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Given an undirected graph G = (V,E), a k-club is a subset of V that induces a subgraph of diameter at
most k. The k-club problem is that of finding the maximum cardinality k-club in G. In this paper we
present valid inequalities for the 2-club polytope and derive conditions for them to define facets. These
inequalities are the basis of a strengthened formulation for the 2-club problem and a cutting plane
algorithm. The LP relaxation of the strengthened formulation is used to compute upper bounds on
the problem’s optimum and to guide the generation of near-optimal solutions. Numerical experiments
indicate that this approach is quite effective in terms of solution quality and speed, especially for low
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1. Introduction

Let G = (V,E) be an undirected graph. For each pair of nodes i and
Jj, the distance distc(i,j) is the minimum number of edges needed to
link i and j in G. The maximum distance between any pair of nodes
in G is called the diameter of G. The subgraph induced in G by a
subset of nodes S is Gis;=(S,E(S)), where E(S) is the set of edges
of E with both end nodes in S. If G5 has diameter at most k, S is
a k-club in G(k € N). For k=1, a k-club is simply a clique, Bomze
et al. (1999), Alidaee et al. (2007), Martins (2010). For k> 1, a
k-club and a k-clique have different structures: in a k-clique every
pair of nodes must be linked by a chain in G with at most k edges,
but the chain may include nodes not in the k-clique whereas in a
k-club all nodes in the chain must be in the k-club. The k-club
problem consists of finding a maximum cardinality k-club in a
given graph G.

For small values of k, large cardinality k-clubs represent dense
structures in networks. They have been used by social scientists
to identify cohesive groups of actors in social networks that repre-
sent individuals, companies, market areas or other entities. A dis-
cussion of k-clubs and k-cliques in the context of social networks
can be found in Alba (1973), Mokken (1979). These structures have
also been used by biologists to study protein interactions,
Balasundaram et al. (2005). For more on applications of k-clubs
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and other clique-related problems see Wasserman and Faust
(1994), Balasundaram et al. (2009), Boginski et al. (2006), Butenko
and Wilhelm (2006). For a review of combinatorial optimization
contributions in modelling and solving biology problems see
Blazewicz et al. (2005).

The k-club problem has been addressed by several authors.
Bourjolly et al. (2000) first derived some properties of k-clubs
and used them to develop heuristic algorithms. These algorithms
will be reviewed in Section 4. In a second paper, Bourjolly et al.
(2002), they showed by reduction from the clique problem that
the k-club is NP-hard for any k > 1, and they developed a branch-
and-bound algorithm for its solution. Balasundaram et al. (2005)
derived results for the 2-club polytope P,., which will be reviewed
in Section 2.

In this paper we derive new inequalities needed for the descrip-
tion of P,. and show that they can contribute to decreasing the LP
upper bound on the optimum of the 2-club problem as well as
guide the generation of approximate solutions.

2. Integer programming formulations for the 2-club problem

A pair of nodes i and j may belong to a 2-club in G = (V,E) if and
only if they are linked by an edge or they are both linked to another
node also in the 2-club.

Let us associate with each node i € V a binary variable x; such
that x; = 1 if and only if node i is included in the 2-club and let us
denote by N; the set of nodes linked to node i in G, i.e. the set of
its neighbours.

For each pair of nodes i and j, the following constraints must
hold in any 2-club:
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xi+x <1 if distg(i,j) > 2, (1)
Xi+x— Y x <1 if (ij)¢E, diste(ij) < 2. )
re(Nini; )

A maximum cardinality 2-club in G may be found by solving the
integer programming problem, Bourjolly et al. (2002):

(P) max{Zx,— : (1)&(2) hold and x; € {0,1},Vi € V}.

ieV

Constraints (1) will be called packing constraints, and constraints (2)
will be called neighbourhood constraints. The optimum of (P) will be
represented by Z(P), its linear programming relaxation will be called
(Prp), and the linear optimum denoted by Z(P;p).

