vertex 2
having four neighbours in <C=, as opposed to vertex 3 which has only three neighbours in <C=,
even though it has more neighbours in < than does vertex 2.
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Fig. 5. Illustration of heuristic DROP.

The following two heuristics make use of an auxiliary procedure for checking whether the vertex
set of a graph is a k-club. It does so by e$ciently maintaining shortest chain lengths between vertex
pairs as the graph is modi"ed, i.e., by solving a dynamic version of the all-pairs shortest path
problem. Clearly, if no chain length exceeds k, then a k-club has been identi"ed. Both heuristics
successively remove vertices from < until it becomes a k-club. In Heuristic 2, < is initially taken as
the vertex set of the whole graph G and subsequently updated. In Heuristic 3, the search
concentrates on an initial largest k-clique, a good candidate to contain a largest k-club.

Heuristic 2. (DROP):
Step 1: (Data structure initialization): Compute shortest chain lengths between all vertex pairs.
Step 2: (Termination check): Compute for each vertex i of < the number q

i
of vertices of < whose

shortest chain to i has length at least k#1. If q
i
"0 for every vertex i, stop: < is a k-club.

Step 3: (Vertex removal): Let= be the set of vertices for which q
i
is maximized. Determine a vertex

iH3= of least degree in <. Remove iH and its incident edges from the graph.
Step 4: (Data structure update): Update shortest chain lengths. (Two vertices belonging to di!erent

connected components are said to be linked by an in"nite length chain.) Go to Step 2.

The dynamic algorithm which we implemented for the all-pairs shortest path problem has an
asymptotic worst-case time complexity of O(D<D3) per edge deletion, which may not be better than
that of some static algorithms but which has a de"nite impact on actual running times since it does
not start from scratch every time. Other dynamic algorithms exist which have a better time
complexity, but they tend to be harder to implement. (For example, Ronert [25] describes
a dynamic algorithm to solve the all-pairs shortest path problem O(D<DDED#D<D2log D<D) time per
edge deletion.) Step 1 of DROP is executed in O(D<D2DED) time and O(D<D2) space. The complexity of
Steps 2 and 3 is dominated by that of Step 4 which requires O(D<D3) time per edge deletion. Since at
most DED edges are deleted, the overall time complexity of DROP is in O(D<D3DED).

To illustrate, consider applying DROP to the graph of Fig. 5. For k"2, Step 2 computes
q
1
"q

2
"1, q

3
"q

4
"q

5
"0, and q

6
"2. Therefore,="M6N in Step 3 and vertex 6 is removed

from the graph. Applying Step 2 again yields a 2-club since q
i
"0 for all i.
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Heuristic 3: k-CLIQUE & DROP
Step 1 (k-clique): Determine a largest k-clique in G as explained in Section 2. Remove from the

graph all vertices not belonging to the k-clique and all their incident edges. Let < be the resulting
vertex set.

Step 2 (DROP): Call DROP.
The complexity of this algorithm is dominated by Step 1 which is potentially exponential.

A fourth heuristic valid for k"2, called ADD, was also developed and tested. It consists of "rst
identifying a largest star in G and gradually adding cliques that are connected to it. Unfortunately,
it was consistently dominated by one or the other of the three heuristics just described and was
therefore abandoned.

4. Computational results

The three heuristics were coded in C. They were run on a Sun Sparc 10 (55 MHz), and tested on
p( -generated graphs obtained using the algorithm of Gendreau et al. [26], and controlled by two
density parameters a and b (0)a)b)1). It generalizes the classical uniform random graph
generator. Its description is as follows:

begin
for i :"1 to n do p( [i] :"uniform(a, b);
for i :"1 to n!1 do

for j :"i#1 to n do
generate edge (i, j) with probability (p( [i]#p( [ j])/2;

end

The expected edge density of such graphs is equal to (a#b)/2, and the vertex degree variance
increases with b!a. To help assess the quality of the heuristics, we have computed for each graph
an upper bound uH

k
on the size zH

k
of a largest k-club. As per Property 2, we use for uH

k
the value of

the size of a largest k-clique, determined by using an exact algorithm for the clique problem. All our
tests were performed on 100-vertex graphs. We have generated ten di!erent instances for
k"2, 3, 4 and several combinations of a and b. We only considered values of a and b which
yielded meaningful instances: when the graph density becomes too high, all vertices belong to
a maximum k-club and the corresponding problem is therefore trivial. Similarly, values of k larger
than 4 tend to produce uninteresting instances for the graph size considered. Tables 1 and 2
contain average computational results over the 10 instances of each category. Results correspond-
ing to the best heuristic are given in bold characters.

Our results indicate that in terms of solution quality, DROP is the best of the three heuristics for
higher densities. When the density becomes very high, this heuristic consistently identi"es optimal
or near-optimal solutions. For lower densities, the best heuristic is CONSTELLATION when
k"2, and k-CLIQUE & DROP when k"3 or 4. The good performance of CONSTELLATION
on low density graphs when k"2 is not surprising since the heuristic is initialized with the largest
star subgraph which corresponds to a 2-club. The idea of starting the DROP process from
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Table 1
Size of k-clubs for three di!erent heuristics

k Density [a, b] Largest k-club heuristics
k-clique

CONSTELLATION DROP k-CLIQUE
& DROP

2 0.05 [0.05, 0.05] 12.7 12.7 8.3 12.7
[0.00, 0.10] 12.4 12.3 8.3 12.3

0.1 [0.10, 0.10] 20.8 19.2 10.8 13.9
[0.05, 0.15] 21.7 19.8 11.8 15.6
[0.00, 0.20] 24.0 21.4 14.4 14.9

