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a b s t r a c t

A k-club is a distance-based graph-theoretic generalization of a clique, originally
introduced to model cohesive social subgroups in social network analysis. The k-clubs
represent low diameter clusters in graphs and are appropriate for various graph-based
data mining applications. Unlike cliques, the k-club model is nonhereditary, meaning
every subset of a k-club is not necessarily a k-club. In this article, we settle an open
problemestablishing the intractability of testing inclusion-wisemaximality of k-clubs. This
result is in contrast to polynomial-time verifiability of maximal cliques, and is a direct
consequence of its nonhereditary nature. We also identify a class of graphs for which
this problem is polynomial-time solvable. We propose a distance coloring based upper-
bounding scheme and a bounded enumeration based lower-bounding routine and employ
them in a combinatorial branch-and-bound algorithm for finding maximum cardinality
k-clubs. Computational results from using the proposed algorithms on 200-vertex graphs
are also provided.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Given a simple, undirected graph G = (V , E) of order n = |V | and size m = |E|, the subgraph induced by S ⊆ V is
denoted by G[S] = (S, E


(S × S)). A subset S ⊆ V is called a clique if G[S] is complete and it is called an independent

set if G[S] is edgeless. The maximum clique problem is to find a clique of maximum cardinality, referred to as the clique
number of G, denoted by ω(G). An early application of cliques was in social network analysis (SNA) where they were used
to model ‘‘tightly knit’’ social subgroups referred to as cohesive subgroups [1]. Since, there have been applications of the
clique model in diverse fields such as coding theory, pattern recognition, fault diagnosis, bioinformatics, computational
finance, and telecommunication in addition to SNA [2–5]. However, cliques also have certain drawbacks that motivated the
development of graph-theoretic clique relaxations in SNA. Cliques require all possible edges to exist between a group of
vertices for the group to be considered cohesive. This requirement was found to be overly restrictive leading to relaxations
based on degree [6], distance [7–9], and edge density [10,11,5]. The clique provides the best possible guarantees for three
desirable properties of a tight cluster, namely, high degree, short pairwise distances, high vertex and edge connectivity.
In applications where cohesiveness is well described by any one of the three properties alone, the clique model becomes
unduly restrictive. This article studies a distance-based generalization of cliques knownas k-clubswhichmodel lowdiameter
clusters in graphs. The diameter of G = (V , E) is given by diam(G) = maxu,v∈V dG(u, v), where dG(u, v) is the length of a
shortest path (in number of edges) between vertices u and v in G. The diameter of G is said to be infinite if there does not
exist a path between a pair of vertices.

Definition 1. A k-clique is a subset S ⊆ V for which dG(u, v) ≤ k for all u, v ∈ S.

∗ Corresponding author. Tel.: +1 405 744 6055.
E-mail addresses:mahdavi@okstate.edu (F. Mahdavi Pajouh), baski@okstate.edu (B. Balasundaram).

1572-5286/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.disopt.2012.02.002

http://dx.doi.org/10.1016/j.disopt.2012.02.002
http://www.elsevier.com/locate/disopt
http://www.elsevier.com/locate/disopt
mailto:mahdavi@okstate.edu
mailto:baski@okstate.edu
http://dx.doi.org/10.1016/j.disopt.2012.02.002


F. Mahdavi Pajouh, B. Balasundaram / Discrete Optimization 9 (2012) 84–97 85

Fig. 1. 2-clique vs. 2-club.

Definition 2. A k-club is a subset S ⊆ V forwhich dG[S](u, v) ≤ k for all u, v ∈ S. Equivalently, S is a k-club if diam(G[S]) ≤ k.

Both k-cliques and k-clubs describe a clique when k = 1 and are relaxations when k ≥ 2. Note that every k-club in G is
also a k-clique in G, but the converse is not necessarily true when k ≥ 2. In a k-clique S, there can exist two vertices u, v ∈ S
such that dG(u, v) ≤ k, but dG[S](u, v) > k. For the graph in Fig. 1, vertices {1, 2, 3, 4, 5} form a 2-clique which is not a 2-club.

The k-clique model was introduced in SNA by Luce [7] as a distance-based relaxation of cliques. But the definition allows
for a k-clique to utilize vertices outside the k-clique in the shortest paths. Since thiswas not desirable in a cohesive subgroup,
the k-club model was introduced to bound pairwise distances in the induced graph instead of the original graph [8,9]. We
denote the cardinality of a maximum k-clique by ωk(G), referred to as the k-clique number of G. The k-club number of a
graph is the cardinality of a largest k-club in that graphwhich is denoted byωk(G). Clearly,ω(G) ≤ ωk(G) ≤ ωk(G) for every
positive integer k. Further, every k-club (k-clique) is also a k + 1-club (k + 1-clique) by definition. Note that k-cliques are
equivalent to cliques through a simple observation concerning power graphs. Given a graph G = (V , E), the k-th power of
G is denoted by Gk

= (V , Ek) where Ek
= {(u, v): dG(u, v) ≤ k}. So S ⊆ V is a k-clique in G if and only if S is a clique in Gk,

andωk(G) = ω(Gk). Given the modeling drawback of k-cliques and their equivalence to cliques in power graphs, they have
received much less attention in the literature.