Setting all variables x; = 0.5 yields a feasible solution of (Prp).
Therefore Z(Pip) > 0.5|V|. This means that the gap Z(P.p) — Z(P)
may be quite large and that tighter formulations are needed to
solve the 2-club problem using LP methods, especially in low den-
sity graphs. Balasundaram et al. (2005) made a first contribution in
this direction, showing that:

(a) The dimension of the 2-club polytope P, is |V|;

(b) x; > 0 defines a facet of P, for every i e V;

() For an arbitrary i € V, x; < 1 defines a facet of P, if and only if
distg(i,j)< 2 forallje V;

(d) IfI c Vis a 2-independent set in G (i.e. distg(i,j) > 2, Vi,j € I),
then the inequality 3", ,x; <1 is valid for P,. and is facet
defining if I is a maximal set.

Inequalities in (d) will be called BBT inequalities in the remain-
der of the paper.

For more on polyhedral theory, readers are referred to
Nembhauser and Wolsey (1988). Polyhedral studies of clique prob-
lems are presented in Sorensen (2004), Macambira and Souza
(2000), Park et al. (1996).

2.1. Strong formulation (SP)

In general, packing and neighbourhood constraints are redundant
in the description of the 2-club polytope P,.. Replacing redundant
constraints with non-redundant constraints results in a better for-
mulation from the LP point of view. We shall first characterize
packing and neighbourhood constraints that are necessary for the
description of P, and show how to lift those that are redundant
in order to obtain facet defining inequalities.

Each packing constraint is associated with two nodes a and b
such that dist¢(a,b) > 2.

Any 2-independent set I C V such that {a,b} C I can be used to
generate a BBT inequality Y, x; < 1 that lifts the packing constraint
Xa+Xp < 1. As already mentioned, Balasundaram et al. (2005)
showed that if I is a maximal set, ", ,x; < 1 defines a facet of Py.
Therefore, a packing constraint x, + x, < 1 defines a facet of Py if
and only if min{dists(i,a),dist(i,b)} < 2 for all i € V\{a,b}. Other-
wise, it is dominated by constraints of the form >, x; < 1, with
I > {a,b}, which define facets of P, if I is a maximal 2-independent
set.

Each neighbourhood constraint is associated with two nodes a
and b such that distg(a,b) = 2. For any node i € V\{a,b} such that
min {dists(i,a), dist(i,b)} > 2, inequality Xq + Xy +Xi — 2= v,ony Xr <
1 is valid for P,. because neither a nor b can be included in a 2-club
that includes node i. This inequality is a lifting of the neighbourhood
CONSLraint Xa + Xy — 3 e n,onyXr < 1.

Proposition 1 generalizes this idea and gives a necessary and
sufficient condition for the lifted neighbourhood constraints to de-
fine facets of P,..

Proposition 1. Let a, beV be such that distg(a,b)=2 and let
I € W{a,b} be such that IU{a} and [ U {b} are 2-independent sets
in G. The strengthened neighbourhood inequality

dxi— Y ox<1, 3)

i€y, re(NaNNp)

where I, =1U{a,b} is valid for Pa.. It defines a facet of P, if and only if
I is a maximal set.

Proof. A 2-club may have at most one node of [. If it has one node
of I, neither a nor b can be included in it. To include node a and
node b, a 2-club must include at least one of their common
neighbours.

If set I is not maximal, this inequality is dominated by the
corresponding inequalities associated with maximal sets contain-
ing I. For the proof of the sufficiency condition see Carvalho and
Almeida (2008). O

Therefore, a neighbourhood constraint X, +Xp — 3=y, Xr < 1
defines a facet of P,. if and only if min{distc(i,a),distc(i,b)} < 2 for
alli € V\{a,b}. Otherwise, it is dominated by constraints of the form
Dier, Xi = 2 rengrnyXr < 1, with Igp = TU {a, b}, which define facets of
P, if I is a maximal set.

Strong formulations may be built by lifting each redundant
packing constraint to a maximal BBT inequality and each redundant
neighbourhood constraint to a maximal strengthened neighbourhood
inequality.

