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a b s t r a c t

Increasing interest in studying community structures, or clusters in complex networks arising in various
applications has led to a large and diverse body of literature introducing numerous graph-theoretic mod-
els relaxing certain characteristics of the classical clique concept. This paper analyzes the elementary cli-
que-defining properties implicitly exploited in the available clique relaxation models and proposes a
taxonomic framework that not only allows to classify the existing models in a systematic fashion, but also
yields new clique relaxations of potential practical interest. Some basic structural properties of several of
the considered models are identified that may facilitate the choice of methods for solving the correspond-
ing optimization problems. In addition, bounds describing the cohesiveness properties of different clique
relaxation structures are established, and practical implications of choosing one model over another are
discussed.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Initially proposed by Luce and Perry (1949) as a model of a cohe-
sive subgroup (cluster) within the context of social network analy-
sis, a clique refers to a ‘‘tightly knit’’ set of elements (referred to
as ‘‘actors’’ and described by vertices in graph-theoretic representa-
tion of a network), in which every pair of actors shares some com-
mon attribute. In other words, all elements of a clique are ‘‘directly
connected’’ to each other. This allows for perfect familiarity and
reachability between members of a clique. Moreover, removal of
any element of a clique results in a slightly smaller clique and does
not impact the perfectly-tied structure of the group, making cli-
ques ideal in terms of robustness as well. Thus, the clique model
possesses idealized cohesiveness properties within a group of ac-
tors it describes. However, requiring all possible links to exist
may prove to be rather restrictive for many applications, where
interaction between members of the group needs not be direct
and could be successfully accomplished through intermediaries.

To overcome the impracticalities stemming from the clique’s
overly conservative nature, alternative graph-theoretic models
have been introduced in the literature. The s-clique model, first
introduced by Luce (1950), relaxes the requirement of direct inter-
action. Associating the number of intermediary links with the
graph-theoretic notion of distance, the s-clique definition requires
vertices within the group to be at most s-distant. Since intermediaries
ll rights reserved.
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may not be a part of the s-clique itself, Alba (1973) proposed a
definition of the so-called sociometric clique of diameter s, more
commonly known as s-club (Mokken, 1979), requiring the
existence of connections solely through intermediaries belonging
to the group. Clubs guarantee easy reachability, however, they do
not fare well in terms of other cohesiveness properties. For exam-
ple, star graphs, i.e., graphs in which one ‘‘hub’’ vertex is directly
linked to all other vertices, with no direct links between them,
possess a 2-club structure and suffer from a low familiarity and a
high vulnerability to the incident of a hub dysfunction.

The latter observation drew the attention towards the necessity
in some applications to consider clique-like models emphasizing
high level of familiarity and robustness. In particular, Barnes
(1968) adopted the notion of edge density to address familiarity
within a group. More recently this concept was formalized under
the so-called c-quasi-clique model (Abello et al., 2002) that ensures
a certain minimum ratio c of the number of existing links to the
maximum possible number of links within the group. Seidman
(1983) argues that edge density is a rather averaging property
and may result in a group with highly cohesive regions involving
a high volume of direct interactions, coupled with very sparse re-
gions, relying mostly on indirect interactions with the rest of the
group. His observation led to defining a k-core, a concept restricting
the minimum number of direct links an element must have with
the rest of the cluster. While a k-core guarantees a certain mini-
mum number k of neighbors within the group, the number of
non-neighbors within the group may still be much higher than k,
indicating a low level of familiarity within the group relative to
its size.
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In an earlier work, Seidman and Foster (1978) proposed the no-
tion of s-plex, controlling the number of non-neighbors that ele-
ments within the group are allowed to have. In addition to high
level of familiarity within the group ensured by its definition for
low values of s, an s-plex fares well with respect to robustness ex-
pressed in terms of vertex connectivity, which is the minimum
number of vertices that need to be removed in order to disconnect
the graph. Vertex connectivity has recently been linked to social
cohesion in social network analysis literature (Moody and White,
2003), where it quickly became a central concept referred to as
structural cohesion. Thus, the related notion of k-connected sub-
graph, which ensures that the group remains connected unless at
least k elements are deleted, can be used as another natural model
of a cohesive group. Consistent with the previous literature in
graph theory, which defines a block to be a maximal connected
subgraph that cannot be disconnected by removing a single vertex,
we will call a subset of vertices inducing a k-connected subgraph a
k-block.

Yet another model of a cluster was introduced recently in a
study of protein interaction networks (Yu et al., 2006), where an
s-defective clique, which differs from a clique by at most s missing
edges, was used to predict protein interactions. Some of the more
recent cluster models proposed in the literature appear to be ‘‘hy-
brids’’ enforcing a mix of desired group properties. For instance,
the (k, c)-quasi-clique model (Brunato et al., 2008), in addition to
requiring the group to be a c-quasi-clique, sets a lower bound k
on the fraction of the elements that each member of the group
must neighbor. In another example, the k-robust s-club model re-
quires an s-club to have at least k distinct paths of length at most
s between any two vertices (Veremyev and Boginski, 2012), which
implies that the s-club preserves its diameter even if up to k ele-
ments are removed from the set.

Note that all concepts mentioned as alternatives to clique in the
previous paragraph were defined using a parameter, s; k; c; or k.
Moreover, for s = 1 (s = 0 for an s-defective clique); k = n � 1;
c = 1; and k = 1, where n is the number of vertices in the group
being defined, each of the above definitions describes a clique.
Hence, defining each of these concepts for an arbitrary value of
the corresponding parameter yields a generalization of the notion
of a clique, since it includes the clique definition as a special case.
On the other hand, defining any of the concepts above for a fixed
value of the corresponding parameter, i.e., positive integer s or
k > 1; real c and k 2 (0, 1), provides a clique relaxation (Kosub,
2005; McClosky, 2010).