1.1. Previous work and our contributions

The problem of finding a maximum clique is NP-hard [12] and it is NP-hard to approximate within any factor n1−ϵ for
any ϵ > 0 [13]. Further, finding a clique parameterized by solution size is not known to be fixed-parameter tractable, and
it is in fact a basic W [1]-hard problem [14]. Although k-clubs generalize cliques, not all these complexity results extend to
k-clubs. Bourjolly et al. [15] established the NP-hardness of the maximum k-clique and k-club problems and developed an
exact branch-and-bound algorithm for the latter. Balasundaram et al. [16] independently established the NP-hardness of the
problems for every fixed positive integer k, and in addition showed that the problems remain NP-hard even when restricted
to graphs of fixed diameter. Hence, the maximum k-clique and k-club problems are known to be NP-hard for every fixed k
even on graphs of diameter k+1. Bourjolly et al. also studied greedy construction and elimination heuristics for the problem
in [17]. Pertinently, Butenko and Prokopyev [18] have shown that recognizing whether there is a gap between ω̄k(G) and
ω̄l(G) for k ≠ l is NP-hard. This allowed them to show that for k ≥ 2, there does not exist a polynomial time algorithm to
find a k-club in G of size strictly larger than ∆(G) + 1 on graphs with ω̄k(G) > ∆(G) + 1, unless P = NP . Note that ∆(G) is
the maximum vertex degree in G, and a vertex of maximum degree along with all its neighbors forms a k-club in G for any
k ≥ 2.

The maximum k-club problem for fixed k ≥ 2 was shown to be inapproximable within a factor of n
1
3 −ϵ for any ϵ > 0,

if NP ≠ ZPP [19], which has been strengthened to n
1
2 −ϵ recently under the assumption P ≠ NP [20]. Algorithms for

the maximum k-club problem with approximation factors of n
1
2 for even k and n

2
3 for odd k have also been proposed

recently [20]. The problem is also fixed-parameter tractable when parameterized by solution size as demonstrated in [21]
where a O((s − 2)ss!s3n + mn) time algorithm is presented to find a k-club of size s in G. The approximability and fixed-
parameter tractability of the problem are in contrast to the results obtained for cliques.

As noted in [16], complete bipartite graphs are edge-critical 2-clubs. Therefore, finding a maximum 2-club in a bipartite
graph amounts to finding a largest order biclique, which in trees corresponds to the vertex of maximum degree and its
neighbors. Recently, it was shown that the maximum 2-club problem can be solved on bipartite graphs in O(n5), and the
maximum k-club problem can be solved on trees and interval graphs in O(nk2) and O(n2), respectively [22]. Furthermore, it
is also shown to be polynomial-time solvable on graphs with bounded tree-width or clique-width [22].

The 2-club polytope which is the convex hull of incidence vectors of 2-clubs in a graph, is studied in [16] and a family
of facet defining inequalities are identified. This line of research is also explored in [23] where additional strong valid
inequalities for the 2-club polytope are identified. While the k-club problem has a compact binary integer programming
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formulation for k = 2, the formulations proposed in [15,16] involve exponentially many variables for k ≥ 3. Alternate
formulations for themaximum3-club problemare explored and valid inequalities are derived in [24]. A compact formulation
for general k that uses O(kn2) variables and constraints has been developed recently in [25].

A fundamental challenge in the development of theory and algorithms for k-clubs is its nonhereditary nature. An
important manifestation of this property is the intractability of testing maximality of k-clubs, a key result established in
this article. This result is significant in light of the fact that testing whether a clique is maximal by inclusion is solved using
a simple polynomial time algorithm. While the nonhereditary nature of k-clubs has been noted in literature (see [9,16]),
the computational complexity of this problem has remained open. We settle this question in Section 2. In Section 3, we
discuss the nonhereditary property and some of its implications. A class of graphs for which k-club maximality testing is
polynomial-time solvable is identified in Section 4. A new upper-bounding technique based on a dual coloring problem and
a new lower-bounding strategy based on a series of bounded enumeration searches for the k-club number of a graph are
proposed in Section 5. A general framework of a combinatorial branch-and-bound for solving themaximum k-club problem
is described in Section 6. Computational performance of the branch-and-bound algorithms using the proposed bounding
techniques is studied in Section 7, and we conclude in Section 8.

2. NP-completeness of k-club maximality testing

An instance of k-club maximality testing is given by a simple undirected graph G = (V , E) and a k-club D in G, and we
ask if there exists a k-club D′ in G such that D ⊂ D′? The following theorem establishes that k-club maximality testing
(k-CMT) is NP-complete.

Theorem 1. k-club maximality testing is NP-complete for any fixed integer k ≥ 2.