To obtain one of these formulations we followed an algorithmic
procedure initialized with (P). To lift packing constraints, we con-
sidered in lexicographic order the pairs (a,b) such that dis-
tg(a,b)>2 and {a,b} is not a maximal 2-independent set.
Following that order, at each step we generated a BBT inequality
with a maximal 2-independent set containing {a,b}, added the
inequality to the formulation, removed all dominated packing con-
straints, and deleted the corresponding pairs from the ordered list.
The maximal 2-independent sets were generated with a greedy
algorithm. For small density graphs, the number of BBT inequalities
generated is much smaller than the number of packing constraints
removed. A similar procedure was used to replace each neighbour-
hood constraint that does not define a facet of P,. with a strength-
ened neighbourhood inequality.

This strong LP model will be called formulation (SP).

3. Upper bounds

By construction, Z(P) < Z(SPip) < Z(Prp). These upper bounds on
Z(P) may be improved by adding new valid inequalities to (P p) and
to (SPLP)

3.1. New valid inequalities

Given two nodes a, b €V, if distg(a,b) > 2, then at most one of
them may be in a 2-club; if distg(a,b) =2, they may both be in a
2-club provided that at least one of their common neighbours is
also in the 2-club. Proposition 2 generalizes this idea for sets with
three nodes and gives a necessary and sufficient condition for the
new inequalities to define facets of P,.

Proposition 2. Let R ={a,b,c} be a set of three nodes in G such that
E(R)=0 and let I C V\{a,b,c} be such that Iu{a}, U {b} and I U {c}
are 2-independent sets in G.

The inequality

Yoxi—y o <1 (4)

i€lgpe teV

with I =1U{a,b,c} and
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2 if te (NgnNyNN),
=<1 if te (NgnNy)U(NgNN:)U(NyNNe) \ (Na "Ny N Ne),
0 otherwise

is valid for P,.. It defines a facet of P, if and only if I is a maximal set.

Proof. The proof is similar to that of proposition 1. For the proof of
the sufficiency condition see Carvalho and Almeida (2008). O

Note that, for each triple (a,b,c) such that
min {distg(a,b),distc(a,c),distg(b,c)} > 2, inequality (4) can be inter-
preted as a BBT inequality. If the distance is equal to 2 for only one
of the pairs (a,b), (a,c) or (b,c), inequality (4) can be interpreted as
a strengthened neighbourhood inequality for that pair. In other cases,
inequalities (4) will be called roof inequalities. When convenient, to
distinguish roof inequalities associated with triples for which
distg(a,b) = distg(a,c) = distg(b,c) = 2 from roof inequalities associ-
ated with triples for which max {dists(a,b),distg(a,c),distc(b,c)} > 2,
we will call the former roof ~inequalities and the latter roof
“inequalities. Note that in roof “inequalities o € {0,1} for all t. O

3.2. Cutting plane algorithm

When the solution of (P p) or the solution of (SP;p) is not integer,
we try to identify facet defining violated roof inequalities, strength-
ened neighbourhood inequalities, and BBT inequalities to cut off the
current fractional solution. If the search is successful, new inequal-
ities are added and the enlarged problem is solved. The procedure
is repeated until no more violated constraints are found or a stop-
ping criterion is met. In each iteration, the search for violated con-
straints is performed in the following order: roof = inequalities, roof
” inequalities, strengthened neighbourhood inequalities, then BBT
inequalities. Within each group, the search is carried out until no
violated constraint is found. The number of constraints added to
the model before a new call to the LP solver is made is limited
by a MAX_CUT parameter.

The separation problems can be solved by determining maxi-
mum weight cliques in an auxiliary graph (for more details, see
Carvalho and Almeida (2008). As the maximum weight clique
problem is NP-hard, we use a greedy algorithm.

4. Heuristics

Heuristics Constellation and Drop were proposed in Bourjolly
et al. (2000). Constellation is a constructive heuristic that starts a
k-club with a maximum degree node and its neighbours (which
is a k-club for any k> 1) and then enlarges it iteratively, using a
greedy criterion. The algorithm stops when either all nodes in V
have been included in the k-club or the inclusion of a new node
would result in a subgraph with diameter greater than k. For
k = 2, Constellation stops at the end of the first iteration with a star
solution. Drop is a destructive heuristic that starts with the whole
set V and iteratively drops one node at a time until the resulting
subgraph is a k-club. The nodes dropped are those that seem less
likely to be part of a maximum cardinality k-club, due to their dis-
tances to the nodes in the current subgraph and to their degrees.