0.15 [0.15, 0.15] 44.2 25.3 20.5 18.6
[0.10, 0.20] 44.6 25.5 23.5 17.9
[0.05, 0.25] 46.0 26.9 26.7 22.9

0.2 [0.20, 0.20] 75.0 31.7 54.3 47.1
[0.15, 0.25] 75.7 31.8 62.5 54.5
[0.10, 0.30] 74.4 33.3 63.9 58.6

0.25 [0.25, 0.25] 94.8 36.9 94.2 93.4
[0.20, 0.30] 94.5 38.0 93.5 92.9
[0.15, 0.35] 93.6 39.3 92.8 92.0

0.3 [0.30, 0.30] 99.5 42.8 99.4 99.4
[0.25, 0.35] 99.7 44.4 99.7 99.6
[0.20, 0.40] 99.3 45.4 99.3 99.3

3 0.015 [0.015, 0.015] 9.5 9.1 9.5 9.5
0.02 [0.020, 0.020] 11.3 10.7 11.2 11.2
0.025 [0.025, 0.025] 13.4 12.3 12.7 13.2

[0.000, 0.050] 14.9 12.8 12.7 14.5
0.05 [0.050, 0.050] 33.2 20.0 23.2 22.2

[0.025, 0.075] 33.1 19.7 23.9 22.4
[0.000, 0.100] 35.7 20.1 23.8 22.6

0.075 [0.075, 0.075] 72.2 26.4 58.8 56.4
[0.050, 0.100] 70.6 25.9 55.4 54.0
[0.025, 0.125] 69.8 27.4 58.1 57.1

0.1 [0.100, 0.100] 95.0 32.6 94.0 93.7
[0.075, 0.125] 95.3 31.5 95.2 94.8
[0.050, 0.150] 93.8 32.7 93.5 93.1

0.125 [0.125, 0.125] 99.6 36.7 99.6 99.6
[0.100, 0.150] 99.5 36.3 99.5 99.5
[0.075, 0.175] 99.6 37.6 99.6 99.6

0.15 [0.150, 0.150] 100.0 42.3 100.0 100.0
[0.125, 0.175] 100.0 41.7 100.0 100.0
[0.100, 0.200] 99.9 42.2 99.9 99.9

4 0.015 [0.015, 0.015] 14.5 11.4 14.4 14.4
0.02 [0.020, 0.020] 19.0 13.2 17.5 18.3
0.025 [0.025, 0.025] 25.1 16.6 21.5 24.0

[0.000, 0.050] 27.5 16.9 24.3 25.5

Continued opposite
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Table 1 (continued)

k Density [a, b] Largest k-club heuristics
k-clique

CONSTELLATION DROP k-CLIQUE
& DROP

0.05 [0.050, 0.050] 79.5 27.0 74.8 74.4
[0.025, 0.075] 77.2 26.5 74.1 72.2
[0.000, 0.100] 76.9 27.1 73.8 73.2

0.075 [0.075, 0.075] 99.0 36.0 99.0 99.0
[0.050, 0.100] 99.2 35.0 99.2 99.2
[0.025, 0.125] 99.3 37.5 99.3 99.3

Table 2
CPU time in seconds on a Sun Sparc 10 (55 MHz)

k Density Largest k-club heuristics
k-clique

CONSTELLATION DROP k-CLIQUE & DROP

2 0.05 0.93 0.00 6.82 4.68
0.1 2.61 0.00 6.52 6.14
0.15 81.52 0.00 6.35 85.51
0.2 13.63 0.00 5.58 18.71
0.25 0.17 0.00 4.54 5.70
0.3 0.15 0.00 4.28 5.71

3 0.015 0.99 0.00 4.53 4.68
0.02 1.09 0.00 5.50 4.94
0.025 1.23 0.00 6.23 5.17
0.05 2.06 0.00 6.96 6.18
0.075 2.17 0.00 6.09 7.35
0.1 0.48 0.00 4.44 6.12
0.125 0.32 0.00 4.22 5.93
0.15 0.24 0.00 4.17 5.79

4 0.015 2.36 0.00 4.52 6.10
0.02 2.86 0.00 5.90 7.25
0.025 3.28 0.00 6.37 7.70
0.05 2.28 0.00 5.78 8.27
0.075 0.91 0.00 4.42 6.96

a maximum k-clique seems to work well, as expected, on low density graphs. When the density
becomes high, almost all vertices belong to a k-club and the starting point of the DROP heuristic
then becomes less critical. The k-club produced by the best of our three heuristics typically has
a size close to that of the upper bound given by the largest k-clique size. When there are large
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discrepancies (see, e.g., k"2 and density"0.15 or 0.2), it is not clear whether this can be attributed
to the heuristics or to the poor quality of the upper bound. In terms of computation times,
CONSTELLATION is extremely quick, but the times for DROP are also relatively modest. The
computation time of k-CLIQUE & DROP includes the time required to determine a largest
k-clique and is therefore sometimes rather high.

5. Conclusion

We have described three heuristics for determining a maximum k-club in an undirected graph.
This problem has several applications in social network analysis. Our algorithms are e$cient and
quick. They should therefore constitute useful tools in several areas of social sciences. Natural
extensions to our work include the determination of k-clubs that contain a prespeci"ed set of
vertices, the determination of a smallest family of k-clubs covering the entire graph and the
identi"cation of several large, but not necessarily maximum, k-clubs.
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