Proof. Weprove this claim by a polynomial-time reduction from 3-SAT [12].We assume that the 3-SAT instances satisfy the
following restrictions: (a) No clause contains a literal and its negation; (b) There are at least 3 clauses in the 3-SAT formula.
Note that the 3-SAT problem is still NP-complete under these restrictions. Before providing the transformation, we present
some terminology that we use in the proof. The construction is slightly different depending on whether k is odd or even.
A k-chain is a path of length k (on k + 1 nodes). When k is even, the ( k

2 + 1)th node is called the midpoint of the k-chain.
When k is odd, the k+1

2 th and k+3
2 th nodes are called midpoints. Define q =

1
2 [k − 2 + (k mod 2)]. Aq-pendant is a path of

length q. One endpoint of a q-pendant is called the head and the other is called the tail. The node preceding the tail on the
path from head to tail is called the penultimate node. For a pendant or a chain P containing vertices v1, v2, by P[v1, v2] we
denote the subpath from v1 to v2 including both end-points. We use the convention that a single vertex path is a path of
length zero. Denote the 3-SAT instance with n boolean variables,m clauses with 3m literals as B =

m
i=1(pi1 ∨ pi2 ∨ pi3). For

any such 3-SAT instance ⟨B⟩, the following steps construct in polynomial time, an instance ⟨G,D⟩ for k-CMT such that the
3-SAT instance is satisfiable if and only if D is not a maximal k-club in G. �

Construction

1. For each clause i = 1, . . . ,m in B, G contains a clique of size 3, with nodes labeled by the literals pij. We call these nodes
in G, the literal nodes.

2. Every pair of literal nodes pij and puv that belong to different clauses (i ≠ u) and are not negations of each other (pij ≠ puv)
are connected by a k-chain. Such pairs of literal nodes are called dcnn-pairs. Each such k-chain consists of k − 1 new
internal nodes with the dcnn-pair forming the endpoints. The internal nodes created will be called the chain nodes.

3. If k is even, we add all possible edges among the midpoints of all the k-chains so that they form a clique. If k is odd, we
create a new node called the nucleus node and both midpoints of every k-chain are made adjacent to the nucleus node.

4. We always traverse all k-chains going from a lower index clause to a higher index clause, with the exception of
k-chains between two clauses 1 and m. We traverse these k-chains going from clause m to clause 1. This imposes
an orientation to these paths allowing us to refer to succeeding or preceding nodes on a path without ambiguity. We
follow this convention in the remainder of this proof. Note that G is an undirected graph, and the direction is simply
for path traversal. We refer to a k-chain that connects two literal nodes from two consecutive clauses i, i + 1 as a
k-bridge for i = 1, . . . ,m − 1. The k-chains connecting literal nodes from clauses m to 1 are also called k-bridges.
The set of all nodes thus created (literal nodes, chain nodes and the nucleus in case of odd k) are denoted by U . Note that
|U| = total # dcnn-pairs × (k − 1) + 3m + (k mod 2).

5. To every node v ∈ U , a q-pendant is attached by making its head adjacent to v. We refer to such a q-pendant as the
connector pendant of v. We associate with every node v ∈ U , a q-pendant called the opposing pendant of v (can be
taken to mean ‘‘indexed by v’’ as the opposing pendant of v will not be attached to v). Each opposing pendant will be
connected to nodes in U once the notion of a supporting node is defined in the next step. Note that each such q-pendant
of length q from head to tail results in the creation of q + 1 new nodes. We denote these q-pendant nodes by D where
|D| = 2(q + 1)|U|.

6. For two chain nodes i, j, we say i supports j if i immediately precedes j on some k-chain. Every literal node supports the
first chain node on every k-chain starting from it, and it is supported by the last chain node on every k-bridge ending at
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Fig. 2. (a) Illustration for even k and (b) illustration for odd k.

it. In case of odd k, we say the nucleus node is supported by all the chain midpoints that are adjacent to it. So in set U ,
every chain node has exactly one supporting node. Every literal node pij corresponding to clause i (i = 2, . . . ,m), has
as many supporters as there are dcnn-pairs of pij in clause i − 1. Every literal node p1j has as many supporters as there
are dcnn-pairs of p1j in clause m. Every literal node pij corresponding to clause i (i = 2, . . . ,m − 1) supports as many
chain nodes as there are dcnn-pairs of pij in clauses i+ 1, . . . ,m. Every literal node p1j supports as many chain nodes as
there are dcnn-pairs of p1j in clauses 2, . . . ,m− 1 and every literal node pmj supports as many chain nodes as there are
dcnn-pairs of pmj in clause 1.

7. Consider any k-bridge connecting literal node pij to pi+1,v (including k-bridges from pmj to p1v) with chain nodes
a1, . . . , ak−1. Each node in the subpath from pij to ak−1 is made adjacent to the head of the opposing pendant of the
node it supports.

8. Consider any k-chain connecting literal node pij to puv (traversed from clause i to clause u) that is not a k-bridge with
chain nodes a1, . . . , ak−1. Each node in the subpath from pij to ak−2 ismade adjacent to the head of the opposing pendant
of the node it supports. Note that in this case, we stop at the chain node ak−2 since ak−1 does not support puv .

9. If k is odd, all midpoints adjacent to the nucleus are also made adjacent to the head of the nucleus’ opposing pendant.
10. If k is even, for each v ∈ U , the tail of connector pendant of v is made adjacent to the tail of every other q-pendant

except the tail of the opposing pendant of v. For odd k, for each v ∈ U , the penultimate node of connector pendant of
v is made adjacent to the tail of every other q-pendant except the tail of the opposing pendant of v. For odd k, we also
create a clique among tail nodes of all opposing pendants.

This completes the construction of graph G = (D∪ U, E). Fig. 2 illustrates the construction for even and odd k. Note that
by construction, D is a k-club.