4.1. LP-based heuristics

The strategy adopted by LP & Drop is similar to that of Drop. The
main difference is that the selection of the nodes to be dropped is
guided by the LP optima of problems that result from adding to
(SP) new constraints which account for the removal of nodes al-
ready dropped.

These LP problems will be generally called (SPg4rop). In each iter-
ation of LP & Drop a new problem (SPg,p) is solved. At the first iter-
ation, (SP4rqp) is simply the LP relaxation of (SP) with no additional
constraints. If its optimal solution y* is integer, then the set of
nodes i for which y; =1 is a 2-club and the search for a feasible
solution is completed. Otherwise, each node j in the current sub-
graph is assigned a penalty q; = >~y i 1-2Yi — ¥; + one node with
maximum penalty is dropped from the subgraph and the current
(SPgrop) problem is enlarged with the corresponding x;=0 con-
straint. Then a new iteration is performed.

LP-edge & Drop is a heuristic that combines LP & Drop with a
limited local search. At each iteration one pair of adjacent nodes
in G-say k and I-is forced into the 2-club, by adding constraints
Xy =1 and x;=1 to (SP). If the optimal LP solution of the enlarged
problem is integer, the iteration is completed; otherwise, a call is
made to the routine that implements LP & Drop. The pair forced
into the 2-club shall be a pair that seems likely to belong to a max-
imum cardinality 2-club. The selection is made based on the opti-
mal solution of (SPyp), x*, and it follows the list of the edges of G in
lexicographic order picking up the pair associated with the first
edge (k1) such that x; + x; > max {x; : i € V}. The algorithm stops
either after reaching the end of the edge list or upon hitting a time
limit. The output of LP-edge & Drop is the largest 2-club generated
during the procedure.

5. Computational experiments

All algorithms were coded in C and run on a 1.86 GHz PC
Pentium III processor with 0.98 GB of RAM. The linear program-
ming problems were solved with CPLEX 11.1.

The tests were performed on graphs randomly generated as de-
scribed in Bourjolly et al. (2000). The generation of the graphs is
controlled by two density parameters a and b (0 <a<b < 1). The
expected edge density is equal to (a+b)/2 and the node degree var-
iance increases with b —a. The number of nodes ranges from
[V|=50 up to |V|=200 and the expected density ranges from
D =0.05 up to D = 0.25. Within each dimension and expected den-
sity, 10 instances were generated with different values for a and b.
The figures in Tables 1-3 are average values for 10 instances. In
Table 4 the results are aggregated by density. We do not report
the results for instances with D > 0.25 because the LP relaxation
of (P) had integer optimal solution for almost all of the instances
we tried.

Table 1 shows the results of the LP relaxations of (P), (SP), and
the cutting plane algorithm. In the cutting plane algorithm, the
stopping criterion is met whenever an integer solution is found, a
proof of the solution’s optimality is obtained, or an iteration yields
a reduction of less than 1 in the upper bound value, with
MAX_CUT = 2.5 x |V|. A solution is proven optimal if the upper
bound value rounded down to the nearest integer is equal to the
cardinality of the star solution.

Columns 3-6 in Table 1 contain information on the LP relax-
ations of models (P) and (SP). With formulation (SP), the average
reductions on the number of constraints (columns 3 and 4) were
approximately 43% and 12% for the instances with D =0.05 and
D =0.10, respectively. The average improvement in the upper
bound value was approximately 70% for the smallest density
instances and 44% for instances with D = 0.10. For higher density
instances the reductions were very small. When the node set V is
itself a 2-club, there is no packing constraint in (P) and all neigh-
bourhood constraints define facets of the 2-club polytope. In such
cases formulations (P) and (SP) are the same. When the cardinality
of a maximum 2-club is close to |V|, there are only a few packing
constraints in (P) and the percentage of neighbourhood constraints
that are facet defining for P, is very high. In such cases, the sets
of constraints in (P) and in (SP) are very similar. This explains



492 E.D. Carvalho, M.T. Almeida/European Journal of Operational Research 210 (2011) 489-494

Table 1
Upper bounds (across 10 instances).