The described clique relaxation concepts, as well as numerous
other similar definitions have emerged in an ad hoc and somewhat
spontaneous fashion and were motivated by cluster–detection
problems arising in a wide variety of applications. Furthermore,
some clique relaxation models have been reinvented under differ-
ent nomenclature. Despite the obvious practical importance of
these models, little work has been done towards establishing the-
oretical and algorithmic foundations for studying the clique relax-
ations in a systematic fashion. As a result, applied researchers
seeking an appropriate model of a cluster in their application of
interest may quickly get overwhelmed by the wide range of mod-
els available in the literature. This paper aims to start filling this
gap by proposing a taxonomy classifying the previously defined
clique relaxations under a unified framework. More specifically,
we build on the elementary graph-theoretic properties of cliques
to provide a hierarchically ordered classification of clique relaxa-
tion models. We complement the taxonomy by deriving bounds
on the cohesiveness properties guaranteed by the so-called canon-
ical clique relaxations, defined later. The established bounds are
proved to be sharp, thus providing rigorously grounded guidelines
for practitioners in selecting a cluster model most suited for a par-
ticular application. The proposed taxonomy also helps to unveil
some structural properties of the considered models that may
facilitate the choice of methods for solving the corresponding opti-
mization problems. In addition, it uncovers potential horizons for
developing and analyzing new clique relaxation models.

The remainder of this paper is organized as follows. After fur-
nishing the definitions and notations used throughout the paper
in Section 2, we describe the proposed taxonomy of clique relaxa-
tion models in Section 3. Some basic structural properties of the
considered clique relaxations and their implications for choosing
the appropriate approaches to solving the corresponding optimiza-
tion problems are discussed in Section 4. A comprehensive and rig-
orous analysis of guaranteed cohesiveness properties for the
canonical clique relaxation structures is given in Section 5. Sec-
tion 6 discusses some practical considerations motivated by find-
ings from this analysis, and Section 7 concludes the paper.
Finally, Appendix A contains some background information from
extremal graph theory and provide proofs of some of the technical
results presented in the paper.

2. Definitions and notations

A simple undirected graph G = (V, E), is defined by the set of ver-
tices V and the set of edges E connecting pairs of vertices. If
(v, v0) 2 E, the two vertices v and v0 in G are called adjacent or neigh-
bors, and the edge (v, v0) is said to be incident to v and v0. The set of
all neighbors of a vertex v in G is denoted by NG(v), and its cardinal-
ity jNG(v)j is called the degree of v in G and is denoted by degG(v).
The minimum and the maximum degree of a vertex in G are de-
noted by d(G) and D(G), respectively. A graph G0 = (V0, E0) is a sub-
graph of G = (V, E) if V0 # V and E0 # E. Given a subset of vertices
S # V, the subgraph induced by S, G[S], is obtained by deleting all
vertices in VnS and the edges incident to at least one of them. A
path of length r between vertices v and v0 in G is a subgraph of G
defined by an alternating sequence of distinct vertices and edges
v � v0, e0, v1, e1, . . . ,vr�1, er�1, vr � v0 such that ei = (vi, vi+1) 2 E for
all 1 6 i 6 r � 1. Two vertices v and v0 are connected in G if G con-
tains at least one path between v and v0. A graph is connected if
all its vertices are pairwise connected and disconnected otherwise.
The distance between two connected vertices v and v0 in G, denoted
by dG(v, v0), is the shortest length of a path between u and m in G.
The largest distance among the pairs of vertices in G defines the
diameter of the graph, diamðGÞ ¼maxv ;v 02V dGðv ;v 0Þ. The connectiv-
ity or vertex connectivity j(G) of G is given by the minimum number
of vertices whose deletion yields a disconnected or a trivial graph.
The density q(G) of G is the ratio of the number of edges to the total

number of possible edges, i.e., qðGÞ ¼ jEj= jV j2

� �
.

A subset of vertices D # V is called a dominating set in G if
every vertex in the graph is either in D or has a neighbor in D. A
complete graph is a graph that contains all possible edges and is de-
noted by Kn, where n is its number of vertices. The complement G of
G = (V, E) is defined by G ¼ ðV ; EÞ, where E is such that E \ E ¼ ; and
K jV j ¼ ðV ; E [ EÞ. A clique C is a subset of vertices C 2 V such that the
induced subgraph G[C] is complete. The size of a largest clique in G
is referred to as the clique number of G and is denoted by x(G).

Next, some of the well known clique relaxation models, which
are central for this study and were already mentioned in the previ-
ous section, are formally defined. We assume that the constants s
and k are positive integers and k, c 2 (0, 1] are reals. In all defini-
tions below, S is assumed to be a subset of vertices in G = (V, E).

Definition 1 (s-clique). S is called an s-clique if dG(v, v0) 6 s, for any
v, v0 2 S.
Definition 2 (s-club). S is an s-club if diam(G[S]) 6 s.
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Definition 3 (s-plex). S is an s-plex if d(G[S]) P jSj � s.

Alternative clique definitions based on elementary clique-defining properties.

Parameter Definition

Distance Vertices are distance one away from each other
Diameter Vertices induce a subgraph of diameter one
Domination Every one vertex forms a dominating set
Definition 4 (s-defective clique). S is an s-defective clique if G[S]

contains at least jSj
2

� �
� s edges.
Degree Each vertex is connected to all vertices
Density Vertices induce a subgraph that has all possible edges
Definition 5 (k-core). S is a k-core if d(G[S]) P k.

Connectivity All vertices need to be removed to obtain a disconnected

induced subgraph
Definition 6 (k-block). S is a k-block if j(G[S]) P k.
Definition 7 (c-quasi-clique). S is a c-quasi-clique if q(G[S]) P c.
Definition 8 ((k, c)-quasi-clique). S is a (k, c)-quasi-clique if
d(G[S]) P k(jSj � 1) and q(G[S]) P c.
Definition 9 (k-hereditary s-club). S is a k-hereditary s-club if dia-
m(G[SnS0]) 6 s for any S0 � S such that jS0 j 6 k.

It should be noted that, in general, depending on the choice of k
and a graph instance G, a nonempty k-core or k-block may not exist
in G. This observation has led to the introduction of the notion of
graph degeneracy based on the concept of a k-core. Namely, a graph
is called d-degenerate if it does not contain a nonempty k-core for
k > d. The degeneracy of G is the smallest d for which G is d-degen-
erate, which is the same as the largest k for which G has a non-
empty k-core.

3. A taxonomy of clique relaxation models

Most of the elementary graph concepts, such as degree, dis-
tance, diameter, density, connectivity, and domination, can be used
to derive alternative, equivalent definitions of a clique. We state
this observation formally in the following proposition, which is
trivial to verify.