Claim 1. For any v1 ∈ U:

a. If v2 ∈ D is the head of v1’s opposing pendant then dG[D∪{v1}](v1, v2) > k.
b. If v2 ∈ D is not the head of v1’s opposing pendant then dG[D∪{v1}](v1, v2) ≤ k.
c. If v2 ∈ D is the head of v1’s opposing pendant then for a set S ⊆ U, dG[D∪S∪{v1}](v1, v2) ≤ k, if and only if set S contains at

least one supporter of v1.

Proof. Claims a and b are easily verified from the construction. To prove necessity of Claim c, suppose for a set S ⊆ U ,
dG[D∪S∪{v1}](v1, v2) ≤ k and this set does not contain any supporter of v1. According to Claim 1a,we know dG[D∪{v1}](v1, v2) >
k so the shortest path between v1 and v2 with length less than or equal to kmust contain at least one element from S \ {v1}.
Suppose v3 ∈ S \ {v1} is an internal node on some shortest path from v1 to v2 in G[D ∪ S ∪ {v1}] and let p3 denote v3’s
connector pendant. Let p1 denote v1’s opposing pendant. Since v3 is not adjacent to v2 (as it is not v1’s supporter), the shortest
path between v3 and v2 for even k is v3 − p3 − p1[tail(p1), v2] with length 2q + 2 = k. For an odd k, this shortest path is
v3−p3[head(p3)−penultimate(p3)]−p1[tail(p1), v2] of length 2q+1 = k. Since the shortest path length between v3 and v2 is
k, the shortest path between v1 and v2 that uses v3 as internal node is at least k+1which contradicts dG[D∪S∪{v1}](v1, v2) ≤ k.
So S should contain at least one supporter of v1.

To establish sufficiency of Claim c, let v3 ∈ S be a supporter of v1. So v3 is adjacent to v1 and v2. So dG[D∪S∪{v1}](v1, v2) ≤

2 ≤ k. �

Claim 2. For any two literal nodes v1, v2 ∈ U, dG(v1, v2) > k if and only if v1 = v2.
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Proof. To show necessity, suppose there exist literal nodes v1, v2 ∈ U such that dG(v1, v2) > k but v1 ≠ v2. Nodes v1 and
v2 cannot belong to the same clause as they would form a clique in this case. Hence, v1 and v2 form a dcnn-pair, and by
construction are connected by a k-chain contradicting dG(v1, v2) > k. Thus, v1 = v2.

To prove sufficiency, suppose there exist literal nodes v1, v2 ∈ U such that v1 = v2. So v1 and v2 belong to different
clauses and there is no direct k-chain linking them. Then, it can be verified from the construction that the shortest path
length between v1 and v2 is k + 1 (for both odd and even k). �

We now show that the 3-SAT instance is satisfiable if and only if D is not a maximal k-club in G. Suppose the 3-SAT
instance has a satisfying assignment. Let S be the set of all literal nodes corresponding to literals with value equal to 1 in this
assignment and all chain nodes in all k-chains connecting them. For odd k, S also contains nucleus node. S ⊆ U and contains
at least one literal node from each clause. For every literal node in S, there exists at least one k-chain in G[D ∪ S] with this
literal node as one of its endpoints. We show that S ∪ D is a k-club in G.

Consider any two literal nodes v1, v2 ∈ S, either they belong to the same clause or they are from two different clauses. In
the first case, v1 and v2 are adjacent. In the second case, v1 and v2 form a dcnn-pair and there is a k-chain connecting them
in G[D ∪ S].

Now let v1 be a literal node in S and v2 be any chain node in this set. Either v2 belongs to a k-chain that has v1 as one
of its endpoints or not. In the first case, it is easy to see that dG[D∪S](v1, v2) ≤ k. In the second case, let c1 be a k-chain in
G[D ∪ S] that has v1 as one of its endpoints and c2 denote the k-chain which contains v2. For even k, consider the path
c1[v1,midpoint(c1)]− c2[midpoint(c2), v2] in G[D∪ S]. The length of this path is less than or equal to k/2+1+ k/2−1 = k.
For odd k, without loss of generality, consider the closest midpoint to v1 and v2 on c1 and c2 respectively, that are both
adjacent to the nucleus. This yields a path of length less than or equal to k−1

2 + 2 + ( k−1
2 − 1) = k.

Now suppose v1 and v2 are two different chain nodes in S. They either belong to the same k-chain or they belong to
two different k-chains c1 and c2. In the first case, it is easy to see that dG[D∪S](v1, v2) ≤ k. For the second case, for an even k,
consider the path c1[v1,midpoint(c1)]−c2[midpoint(c2), v2]. The length of this path is atmost k/2−1+1+k/2−1 = k−1.
For an odd k, consider the closest midpoint to v1 and v2 on c1 and c2 respectively. The path through these nodes and the
nucleus is of length at most ( k−1

2 − 1) + 2 + ( k−1
2 − 1) = k − 1. So for every two nodes v1, v2 ∈ S, dG[D∪S](v1, v2) ≤ k.