D \4 # Constraints Upper bounds # Integer sol
(P) (SP) Z(Prp) Z(SPyp) Z(Pcur) Z(SPcuyr) (Prp) (SPyp) (Pcur) (SPcur)
0.05 50 1163.90 488.00 25.00 8.74 8.69 8.21 0 2 0 3
100 4699.20 2383.90 50.00 14.44 13.36 13.21 0 1 0 1
150 10614.30 5922.90 75.00 21.43 18.35 18.44 0 0 0 0
200 18938.10 11441.00 100.00 28.34 22.62 2242 0 0 0 0
Average 8853.88 5058.95 62.50 18.24 15.76 15.57
0.10 50 1105.60 685.60 25.00 11.35 11.58 11.34 0 3 0 3
100 4461.50 3502.00 50.00 24.46 23.19 23.33 0 0 0 0
150 10068.40 8838.00 75.00 42.56 41.46 41.60 0 0 0 0
200 17970.40 16600.10 100.00 62.40 61.46 61.66 0 0 0 0
Average 8401.48 7406.43 62.50 35.19 34.42 34.48
0.15 50 1043.80 856.70 25.00 16.80 16.67 16.61 0 1 0 1
100 4216.30 4007.80 51.10 43.79 43.63 43.67 0 0 0 0
150 9506.90 9417.80 84.09 81.40 81.36 81.37 0 0 0 0
200 16920.70 16898.20 130.90 130.54 130.55 130.53 0 0 0 0
Average 7921.93 7795.13 72.77 68.13 68.05 68.05
0.20 50 985.10 932.40 27.05 25.08 25.07 25.05 0 0 0 0
100 3986.20 3969.20 68.31 68.15 67.85 68.15 2 2 2 2
150 8981.10 8977.90 128.14 128.14 128.14 128.14 7 7 8 7
200 15987.00 15987.00 189.10 189.10 189.10 189.10 10 10 10 10
Average 7484.85 7466.63 103.15 102.62 102.54 102.61
0.25 50 927.00 921.60 34.68 34.61 34.56 34.56 5 5 5 5
100 3731.00 3730.80 91.30 91.30 91.30 91.30 10 10 10 10
150 8406.50 8406.50 147.60 147.60 147.60 147.60 10 10 10 10
200 15023.30 15023.30 198.70 198.70 198.70 198.70 10 10 10 10
Average 7021.95 7020.55 118.07 118.05 118.04 118.04
Table 2
2-Clubs generated by the heuristics (across 10 instances).
D \4 Constellation Drop LP & drop LP-edge & drop
2-Club size # Best 2-Club size # Best 2-Club size # Best 2-Club size # Best
0.05 50 8.00 10 7.50 8 7.90 9 7.90 9
100 12.70 10 6.90 0 11.50 6 12.70 10
150 17.60 10 8.30 0 15.40 5 17.60 10
200 21.10 10 8.70 0 11.10 0 21.10 10
Average 14.85 7.85 11.48 14.83
0.10 50 10.90 10 7.90 0 10.30 7 10.90 10
100 19.20 9 11.70 0 13.50 0 19.30 10
150 26.90 10 15.30 0 17.00 0 23.40 2
200 35.70 10 17.40 0 20.40 0 21.80 0
Average 23.18 13.08 15.30 18.85
0.15 50 14.40 6 11.70 1 12.60 3 14.70
100 27.30 1 28.30 1 32.10 2 34.20 10
150 36.20 0 41.20 0 50.70 2 56.90 10
200 48.20 0 74.20 0 94.30 2 100.60
Average 31.53 38.85 47.43 51.60
0.20 50 17.40 0 19.50 2 21.60 2 22.70 10
100 32.30 0 60.50 0 63.70 4 65.40 10
150 48.90 0 124.60 0 128.00 10 128.00 10
200 62.40 0 188.50 5 189.10 10 189.10 10
Average 40.25 98.28 100.60 101.30
0.25 50 21.40 0 33.20 5 33.90 9 34.30 10
100 40.20 0 90.40 5 91.30 10 91.30 10
150 58.30 0 147.60 10 147.60 10 147.60 10
200 75.60 0 198.70 10 198.70 10 198.70 10
Average 48.88 117.48 117.88 117.98

the results obtained for D = 0.20 and |V| = 200 and for D = 0.25 and
|V| € {100,150,200}.