Proposition 1. A subset of vertices C is a clique in G if and only if one
of the following conditions hold:
(a) dG(v, v0) = 1, for any v, v0 2 C;
(b) diam(G[C]) = 1;
(c) D = {v} is a dominating set in G[C], for any v 2 C;
(d) d(G[C]) = jCj � 1;
(e) q(G[C]) = 1;
(f) j(G[C]) = jCj � 1.

In the remainder of this paper, we refer to the conditions spec-
ified in the above proposition as elementary clique-defining proper-
ties. These properties are summarized in Table 1, together with the
corresponding graph concepts defining each property. The rows of
the table are split into two parts, with the first part corresponding
to the parameters whose value is set to the lowest possible value in
the clique definition (distance, diameter, size of a set guaranteeing
domination), and the second part containing the parameters re-
quired to have the highest possible value for the set of a given size
(degree, density, and connectivity).

Aiming to derive a minimal set of simple rules based on the ele-
mentary clique-defining properties that would allow us to obtain
the known clique relaxation models in a systematic fashion, we
examine the relation of Definitions 1–9 to the alternative clique
definitions summarized in Table 1. It becomes apparent that each
of the defined clique relaxation models essentially relaxes at least
one of the elementary clique-defining properties according to
some simple rules that can be classified into two broad categories.
Namely, some relaxations are created by providing an upper bound
on the extent to which an elementary clique-defining property is
allowed to be violated, while others aim to ensure the presence
of an elementary clique-defining property that characterizes a cli-
que of a given minimum size. Each of these two cases is elaborated
in more detail in one of the following two subsections.

3.1. Restricting violation of an elementary clique-defining property

3.1.1. Increasing a parameter that has the lowest possible value in a
clique

In the scenarios described in the first three rows of Table 1, we
obtain a clique relaxation model by increasing a parameter that
was set to the lowest possible value in an alternative clique defini-
tion. Such models are created by naturally replacing one in one of
the elementary clique-defining properties with (at most) s. In par-
ticular, instead of requiring the (upper bound on the) diameter of
the induced subgraph to be equal to one, an s-club relaxes this
requirement to allow a diameter at most s. Similarly, by replacing
one with at most s in the elementary clique-defining properties
based on distance and domination, we obtain definitions of
s-clique and s-plex, respectively. In the case of s-plex, we use the
fact that S is an s-plex if and only if any subset of s vertices from
S forms a dominating set in G[S] (Seidman and Foster, 1978).

3.1.2. Reducing a parameter that has the highest possible value in a
clique of a given size

Note that, while we were able to define s-plex by relaxing an
upper bound on the number of vertices ensuring domination, the
original definition of s-plex was based on restricting the number
of non-neighbors that a vertex can have within the group (Seidman
and Foster, 1978). This definition naturally corresponds to allow-
ing, for every vertex, s exceptions (including the vertex itself) in
the degree-based definition of a clique. Namely, we just replace
all by all but s in the degree-based definition of a clique to obtain
the s-plex definition. Similarly, the density-based clique definition
yields the s-defective clique model. By applying the same logic to
the clique definition based on connectivity, we obtain a new clique
relaxation model, which we propose to call an s-bundle.

Definition 10 (s-bundle). A subset S of vertices is called an s-
bundle if j(G[S]) P jSj � s.

The s-bundle model with a small value of s > 1 may prove to be
a useful alternative to a clique (which can be equivalently defined
as a 1-bundle) in applications emphasizing the robustness of a
cluster.

3.2. Ensuring the presence of an elementary clique-defining property

In the last three rows of Table 1, we replace the overly restric-
tive requirement of a clique definition to have the highest possible
value for a parameter (assuming that the size of a set is given) by,
instead, imposing a fixed lower bound on that parameter. In such
cases, we replace all in one of the elementary clique-defining
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properties with (at least) k. For example, a k-core, does not require
each vertex to be connected to all, but to at least k other vertices.
Likewise, we can obtain the definition of a k-block by relaxing
the connectivity-based definition of a clique in the same fashion.
Similarly, we could define an analogous concept corresponding to
the density-based definition of a clique. Namely, we could intro-
duce a clique relaxation model for a subset of vertices inducing a
subgraph with at least k edges. However, it is not clear if such a
model would present any practical value; therefore, we do not
investigate it any further in this paper. Instead, we study its relative
counterpart, c-quasi-clique, as will be discussed in the next sub-
section. It should be noted that, unlike the relaxations described
in the previous subsection, the clique relaxation models based on
setting a fixed lower bound on a parameter can potentially result
in degeneracy (i.e., a structure of this type may be empty if the
value of k is set too high for a given graph).

3.3. Absolute and relative relaxations

As suggested by the example of c-quasi-clique, size-relative or,
simply, relative clique relaxations is another category of models
that needs to be considered. Thus, it makes sense to refer to the
above-described categories that use the absolute parameter values
(s or k) as absolute. We can generate the relative clique relaxation
models from the absolute models by replacing s or k by

cjSj ðc jSj
2

� �
in case of density), where 0 6 c 6 1. While the

c-quasi-clique is, perhaps, the most well known in this category,
other relative size-dependent clique relaxations can be defined
similarly. For instance, the relative version of s-club would guaran-
tee the induced subgraph G[S] to have a diameter at most cjSj.
Similarly, one could ensure that at least all but cjSj vertices need
to be removed to disconnect the induced subgraph.

3.4. Standard and weak relaxations

In definitions of most of the clique relaxation models discussed
above (s-clique being the only exception), we required the relaxed
clique-defining properties to be satisfied within the induced sub-
graph. However, as the example of s-clique suggests, in some cases
it is sufficient to require the same property to be satisfied within
the original graph instead of the induced subgraph. In particular,
this can be done in the situations involving the elementary cli-
que-defining properties based on distance and connectivity, both
of which can be defined through paths. In the case of connectivity,
Menger’s theorem (Diestel, 1997) asserts that a graph is k-con-
nected if and only if there are at least k vertex-independent paths
(i.e., paths with no common internal vertex) between any two of its
vertices. Thus, by requiring the conditions on pairwise distances
and connectivity to hold in the whole graph rather than the sub-
graph induced by a cluster’s vertices, we allow the paths in the cor-
responding definitions to pass through vertices outside of the
cluster. As a result, we obtain a relaxation with weaker cohesive-
ness properties. We will refer to such relaxations as weak, while
the relaxations that require the relaxed clique-defining property
to be satisfied in the induced subgraph will be called standard.
For example, an s-club is a standard relaxation, while an s-clique
is its weak counterpart and could be alternatively called a weak
s-club. Similarly, we could define a weak k-block as a subset of ver-
tices such that there are at least k vertex-independent paths be-
tween any two of its vertices in the original graph.