Consider any literal node v1 in clause i, 2 ≤ i ≤ m. S contains a literal node v2 from clause i− 1 which forms a dcnn-pair
with v1. In case of i = 1, it contains such a dcnn-pair literal node from clause m. Because the k-chain connecting v1 and v2
is also in S, set S contains at least one supporter of v1. Now consider any chain node v1 ∈ S, since the k-chain containing v1
is also in S, the supporter of v1 is also available in S. So for any v1 ∈ S, S contains at least one supporter of v1. So by Claim 1,
dG[D∪S](v1, v2) ≤ k for each v1 ∈ S, v2 ∈ D. Since D is a k-club, dG[D∪S](v1, v2) ≤ k for each v1, v2 ∈ D. So G[D∪ S] is a k-club
containing D and because S ≠ ∅, D is not maximal.

Suppose D is not a maximal k-club and there exists a nonempty S ⊆ U such that S ∪ D is a k-club. Select an arbitrary
node v1 ∈ S. Node v1 is either a literal node or a chain node. If it is a chain node, by Claim 1c, S should contain a supporter
of v1. This supporter is again either a literal node or another chain node. By repeating this argument, we can conclude that S
should contain at least one literal node v′

1. Suppose v′

1 is located in clause i. Again by Claim 1c, the supporter of v′

1 which is
a chain node in some k-bridge should also be in S which results in the following conclusion. If 2 ≤ i ≤ m, S should contain
a literal node v2 in clause i − 1 (in case of i = 1, the literal node v2 is from clause m). Now by repeating this argument, we
can conclude that set S should contain at least one literal node from each clause in B. Let v1, v2 ∈ S be any two literal nodes.
Since dG[D∪S](v1, v2) ≤ k, we can conclude that dG(v1, v2) ≤ k. Now by Claim 2, we have v1 ≠ v2. So by setting the value of
the literals corresponding to literal nodes in S to 1 and the rest of them to zero, we will have a satisfying assignment for B.

This establishes that k-club maximality testing is NP-hard. It is easy to see that the problem is in class NP. This completes
the proof of Theorem 1.

Contrasting this result with the polynomial-time solvability clique (and k-clique) maximality testing, it is essential to
understand the reason for Theorem 1. Despite the conceptual similarity of k-clubs to k-cliques and cliques, there is a
fundamental characteristic that distinguishes k-clubs. Cliques and k-cliques are hereditary as every subset of a k-clique is
also a k-clique, for every fixed positive integer k. This allows us to verifymaximality by inclusion of a k-clique C in polynomial
time using the following algorithm. Let C ′

= C , pick any v ∈ V \C ′, if C ′
∪{v} is a k-clique, then add v to C ′, otherwise delete

v from V and repeat until V \ C ′
= ∅. At termination, C ′ is a maximal k-clique containing C . However, this approach is not

valid for finding maximal k-clubs for k ≥ 2 as the k-club property is not hereditary. Consider the graph in Fig. 1. {1, 5, 6} is
2-club in this graph. The sets {1, 5, 6, 4}, {1, 5, 6, 3}, {1, 5, 6, 2} however are not 2-clubs. But the maximal 2-club containing
{1, 5, 6} is {1, 5, 6, 2, 4}.

3. Nonhereditary properties and maximality by inclusion

A graph property Π is said to be hereditary on induced subgraphs, if G is a graph with property Π then every vertex
induced subgraph of G also satisfies property Π . Further, property Π is said to be nontrivial if it is true for a single vertex
graph and is not satisfied by every graph. A property is said to be interesting if there are arbitrarily large graphs satisfying
Π . Yannakakis [26] showed that the maximum Π problem to find the largest order induced subgraph that does not violate
property Π is NP-hard for any property Π that is nontrivial, interesting and hereditary on induced subgraphs. This result
has a very broad scope as complete subgraphs, edgeless subgraphs, planar subgraphs, bipartite subgraphs, perfect subgraphs
are examples of Π that are nontrivial, interesting and hereditary.
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Fig. 3. A graph in which no maximal 2-clique is a 2-club.

If Π is hereditary and G = (V , E) is an arbitrary graph with V ⊇ C ′
⊃ C such that G[C] and G[C ′

] satisfy Π , the
elements in C ′

\ C can be added to C in any order with all the intermediate sets inducing subgraphs satisfying Π . Hence,
if Π is hereditary, proving maximality by inclusion of C ⊆ V such that G[C] satisfies Π is equivalent to establishing the
nonexistence of any single vertex v ∈ V \ C such that G[C ∪ {v}] satisfies Π . Our result in Section 2 shows that there is no
polynomial time algorithm available to test k-club maximality unless P = NP . Hence, there could be no generic polynomial
time algorithm (as the one described above for hereditary properties) unless P = NP , to test maximality by inclusion of
subgraphs satisfying any nonhereditary property.