Columns 7 and 8 in Table 1 show the average upper bound val-
ues found by running the cutting plane procedure after solving the
linear relaxation of models (P) and (SP), respectively. The cutting
plane algorithm decreased the bounds obtained by (P) for the
D=0.05 and the D=0.10 instances to approximately 25% and

50% of the initial value, respectively. It also decreased the bounds
obtained by (SP) for the D = 0.05 instances to approximately 85%
of the initial value. For the other groups of instances the cutting
plane algorithm had little effect.

The values obtained by (P..) and (SP.,) were similar but the
number of integer solutions was higher with the strong formula-
tion (columns 9-12).
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Table 3
CPU time in seconds (across 10 instances).

D \4 (Pcut) (SPcur) LP & drop LP-edge & drop
0.05 50 0.70 0.50 0.20 0.10
100 3.40 0.70 1.00 8.30
150 31.30 7.50 3.90 136.40
200 184.70 66.10 18.40 420.00
Average 55.03 18.70 5.88 141.20
0.10 50 0.80 0.00 0.20 0.30
100 6.00 1.70 1.60 77.80
150 22.60 5.10 7.50 420.00
200 59.50 11.10 27.70 420.00
Average 22.23 4.48 9.25 229.53
0.15 50 0.60 0.40 0.30 3.00
100 1.70 1.00 1.20 180.00
150 3.50 1.80 4.50 420.00
200 4.70 410 10.80 385.20
Average 2.63 1.83 4.20 247.05
0.20 50 0.50 0.30 0.20 5.60
100 0.70 0.50 0.50 103.10
150 0.60 1.00 0.60 0.40
200 0.30 0.50 0.50 0.60
Average 0.53 0.58 0.45 27.43
0.25 50 0.20 0.30 0.30 0.70
100 0.20 0.30 0.20 0.50
150 0.50 0.30 0.10 0.20
200 0.70 0.70 0.40 0.60
Average 0.40 0.40 0.25 0.50
Table 4

Average percentage deviations (across 40 instances).

D GapB1 GapB2 GapNew # Opt GapNew/GapB1_B2
0.05 306.03 719.06 134 34 0.004
0.10 163.87 365.10 70.60 10 0.431
0.15 116.60 113.94 30.66 3 0.269
0.20 133.25 14.29 3.07 26 0.215
0.25 127.95 1.27 0.08 39 0.063

Table 2 compares the results obtained by LP & Drop and LP-edge
& Drop with those obtained by Constellation and Drop for the same
instances. For LP-edge & Drop, the time limit was set to 3 min for
instances with [V| < 100 and to 7 min for the remaining instances.

Considering the whole set of instances, on average the largest
2-clubs were generated by LP-edge & Drop; the second best was
LP & Drop, followed by Drop. LP-edge & Drop and LP & Drop
generated the best solution in over 89% and 50% of the instances,
respectively. The corresponding figures for Constellation and Drop
were 43% and 24%, respectively. LP & Drop outperformed Drop in
all density groups of instances.

Bourjolly et al. (2000) noted that the star solution (generated by
Constellation if k = 2) is likely to be a maximum cardinality 2-club
when the graph density is low. The results obtained in this study
corroborate their statement. Constellation was the best heuristic
for all instances with D = 0.05. For D = 0.10, it was the best for all
but one instance whereas LP-edge & Drop found the best solution
only for 55% of the instances. Star solutions had an average cardi-
nality of around 23% above the average cardinality of the 2-clubs
generated by LP-edge & Drop. For these two groups of instances,
LP-edge & Drop was a close second best: on average the 2-clubs it
generated fell short of the star solution by less than 3 nodes
whereas the difference for Drop was almost 9 nodes. However, star
solutions seem to be far from optimal for higher density graphs. For
D > 0.10, LP-edge & Drop was on average the best of the four heuris-
tics, followed by LP & Drop.