3.5. Structural and statistical relaxations

In a recent survey of locally dense structures used in network
analysis, Kosub (2005) distinguished between structural clique
relaxations, such as s-plexes and k-cores, and their statistical coun-
terparts, in which a certain desirable property is required to be sat-
isfied on average over all group members. An example of a
statistically dense group is densest subgraph, which is a subset of
vertices that maximizes the average degree of a vertex in the cor-
responding induced subgraph. According to Kosub (2005), ‘‘In gen-
eral, statistically dense groups reveal only few insights into the
group structure’’. Thus, in the remainder of this paper we concen-
trate on studying the structural clique relaxation models. An inter-
ested reader can easily develop the corresponding statistical clique
relaxation concepts. We remark, however, that edge density is a
structural property that is averaging in nature; therefore, the qua-
si-clique model can be thought of as a statistical clique relaxation
as well as structural.

3.6. Order of a clique relaxation

Calling the clique itself a zero-order clique relaxation, the afore-
mentioned clique-like objects, which were obtained by relaxing
only one clique-defining property, are referred to as first-order cli-
que relaxations. Higher-order clique relaxations can be defined by
relaxing multiple clique-defining properties simultaneously. The
second-order relaxations would correspond to relaxing two ele-
mentary clique-defining properties at the same time. For instance,
the (k, c)- quasi-clique, based on relaxing both degree and density
requirements, is a second-order relaxation. While any pair of prop-
erties can be enforced simultaneously in order to define a second-
order model, in some cases requiring an extra property may be
redundant. For example, as we will discuss in Section 5, an s-plex
usually has a low diameter and a high connectivity to start with,
hence it makes little sense to combine it with diameter or connec-
tivity-based relaxations. On the other hand, if ensuring two of the
relaxed clique properties is insufficient to guarantee the desired
cohesiveness, one may relax more than two elementary clique-
defining properties at a time to obtain relaxations of a higher order.

3.6.1. Hereditary higher-order relaxations
While a higher-order relaxation can be created by enforcing sev-

eral relaxed clique-defining properties simultaneously, one of the
properties, connectivity, can also be embedded into a definition of a
clique relaxation. As an example, a k-hereditary s-club S can be
viewed as a second-order clique relaxation structure defined by
embedding k-connectivity into the definition of an s-club. Unlike its
simple second-order counterpart, which would be defined as a subset
of vertices S such that j(G[S]) P k and diam(G[S])6 s and could be
called k-connected s-club, the k-hereditary s-club requires that not
only does the s-club S induce a k-connected subgraph, but also that
removal of up to k vertices still preserves the s-club property. The
property of k-heredity, which will be discussed in the next section,
is embedded within the structure defined by other properties in-
volved in the definition of a hereditary higher order relaxation, which
makes it fundamentally different from the simple higher order relax-
ations that combine multiple properties in a straightforward fashion.

3.7. Additional elementary clique-defining properties and canonical
models

The list of elementary clique-defining properties presented
above is, by no means, exhaustive and is restricted to the concepts
that appeared in various important applications in the literature.
To illustrate the diversity of clique relaxation models covered by
the proposed taxonomy, we will mention several additional ele-
mentary clique-defining properties. These properties are based
on the classical graph-theoretic notions that are very closely re-
lated to the clique concept. Namely, a subset I of vertices is called
an independent set if the corresponding induced subgraph G[I] has
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no edges. The independence number a(G) is the size of a largest
independent set in G. Obviously, I is an independent set in G if
and only if I is a clique in G. A subset C of vertices is called a vertex
cover if each edge in G is incident to at least one vertex in C. The
vertex cover number s(G) is the minimum size of a vertex cover in
G. Note that C is a vertex cover if and only if VnC is an independent
set. Given a positive integer k, a proper k-coloring of G is a partition
of the set of vertices V into k non-overlapping independent sets
I1, . . . , Ik, each of which defines a different color class. The minimum
value of k for which a proper k-coloring exists is called the chro-
matic number of G and is denoted by v(G). Similarly, the clique cover
problem is to find a minimum k for which there exists a partition of
the set V of vertices into k non-overlapping cliques, and the corre-
sponding value of k is called the clique cover number and is denoted
by �vðGÞ. It is easy to check that �vðGÞ ¼ vðGÞ. The next concept is the
analog of graph connectivity defined with respect to edges. More
specifically, the edge-connectivity k(G) is the minimum number of
edges that need to be removed in order to disconnect the graph. The
following proposition, which is trivial to check, states the elemen-
tary clique-defining properties based on the concepts just defined.

Proposition 2. A subset of vertices C is a clique in G if and only if one
of the following conditions hold:
(g) a(G[C]) = 1;
(h) s(G[C]) = jCj � 1;
(i) v(G[C]) = jCj;
(j) �vðG½C�Þ ¼ 1;
(k) k(G[C]) = jCj � 1.

The reader can easily derive the corresponding clique relax-
ations based on the rules outlined above. It is not clear whether
the resulting models will be of use in any applications. Therefore,
in the remainder of this paper we mostly will concentrate on
studying the clique relaxation models that were originally moti-
vated by important applications and, thus, are of proven practical
value. To be specific, the models of interest are s-club, s-plex,
k-core, c-quasi-clique and k-block. We treat these models as the
canonical models for the corresponding graph invariants used to
formulate the elementary clique-defining properties. Thus, s-club
is the canonical clique relaxation model for diameter; s-plex – for
domination; k-core – for degree; c-quasi-clique – for density;
and k-block – for connectivity. All of the canonical models, except
for quasi-clique, are absolute clique relaxation models. We se-
lected quasi-clique over s-defective clique to represent a density-
based relaxation in this study due to two reasons. First, the concept
of density is traditionally discussed as a relative measure by defi-
nition; and second, c-quasi-clique is by far more widely repre-
sented in the literature. Note that the distance property for
standard clique relaxations is equivalent to the same property for
the diameter, since we limit the analysis to induced subgraphs.