In addition to the complexity theoretic perspective afforded by the result of Yannakakis, we can also view the impact of
nonhereditary graph properties from amatroid theory perspective. A combinatorial systemdescribed by the pairM = (S, I)
where S is a finite ground set and I is a collection of subsets of S satisfying some specified property Π , is a matroid if the
following three axioms hold: (M0) ∅ ∈ F ; (M1) If J ′ ⊆ J ∈ F , then J ′ ∈ F ; (M2) For every J ∈ F , every maximal (by
inclusion) subset in F containing J has the same cardinality. A fundamental result in matroid theory is that the maximum
Π problem for a matroid can be solved in polynomial time using the greedy algorithm [27]. If M satisfies axioms (M0) and
(M1), it is called an independence system and themaximumΠ problem in general is NP-hard on independence systems [28].
Note that collection of cliques in a graph form an independence system. In contrast, the greedy algorithm can be used to
find a maximal by inclusion subset satisfying Π in polynomial time. In light of Theorem 1, combinatorial systems built on
nonhereditary properties are much harder to deal with than matroids or independence systems.

Before concluding this section, we outline some algorithmic implications of the nonhereditary nature of k-clubs,
especially for combinatorial algorithms. While this feature also poses interesting challenges to identifying facets and valid
inequalities for the k-club polytope, our present focus is not on the polyhedral approach.

Since k-clubs have a more restrictive definition than k-cliques, it is no surprise that a maximal k-club need not be a
maximal k-clique. For instance, {1, 2, 3, 4} is a maximal 2-club in Fig. 1, but not a maximal 2-clique. On the other hand, if a
maximal k-clique satisfies the diameter requirement it is also a maximal k-club. This observation has been employed in the
past to detect cohesive subgroups in social networks [29]. However, it is possible for k ≥ 2, that no maximal k-clique in a
graph is a k-club. Fig. 3 shows a graph with exactly two maximal 2-cliques {1, 2, 3, 4, 5, 6, 7} and {1, 2, 3, 5, 6, 7, 8}, neither
is a 2-club. Hence, even if we enumerate all maximal k-cliques in the graph and choose the ones satisfying the diameter at
most k condition, we still may not have all the maximal k-clubs or worse, we may fail to identify a single k-club.

Furthermore, simple extensions of well known exact algorithms for maximum cliques such as the Carraghan–Pardalos
algorithm [30], or the Östergård’s algorithm [31] are not likely. The Carraghan–Pardalos algorithm is a back-tracking
algorithm (a depth-first search order implicit enumeration) which requires that a maximal clique be found prior to back-
tracking, which cannot be accomplished in polynomial time for k-clubs unless P = NP . Given G = (V , E) with V =

{1, . . . , n}, Östergård’s clique algorithm relies on the bounded increase in the size of a maximum clique going from G[Vi+1]

to G[Vi] where Vi = {i, . . . , n}. This is true for cliques as the size can at most go up by one vertex. Now consider the graph
G = (V , E) where V = {1, . . . , n} and E = {(1, i): i = 2, . . . , n}, i.e., G is a star graph with central vertex 1 and leaves
2, . . . , n. The 2-club number of G[Vi] = 1 for each i = 2, . . . , n, but ω̄2(G[V1]) = n. Even designing a basic branch-and-
boundwhere the branching is carried out by a selected vertex being included or excluded to create two child nodes, presents
interesting challenges. For instance, at some node of the search tree, let F 1 be the set of nodes fixed to be included and F 0 be
the set of nodes deleted from consideration. For k ≥ 2, we cannot fathom by infeasibility if G[F 1

] is not a k-club, as addition
of vertices from V \ {F 0

∪ F 1
} could turn it into one. Likewise, if G[F 1

] is a k-club, we cannot fathom by feasibility unless
we know it is indeed a maximal k-club. Hence, in the algorithm developed in Section 6, the pruning of the search tree is
accomplished by using bounds in combination with other necessary conditions.

4. Graphs with a polynomial time algorithm for finding maximal k-clubs

We refer to a k-clique which induces a connected subgraph a connected k-clique. In a given graph, if every connected
k-clique is also a k-club then a k-club’s maximality can be checked using a method similar to k-clique maximality testing.
Since, by definition every k-club is a connected k-clique and in such graphs every connected k-clique is also a k-club, a



90 F. Mahdavi Pajouh, B. Balasundaram / Discrete Optimization 9 (2012) 84–97

Fig. 4. An asymmetric partitionable cycle with respect to nodes 1 and 4,W = 1 − 2 − · · · − 7 − 1.

maximal connected k-clique is also a maximal k-club. Given a graph G = (V , E), maximality of a connected k-clique D can
be checked by testing nodes in V \D that have at least one edge to some node in D, one at a time, to see if they can be added
to D.

Definition 3. A graph G = (V , E) is called a partitionable cycle, if it contains a spanning cycle W and a pair of nonadjacent
nodes i and j such that every edge in E \ E(W ) has one endpoint in AW (i, j) and the other endpoint in AW (j, i), where AW (i, j)
and AW (j, i) are the internal nodes on the two paths between i and j in W . A partitionable cycle is said to be asymmetric if
|AW (i, j)| ≠ |AW (j, i)| (see Fig. 4).

Theorem 2. Given a graph G = (V , E) and fixed integer k ≥ 2, every connected k-clique is a k-club if G does not contain an
asymmetric partitionable cycle on c vertices as an induced subgraph, where 5 ≤ c ≤ 2k + 1.