For D = 0.15, LP-edge & Drop generated the largest 2-club in all
but two instances. While for the |V| = 50 group of instances LP-edge

& Drop was closely followed by Constellation, for the other groups
neither Constellation nor Drop were close to LP-edge & Drop: the
2-clubs generated by LP-edge & Drop were on average 34%, 30%,
44%, and 45% larger than those generated by Drop for the |V| =50,
[V] =100, |V| =150, and |V| = 200 groups of instances, respectively.

For the D = 0.20 density group of instances, LP-edge & Drop gen-
erated the largest 2-clubs for all forty instances. Drop matched this
result for only seven instances.

For the D = 0.25 density group of instances, the performances of
Drop, LP & Drop, and LP-edge & Drop were comparable. However, as
(Prp) had an integer optimal solution for 35 instances in the group,
their good performances have very limited practical application.

Table 3 contains CPU times. For instances with integer LP solu-
tions, the CPU times reported in columns 3 and 4 refer to building
the LP model - (Pp) or (SP;p) - and solving it with the LP routine of
CPLEX. For the other instances, they include the time spent build-
ing and solving the LP model together with the time taken by the
cutting plane algorithm. The CPU times spent solving (P;p) and
(SPyp) are very small and are included in the figures shown in col-
umns 3 and 4. The cutting plane algorithm is much faster when it is
called after solving (SPyp).

Computing times for Constellation and Drop were negligible. The
CPU times for LP & Drop and for LP-edge & Drop are shown in col-
umns 5 and 6 of Table 3. LP & Drop was extremely fast: no instance
required more than 35s. The time limits imposed on LP-edge &
Drop were only hit on less than 25% of the instances. For these in-
stances, in 80% of the cases LP-edge & Drop generated a higher car-
dinality solution than the other heuristics. By adopting a wiser
edge list ordering, its performance could possibly be enhanced
while keeping these time limits.

To obtain a global assessment of the methods proposed in this
paper, we computed the gaps shown in Table 4 using the tradi-
tional formula Gap = 100 x (upperbound-lowerbound)/lowerbound.

GapB1 and GapB2 refer to the methods proposed in Bourjolly
et al. (2000, 2002): the upper bound is Z(P;p) and the lower bound
is the cardinality of the 2-club built by Constellation and by Drop,
respectively. To compute GapNew, we considered Z(SP.,) and
the cardinality of the 2-club built by LP-edge & Drop. The best
gap given by the methods proposed by Bourjolly et al. (2000,
2002) is represented by GapB1_B2 = min {GapB1, GapB2}.

Figures in column 5 show that 56% of the 2-clubs generated
by LP-edge & Drop were proven optimal with the upper bound
Z (SPey)-

As shown in Table 2, for D =0.10 Constellation generated the
largest average cardinality 2-clubs among all four heuristic meth-
ods. The gap calculated with the results of Constellation and Z(SPy;)
for that group is 35.83%, and the ratio to GapB1_B2 is 0.219. Taking
this ratio into account the conclusion is that the methods proposed
in this paper bridged over 73% of the average gap obtained using
the methods known from the literature.

6. Conclusions

This work corroborates the statement in Bourjolly et al. (2002)
that graph density has a strong impact on the difficulty of the
2-club problem. Although the results were quite different from
one density group to another, our approach managed to bridge
over 73% of the average gap between the linear upper bound Z(P)
and the cardinality of the 2-clubs generated by the heuristics
Constellation and Drop in every density group.

For D=0.05 and D =0.25, on average, the difference between
the upper bound value and the cardinality of the best 2-club found
was less than 1, but for D = 0.15 this difference was approximately
16. We suspect that this large value is mostly due to the value
of the upper bound. Due to this, we compared Z(SP,) with the
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2-clique number. However this was of no use for our purpose be-
cause the 2-clique number was never smaller than Z(SP.,). The
comparison merely added to the evidence that solving the 2-club
problem is in practice harder than solving the 2-clique problem.
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