To illustrate the definitions of the canonical clique relaxations,
as well as their necessity, consider an example arising in the anal-
ysis of protein interaction networks, where an important problem
is to determine the protein complexes responsible for biological
processes of interest (Levy et al., 2006). Protein complexes have
been found to come in a variety of structures, many of which ap-
pear to be well described by various clique relaxation models. Five
such structures, together with the names of the corresponding pro-
tein complexes, as well as a clique relaxation model each of them is
best described with, are shown in Fig. 1. As we start to explore the
structure of each clique relaxation, it will become apparent that we
have matched each protein complex with the clique relaxation
most equipped to find it within a protein interaction network. This
illustrates the importance of each considered relaxation, as differ-
ent settings require different structures.
4. Optimization problems

In most application scenarios dealing with clique relaxation
models, one is interested in computing large clusters of a certain
type. While typically multiple large clusters (partitioning into clus-
ters), not necessarily largest possible, are of practical interest, the
maximum size of a clique relaxation of a given kind quantifies
the global cohesiveness of the analyzed network in terms of the con-
sidered clique relaxation model of a cohesive subgroup. Moreover,
it provides the tight upper bound on the size of clusters of the con-
sidered type that exist in the network, and hence facilitates com-
puting such clusters. Thus, we are interested in issues associated
with the corresponding optimization problems. The purpose of this
section is to point out structural properties of different types of cli-
que relaxation models that may facilitate the process of selecting
computational techniques that would be appropriate for solving
the corresponding optimization problems.

First, let us formally define the general optimization problem
for a clique relaxation model. Let RELAXED CLIQUE refer to a subset of
vertices that satisfies the definition of an arbitrary clique relaxa-
tion concept. The following definitions are general and can be
adopted for a particular clique relaxation model by replacing the
term RELAXED CLIQUE with the name of the corresponding structure
(i.e., s-club, s-plex, etc.).

Definition 11. A subset of vertices S is called a maximal RELAXED

CLIQUE if it is a RELAXED CLIQUE and is not a proper subset of a larger
RELAXED CLIQUE.
Definition 12. A subset of vertices S is called a maximum RELAXED

CLIQUE if there is no larger RELAXED CLIQUE in the graph. The maximum
RELAXED CLIQUE problem asks to compute a maximum RELAXED CLIQUE in
the graph, and the size of a maximum RELAXED CLIQUE is called the
RELAXED CLIQUE number.

Most of the discussion in this section is centered around the
concept of heredity, which could be thought of as a dynamic prop-
erty, since it describes the characteristics of a graph undergoing a
change, i.e., vertex addition or removal. Heredity is defined with
respect to a graph property P and is formally introduced next.

Definition 13 (Heredity). A graph property P is said to be hered-
itary on induced subgraphs, if for any graph G with property P the
deletion of any subset of vertices does not produce a graph
violating P.

The presence of heredity on induced subgraphs implies certain
properties that may help streamlining the study of the correspond-
ing optimization problems. In particular, it turns establishing the
computational intractability of the problem into a simple exercise
of checking several basic facts about the property P. Namely, a
property P is called nontrivial if it is true for a single-vertex graph
and is not satisfied by every graph, and P is called interesting if
there are arbitrarily large graphs satisfying P. The following gen-
eral complexity result is due to Yannakakis (1978).

Theorem 1 Yannakakis, 1978. The problem of finding the largest-
order induced subgraph not violating property P that is nontrivial,
interesting and hereditary on induced subgraphs is NP-hard.

In addition, heredity on induced subgraphs is the foundational
property for some of the most successful combinatorial algorithms
for the maximum clique problem (Carraghan and Pardalos, 1990;
Östergård, 2002), which can be generalized to solve any other max-
imum RELAXED CLIQUE problem based on relaxed clique-defining prop-
erties that are hereditary on induced subgraphs. By analyzing the
taxonomy introduced in Section 3, we can conclude that the only
models that fall within this category are the standard, absolute
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clique relaxation models obtained by restricting violation of a cli-
que-defining property and based on reducing a parameter that
has the highest possible value in a clique of a given size. These
are the models described in the second paragraph of subSection 3.1,
namely, s-plex, s-defective clique, and s-bundle. Hence, the corre-
sponding optimization problems are NP-hard and can be solved
by adopting the combinatorial algorithms for the maximum clique
problem proposed earlier (Carraghan and Pardalos, 1990;
Östergård, 2002). The presence of the heredity property also sug-
gests that these problems are good candidates for solving by meth-
ods based on polyhedral combinatorics, as was already
demonstrated for two of these models, s-plex (Balasundaram
et al., 2011) and s-defective clique (Sherali and Smith, 2006). More-
over, computing maximal RELAXED CLIQUE is trivial in this case, as
maximality is guaranteed whenever the current solution cannot
be expanded by adding any single vertex from outside.

Even though the properties defining other first-order clique
relaxation models do not posses heredity, they have closely related
characterizations that can also be utilized in designing solution
methods. We propose to define these dynamic properties of weak
heredity, quasi-heredity, and k-heredity as follows.

Definition 14 (Weak heredity). A graph property P is said to be
weakly hereditary, if for any graph G = (V, E) with property P all
subsets of V demonstrate the property P in G.
Definition 15 (Quasi-heredity). A graph property P is said to be
quasi-hereditary, if for any graph G = (V, E) with property P and
for any size 0 6 r < jVj, there exists some subset R � S with jRj = r,
such that G[SnR] demonstrates property P.
Definition 16 (k-Heredity). A graph property P is said to be k-
hereditary on induced subgraphs, if for any graph G with property
P the deletion of any subset of vertices with up to k vertices does
not produce a graph violating P.

Note that weak heredity considers whether a certain property is
still applicable for all subsets in the original graph, as opposed to
heredity on the induced subgraph. On the other hand, quasi-hered-
ity essentially requires the existence of a sequence of vertices such
that their removal in this sequence preserves, at every step of the
vertex removal process, the property in the remaining subgraph.
However, property P may not exist for every subset R of vertices
removed from S. Also, observe that heredity implies both weak
heredity and quasi-heredity, whereas the latter two do not appear
to have any definitive relation.