Proof. Suppose a given graph G = (V , E) contains a connected k-clique D which is not a k-club. Then there exist i, j ∈ D
such that 2 ≤ dG(i, j) ≤ k but dG[D](i, j) = k + l < ∞ where 1 ≤ l < ∞. Let i = i0 − i1 − · · · − ik+l = j be a shortest path
between i and j in G[D]. Now P1: i = i0 − i1 −· · ·− ik+1 is a shortest path between i and ik+1 in G[D] and dG[D](i, ik+1) = k+1.
Since i, ik+1 ∈ D, there must be a shortest path P2 between i and ik+1 in G with length 2 ≤ l′ ≤ k. Since P1 is a shortest path
in G[D] and P2 is shorter than P1, there exists node v ∈ P2 such that v ∉ D and therefore v ∉ P1.

Now consider G[V (P1)∪V (P2)]. Moving along P1 from i to ik+1, let S denote the sequence of nodes in P1 which also belong
to P2. So we have S: i = s0, s1, . . . , sp = ik+1. If (sj, sj+1) ∈ E for a j ∈ {0, . . . , p − 1} then (sj, sj+1) ∈ P1 and (sj, sj+1) ∈ P2
because otherwise P1 and P2 are not shortest paths between i and ik+1 in G[D] and G respectively. Further, if (sj, sj+1) ∈ E
for all j ∈ {0, . . . , p − 1} then S = P1 = P2 which is a contradiction since length of P2 is strictly less than length of P1. So
there exist h ∈ {0, . . . , p − 1} such that (sh, sh+1) ∉ E. Since sh, sh+1 ∈ P1, there exists at least one node between sh and
sh+1 on P1. Let I1 denote the set of all such nodes. Similarly for P2, there exists at least one node between sh and sh+1 on P2
and let I2 denote the set of all such nodes. I1 ∩ I2 = ∅ because moving along P1 from i to ik+1, sh+1 is the first node in P2
after sh. G[{sh, sh+1} ∪ I1 ∪ I2] is a partitionable cycle with respect to sh, sh+1, hence, G[V (P1) ∪ V (P2)] contains at least one
partitionable cycle.

Suppose every partitionable cycle in G[V (P1) ∪ V (P2)] is symmetric. Like before, moving along P1 from i to ik+1, let S be
the sequence of the nodes in P1 which are also in P2 and moving along P2 from i to ik+1, let T be the sequence of the nodes in
P2 which are also in P1. So S: i = s0, s1, . . . , sp = ik+1 and T : i = t0, t1, . . . , tp = ik+1. The elements of S and T are the same
but their sequence might be different. We know length of P1 =

p−1
j=0 dG[D](sj, sj+1) and length of P2 =

p−1
j=0 dG(tj, tj+1).

Now suppose the sequences S and T are the same, that is sj = tj for each j ∈ {0, . . . , p}. So length of P1 =
p−1

j=0

dG[D](sj, sj+1) and length of P2 =
p−1

j=0 dG(sj, sj+1). Now if for some j ∈ {0, . . . , p − 1}, (sj, sj+1) ∈ E then dG[D](sj, sj+1) =

dG(sj, sj+1) = 1 and if for some j ∈ {0, . . . , p − 1}, (sj, sj+1) ∉ E, according to the previous discussion, there exists a
partitionable cycle W with respect to sj, sj+1. Let AW (sj, sj+1) contain the nodes between sj and sj+1 on P1 and AW (sj+1, sj)
contain the nodes between sj and sj+1 on P2. We know dG[D](sj, sj+1) = |AW (sj, sj+1)|+1 and dG(sj, sj+1) = |AW (sj+1, sj)|+1.
Since every partitionable cycle is symmetric, we have |AW (sj, sj+1)| = |AW (sj+1, sj)| which results in dG[D](sj, sj+1) =

dG(sj, sj+1). So finally we have length of P1 is equal to the length of P2 which is a contradiction.
Now suppose sequences S and T are different. Let sj be the first node in sequence S which is different from the

corresponding node in sequence T (which is tj). Note that sj is located after tj in T and tj is located after sj in S. Hence,
dG[D](sj−1, tj) = dG[D](sj−1, sj) + dG[D](sj, tj) and since dG[D](sj, tj) > 0 we have,

dG[D](sj−1, tj) > dG[D](sj−1, sj). (1)

Considering T , we know tj is the first node after sj−1 and (sj−1, tj) ∉ E as otherwise P1 is not a shortest path since sj is located
between sj−1 and tj in P1. So according to the previous discussion, there exists a partitionable cycleW with respect to sj−1, tj.
Let AW (sj−1, tj) contain the nodes between sj−1 and tj in P1 and AW (tj, sj−1) contain the nodes between sj−1 and tj in P2. Since
every partitionable cycle is symmetric, we have |AW (sj−1, tj)| = |AW (tj, sj−1)|. So dG[D](sj−1, tj) = dG(sj−1, tj). Now using
Eq. (1) we have,

dG(sj−1, tj) > dG[D](sj−1, sj). (2)
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In T , sj is located after tj. So,

dG(sj−1, tj) < dG(sj−1, sj). (3)

Eqs. (2) and (3) imply dG(sj−1, sj) > dG[D](sj−1, sj) which is impossible.
So in G[V (P1) ∪ V (P2)], there must exist at least one asymmetric partitionable cycle. Since the length of P1 is k + 1 and

maximum length of P2 is k, the order of such an asymmetric partitionable cycle is at most (k+1)+ k = 2k+1. On the other
hand, it is at least 5 because graphs of smaller order will never form an asymmetric partitionable cycle. �

Corollary 1. In a bipartite graph G = (X ∪ Y , E), every connected 2-clique is a 2-club. Furthermore, every 2-club induces a
complete bipartite subgraph.