The weak heredity property holds for s-cliques and weak
k-blocks, both of which are weak clique relaxation models. The
weak heredity property allows to reduce the corresponding clique
relaxation structures to cliques in auxiliary graphs. Thus, the
numerous algorithms developed for the maximum clique problem,
can be directly applied to auxiliary graphs in order to solve the
optimization problems dealing with the weak clique relaxations.
In the case of s-clique, the auxiliary graph is given by the power
graph. Given a graph G = (V, E), its t-th power graph Gt = (V, Et)
has the same set of vertices V and the set of edges Et that connects
pairs of vertices that are distance at most t from each other in G.
Obviously, S is an s-clique in G if and only if S is a clique in Gs. Sim-
ilarly, for the weak k-block, we can define an auxiliary graph
G(k) = (V, E(k)), where (v, v0) 2 E(k) if and only if there are at least
k vertex-independent paths between v and v0 in G. Then, again, S
is a weak k-block in G if and only if S is a clique in G(k).

The definition of quasi-heredity was motivated by the observa-
tion that this property holds for the c-quasi-clique model, since the
iterative removal of the lowest degree vertex will preserve at least
the same density in the induced subgraphs at every step (Pattillo
et al., 2013). The presence of this property suggests that developing
heuristics based on greedy sequencing of vertices may prove
effective in practice (Glover and Kochenberger, 2002). Finally, the
k-heredity property is what we enforce in hereditary higher-order
clique relaxations discussed in the previous section. Not surpris-
ingly, the first hereditary second-order relaxation studied involves
s-clubs, which do not posses any type of heredity considered if
s > 1. This is demonstrated by a cycle of length 2s + 1; its set of
vertices is an s-club that contains no s-club of size s + 2, . . . ,2s.

On an optimistic note, two of the discussed maximum RELAXED

CLIQUE problems, the maximum k-core and the maximum k-block,
can be solved in polynomial time. More specifically, all maximal
k-cores can be computed in O(jEjjVjlogjVj) time (Kosub, 2005); bi-
connected and tri-connected components can be found in
O(jVj + jEj) time (Kammer and Täubig, 2005), while the only known
algorithms for computing k-connected components for k > 3 are
based on identifying all k-cutsets (subsets of k vertices that, if re-
moved, disconnect the graph) in the graph. Such procedures re-
quire O(2kjVj3) time and, hence, become expensive for high
values of the constant k.

5. Cohesiveness properties of standard first-order clique
relaxation models

The hierarchical classification proposed in Section 3 allows to
define a wide variety of relaxations with different levels of proxim-
ity to the clique structure. However, care must be vested while
investing in higher-order relaxations. This requires an in-depth
understanding of the properties that first-order relaxations have
to offer in terms of the group structure. For instance, it may not
be worth restricting an additional property for some first-order
relaxation if its structure automatically guarantees good bounds
on the desired property. This observation motivates the current
section, in which we provide a study of the various structural prop-
erties guaranteed by canonical clique relaxations. To better under-
stand the similarities and differences between the canonical
relaxations, this section aims to develop sharp worst-case bounds
that could be ensured for each of the relaxed elementary clique-
defining properties.

Several results of this nature are well-known in graph theory, in
particular, in its branch called extremal graph theory (Bollobás,
1978), and are summarized in Appendix A. In the remainder of this
section, we study the cohesiveness properties of the canonical cli-
que relaxation models, with the emphasis being placed on sharp-
ness of the corresponding bounds. Namely, for each value of the
parameter used to define a RELAXED CLIQUE structure and for each size
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of a RELAXED CLIQUE, we aim to provide an example of a graph on
which a worst-case bound for a given elementary clique-defining
property is achieved.

In the case of s-club, the cohesiveness properties of interest and
their sharpness are trivial to establish, as described in the following
statement.

Proposition 3 (Cohesiveness properties of s-clubs). An s-club S
satisfies the following conditions:

(a) diam(G[S]) 6 s;
(b) Any D # S such that jDjP jSj � 1 is a dominating set in G[S];
(c) d(G[S])P1;
(d) j(G[S]) P 1;
(e) qðG½S�ÞP 2

jSj
.

All these bounds are achieved when S induces a star graph and
hence are sharp.

Next we mention some known results for s-plexes that are di-
rectly related to the discussion that follows. The diameter and con-
nectivity of a graph G = (V, E) whose vertex set V forms an s-plex
are known to satisfy the following conditions (Seidman and Foster,
1978; Kosub, 2005):
diamðG½S�Þ 6 2 if s < ðjV j þ 2Þ=2; ð1Þ
diamðG½S�Þ 6 2s� jV j þ 2 if s P ðjV j þ 2Þ=2 and G

is connected; ð2Þ
jðGÞP jV j � 2sþ 2: ð3Þ

The following proposition states that an s-plex inducing a con-
nected subgraph is also an s-club.

Proposition 4. If S is an s-plex in G and G[S] is connected then diam
(G[S]) 6 s.
Proof. Consider the shortest path between the two most distant
vertices v and v0 in G[S]. This shortest path contains exactly one
neighbor of v, since a shorter path could have been obtained other-
wise. Now, since v has at most s � 1 non-neighbors in S, the path
between v and v0 is of length at most s, consisting of one neighbor
of v and s � 1 non-neighbors of v, including v0. h

Note that the bound above is achieved on a set of s + 1 vertices
of a path of length s, however, it is not sharp for an s-plex of an
arbitrary size. A sharp bound on the diameter of an s-plex, which
also implies bound (1) and yields a strict improvement of bound
(2), is given in the following proposition characterizing the cohe-
siveness properties of an s-plex.

Proposition 5 (Cohesiveness properties of s-plexes). An s-plex S
satisfies the following conditions:

(a) If G[S] is connected then diamðG½S�Þ 6 d0s, where
d0s ¼ max
jSj

jSj � sþ 1

� �
;3

jSj � z
jSj � sþ 1

� �
� 1

� �
þ z; z 2 f0;1;2g

� 	
:

ð4Þ
(b) Any D # S such that jDjP s is a dominating set in G[S];
(c) d(G[S]) P jSj � s;
(d) j(G[S]) P jSj � 2s + 2;
(e) qðG½S�ÞP 1� s�1

jSj�1.
All these bounds are sharp.
Proof. Bound (a) follows from Lemma 1 in Appendix A by observ-
ing that a k-core of a fixed size jSj is also an s-plex with s = jSj � k.
Properties (b) and (c) are equivalent and are used as alternative
definitions of an s-plex (Seidman and Foster, 1978), while (e) triv-
ially follows from (c). Bound (d) is the same as (3) and is known to
be sharp (Seidman and Foster, 1978). An extremal example is a
graph on n vertices consisting of three complete graphs,
H1 = Kn�2s+2, and H2 = H3 = Ks�1, with each vertex of H2 and H3

connected to each vertex of H1. Note that (d) implies that an s-plex
is connected when its size exceeds 2(s � 1). h
Proposition 6 (Cohesiveness properties of k-cores). A k-core S satis-
fies the following conditions:

(a) If G[S] is connected then diamðG½S�Þ 6 d0k, where
d0k ¼max
jSj

kþ 1

� �
; 3

jSj � z
kþ 1

� �
� 1

� �
þ z; z 2 f0;1;2g

� 	
:

ð5Þ
(b) Any D # S such that jDjP jSj � k is a dominating set in G[S];
(c) d(G[S]) P k;
(d) j(G[S]) P 2k + 2 � jSj;
(e) qðG½S�ÞP k

jSj�1.

All these bounds are sharp.
Proof. Bound (a) is established in Lemma 1 in Appendix A. Bounds
(b), (d), and (e) follows directly from the corresponding properties
of Proposition 5 by observing that a fixed k-core S is an s-plex with
s = jSj � k. h
Proposition 7 (Cohesiveness properties of k-blocks). A k-block S sat-
isfies the following conditions:

(a) diamðG½S�Þ 6 jSj�2
k þ 1

j k
;

(b) Any D # S such that jDjP jSj � k is a dominating set in G[S];
(c) d(G[S]) P k;
(d) j(G[S]) P k;
(e) qðG½S�ÞP k

jSj�1.

All these bounds are sharp.
Proof. Bound (a) and its sharpness are shown in Lemma 2 in
Appendix A. Knowing that a k-block is also a k-core, any set of size
at least jSj � k is a dominating set. This bound is indeed sharp, since
a k-connected subgraph could contain a clique of size jSj � 1 with
an additional vertex adjacent to exactly k vertices from the clique.
In this special case, excluding more than k vertices from the set of
vertices would no longer guarantee that the additional vertex is
dominated by the set of remaining vertices. The same example
can be used to prove (c). Since the degree of each vertex in a k-con-
nected subgraph is at least k, there are at least kjSj

2 edges, yielding
the density of at least k

jSj�1. The bound is sharp on k-regular k-con-

nected graphs (Hsu and Luczak, 1994). h
Proposition 8 (Cohesiveness properties of c-quasi-cliques). A c-
quasi-clique S satisfies the following bounds, each of which is sharp:

(a) If G[S] is connected, then diam(G[S]) 6 dc, where
dc ¼ jSj þ 1
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cjSj2 � ð2þ cÞjSj þ 17

4

r$ %
: ð6Þ
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(b) There is no t < jSj guaranteeing that any D # S such that
jDjP t is a dominating set in G[S];

(c) dðG½S�ÞP c jSj
2

� �
� jSj � 1

2

� �� �
;

(d) jðG½S�ÞP c jSj
2

� �
� jSj � 1

2

� �� �
;

(e) qðG½S�ÞP dc jSj
2

� �
e= jSj2

� �
.

Proof. Bound (a) is proved in Lemma 3 in Appendix A. To prove

(b), note that for a c-quasi-clique S, c jSj þ 1
2

� �
6
jSj
2

� �
holds for

a large enough jSj. A c-quasi-clique could then consist of an inde-
pendent vertex accompanied by a large enough clique S. In this
case, the smallest t guaranteeing that any subset of size t is a dom-
inating set is t = jSj. Knowing that the minimum possible degree is
no less than the graph’s connectivity, bound (c) on the minimum
degree for c-quasi-cliques can be deduced from the lower bound
on connectivity (d), which is established next. Let

a ¼ c jSj
2

� �
� jSj � 1

2

� �
define the number of edges necessary

beyond KjSj�1 to achieve density c. By definition, any c-quasi-clique

S comprises c jSj
2

� �
edges. G[S] can then be represented as KjSj

missing jSj
2

� �
� c jSj

2

� �
edges. Since jSj

2

� �
¼ jSj � 1þ jSj � 1

2

� �
,

G[S] is KjSjmissing jSj � 1þ jSj � 1
2

� �
� c jSj

2

� �
¼ jSj � 1� a edges.

KjSj being (jSj � 1)-connected, the removal of (jSj � 1 � a) edges
could destroy at most (jSj � 1 � a) vertex-independent paths.
Thus, G[S] has at least jSj � 1 � (jSj � 1 � a) = a vertex-indepen-
dent paths between any two vertices. By Menger’s theorem,

jðG½S�ÞP a � c jSj
2

� �
� jSj � 1

2

� �
. To show that this bound is

sharp, let us consider a clique of size jSj � 1 and a single vertex.

Connecting this vertex to a ¼ c jSj
2

� �
� jSj � 1

2

� �
vertices in the

clique results in a c-quasi-clique of size jSj. Connectivity of the cor-
responding graph is equal to the number of edges connecting that

single vertex to the clique, i.e., c jSj
2

� �
� jSj � 1

2

� �
. h

All the bounds developed above in this section are summarized
in Table 2. It should be noted that the cohesiveness properties of
weak clique relaxation structures are not nearly as strong as of
their standard counterparts. For example, consider the s-clique
model, which exhibits weak heredity and hence offers an attractive
alternative to the s-club model from the computational
perspective. We can construct graphs containing s-cliques
that are independent sets. Even if we require an s-clique S to in-
duce a connected subgraph, we still cannot guarantee that
diam(G[S]) < jSj � 1.
6. Practical considerations

Table 2 can be very useful in identifying which clique relaxation
is particularly fit for a given application. To choose the appropriate
model of a cluster, the essential cohesiveness properties should be
identified and candidates for grouping chosen using the appropri-
ate columns of the table. Note that the remaining columns should
then be considered, because extraneous cohesiveness require-
ments may exist and result in valid groups being dismissed for fail-
ing to demonstrate the extra structure. In the discussion that
follows, we attempt to highlight the important characteristics for
each clique relaxation in Table 2. We demonstrate applications
for which each clique relaxation appears to be particularly fit be-
cause of its characteristics. It is important to note that, when using
clique relaxation models to analyze a real-life complex system, one
should be cautious with making conclusions regarding the sys-
tem’s behavior based solely on the structural characteristics of
the network describing the system, as making such conclusion re-
quires in-depth understanding of domain-specific functions
(Alderson, 2008).

The s-clique and s-club relaxations were designed to guarantee
easy reachability between the nodes in a network. A unique feature
of these relaxations is their minimal requirements for degree, dom-
inating set size, density, and connectivity. These clique relaxations
are particularly adept when data should be clustered with low
diameter, but also low density. The s-clubs have had success in
clustering topically related information on the internet to facilitate
faster searches for this reason (Terveen et al., 1999). The internet,
along with numerous other networks, demonstrates preferential
attachment, meaning new edges tend to appear at nodes that al-
ready have high degree (Faloutsos et al., 1999; Doyle et al.,
2005). Sets of nodes with low diameter, but also low density, per-
meate such graphs and often should be grouped despite the spar-
sity of the corresponding induced subgraph. When this is the case,
s-clubs or s-cliques are the appropriate choices. To decide between
the two models, one needs to keep in mind that the s-club model
possesses stronger cohesiveness properties, while the s-clique
relaxation has the weak heredity property, and computing
s-cliques can be reduced to detecting cliques in the sth power of
a graph, making the numerous algorithms developed for the
maximum clique problem directly applicable.

The s-plex model is unique in that it ensures nearly every prop-
erty in Table 2 to an extent (assuming that s is small relative to the
size of the group of interest). It was specifically introduced in social
network analysis literature as an alternative to s-clique and s-club
with more guaranteed structure because the internal structure of
low-diameter graphs was ‘‘poorly understood’’ (Seidman and
Foster, 1978). Accordingly, it is often useful in applications where
cliques are desired but a few missing edges are tolerated, perhaps
caused by errors in data collection. Because it ensures a high level
of interaction by all members (assuming low s values), the s-plex
tends to demonstrate uniform density and substantial symmetry.
This makes it particularly adept at identifying protein complexes
in protein interaction networks (Luo et al., 2009), where, according
to Levy et al. (2006), 85% of complexes currently in the database
demonstrate symmetry. In addition, the s-plex model may serve
as an attractive alternative to cliques in several scenarios arising
in computational biochemistry and genomics (Butenko and
Wilhelm, 2006; Strickland et al., 2005).

The key property of the k-core relaxation is that the correspond-
ing optimization problem is solvable in polynomial time. It has
proven a useful tool for pruning a graph in order to find cliques
and clique relaxations where a lower bound is known on the de-
gree of the vertices in the induced subgraph (Abello et al., 1999).
In some large-scale, sparse instances, the resulting scale reduction
is sufficient to be able to compute the maximum clique in the
residual graph (Boginski et al., 2005). In addition, k-core has been
used to detect molecular complexes and predict protein functions
(Altaf-Ul-Amin et al., 2003; Bader and Hogue, 2003; Rual et al.,
2005).

The k-block is specifically defined to guarantee that communi-
cation can survive breakdowns in the network. It is often referred
to as a ‘‘survivable’’ or ‘‘redundant’’ network in applied fields and
is more often used in design rather than analysis of a network. It
has been proposed as an alternative to density-based relaxations
for identifying complexes in protein interaction networks (Habibi
et al., 2010). Recently, it gained popularity in social network



Table 2
Bounds on guaranteed cohesiveness of canonical clique relaxations. The expressions for d0s ; d

0
k and dc are given in Eqs. (4)–(6), respectively. The bounds on diameter of s-plex, k-

core, and c-quasi-clique are given assuming that G[S] is connected.

S # V Diameter Dominating set Minimum degree Connectivity Edge density
Clique ‘‘one’’ ‘‘one’’ ‘‘all’’ ‘‘one’’ ‘‘all’’

s-Club jSj � 1 1 1 2
jSj

s-Plex d0s jSj � s jSj � 2s + 2 1� s�1
jSj�1

k-Core d0k jSj � k 2k + 2 � jSj k
jSj�1

k-Block jSj�2
k þ 1

j k
jSj � k k k

jSj�1

c-Quasi-clique dc jSj
c jSj

2

� �
� jSj � 1

2

� �� �
c jSj

2

� �
� jSj � 1

2

� �� �
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analysis literature, where k-connectivity is referred to as struc-
tural cohesion (Moody and White, 2003). Further research on uses
for this clique relaxation could prove extremely valuable,
especially in applications where network survivability is key. In
addition, in applications where robustness of a cluster is most
crucial, the s-bundle concept defined in this paper could provide
an attractive alternative to k-block. By noting that a fixed
s-bundle jSj is a k-block with k = jSj � s, we can easily obtain the
inequalities characterizing the cohesiveness properties of
s-bundles from Proposition 7 by replacing k with jSj � s in the
corresponding expressions. One can conclude that s-bundle repre-
sents a more cohesive structure than a k-block for most realistic
choices of k and s.

Quasi-cliques, like the s-plex model, demonstrate a high level of
interaction between all members. This inevitably results in numer-
ous other properties, as was true with s-plex. What makes it differ-
ent from s-plex, however, is that the connections within the group
are not as structured and, depending on size, no minimum degree
is required. This makes it useful in data mining applications where
high density sets should be grouped regardless of structure. In
addition to being employed in computational biology (Bhattachar-
yya and Bandyopadhyay, 2009; Matsuda et al., 1999), quasi-cliques
were successfully used to mine massive sets of telecommunica-
tions data in order to find a good way of organizing it (Abello
et al., 1999; Abello et al., 2002). A heuristically defined relaxation
called paraclique, which is very similar to quasi-clique, proved use-
ful in mining biological data for functional relationships between
attributes (Perkins and Langston, 2009). This approach yielded
cohesive subgroups that dwarfed the largest cliques and helped re-
veal relationships previously missed due to a small subset of miss-
ing edges.
7. Conclusion

We introduced a taxonomy of clique relaxations that encom-
passes many of the popular models studied in the literature and
establishes foundations for a systematic study of the correspond-
ing optimization problems and their applications. The paper opens
the door for many interesting research directions that can be
undertaken in exploring the existing, as well as newly identified
clique relaxation models. In particular, the established bounds on
cohesiveness properties of the canonical clique relaxation models
should help to identify higher-order relaxations that are worth
investigating. Exploring the proposed directions for solving the
considered optimization problems computationally is of significant
practical interest. The relationship between optimization problems
dealing with absolute and relative relaxations corresponding to the
same elementary clique-defining property is an interesting related
question to study. In addition, examining network clustering tech-
niques based on various clique relaxation structures is another
direction to explore.
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