Proof. Since G is bipartite, it does not contain an odd cycle and hence, does not contain an asymmetric partitionable cycle
of size 5. Any 2-club in G of size at least two, contains vertices x ∈ X and y ∈ Y . If (x, y) ∉ E then dG(x, y) ≥ 3. Hence, the
2-club must induce a complete bipartite subgraph. �

5. Bounding strategies for the k-club number of a graph

As discussed in Section 1.1, the only available exact combinatorial algorithm for solving themaximum k-club problem for
k ≥ 2 is the branch-and-bound (BB) algorithm presented in [15]. In this approach, the authors find the k-clique number of
the graph associated with the node of the BB tree to obtain an upper-bound. Note that themaximum k-clique problemmust
be solved to optimality to obtain a valid upper-bound, and it is NP-hard even on graphs of fixed diameter k + 1. In the next
section, we consider a dual to themaximum k-club problem so that any feasible solution of this dual could be used to obtain
a valid upper-bound. In Section 5.2, we discuss a lower-bounding technique that builds on existing heuristic approaches for
the problem [17].

5.1. Distance k-coloring based upper-bounding technique

Definition 4. Given G = (V , E), I ⊆ V is called a k-independent set if dG(u, v) ≥ k + 1 for all u, v ∈ V .

Note that 1-independent sets are the classical independent (stable) sets and the definition is restrictive as k increases.
That is, every k + 1-independent set is a k-independent set but not vice versa. Further, I is a k-independent set in G if and
only if I is an independent set in the power graph Gk. Also note that if I is a k-clique in G, I need not be a k-independent set
in the complement graph Ḡ for k ≥ 2. For instance, {1, 2, 4, 5, 6} is a 2-clique/2-club in the graph in Fig. 1, but it is not a
2-independent set in the complement. In fact, it is still a 2-clique/2-club in the complement graph.

Definition 5. A proper distance k-coloring of G = (V , E) is a map c: V −→ {1, . . . , n} such that for every pair of vertices
u, v ∈ V , if c(u) = c(v) then dG(u, v) ≥ k + 1 [32]. For each v ∈ V , c(v) is called the color of v, and the subset of nodes
receiving the same color form a color class.

Note that this definition reduces to classical graph coloring when k = 1 and is restrictive as k increases. Furthermore,
every color class forms a k-independent set and hence, any k-club or k-clique in G can contain at most one vertex from a
color class for every proper distance k-coloring of G. Denote the minimum number of colors to properly distance k-color G
by χd

k (G). We have the following duality relationship for every fixed positive integer k:

ωk(G) ≤ ωk(G) ≤ χd
k (G). (4)

Fig. 5 shows an example of a proper distance 2-coloring of a graph using 5 colors. Finding aminimum distance k-coloring
is also an NP-hard problem [32], but for obtaining valid upper-bounds, we only need a proper distance k-coloring. By noting
that distance k-coloring is equivalent to classical graph coloring on power graphs, we can employ fast coloring heuristics to
yield a proper distance k-coloring. A compromise must be made in the quality of the bound, as k-clique number which is a
tighter bound can be hard to obtain, especially at the root node of the BB tree.

5.2. Bounded enumeration based lower-bounding technique

The proposed lower-bounding technique is based on finding an initial k-club S, followed by a tree search that enumerates
k-clubs containing S. If left unchecked, this worst-case complete enumeration would return a maximal k-club containing
S. However, we employ pruning and termination criteria that would prevent this procedure from consuming an excessive
amount of time. The ‘‘drop’’ and ‘‘constellation’’ heuristics described in [17] are used to identify the initial k-club. Both
heuristics are run and the larger of the two k-clubs found is used as the initial solution S. The goal of the bounded enumeration
search is to improve upon this initial solution if possible by spending a reasonable amount of time.

Given an initial k-club S, consider the graph H initially equal to G. We recursively check H for a vertex v such that
dH(v, u) > k for some u ∈ S and delete v. Note that v cannot be a part of any k-club in G containing S. When this recursive
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Fig. 5. A proper distance 2-coloring (each number represents a specific color class).

procedure terminates, S ⊆ V (H) and dH(v, u) ≤ k for all u ∈ S and v ∈ V (H) \ S. Every k-club in G that contains S is
contained in V (H), and we call V (H) \ S the candidate set.

In this bounded enumeration search, at each node of the search tree, the corresponding graph G = G[F ∪ U] consists of
two types of vertices. The first is the set of vertices fixed to be included denoted by F , the second is the set of unexplored
vertices denoted by U . The root node of the search tree is initialized by setting F = S and U = V (H) \ S. The search order
is depth-first search (DFS), with a vertex in U with the largest number of vertices at distance k or less in G chosen first to
be included. Note that the search order and the greedy selection rule are chosen to encourage detection of better feasible
solutions.

If V (H) \ S = ∅ then there is no larger k-club that contains S. Now suppose V (H) \ S ≠ ∅. For each integer
1 ≤ l ≤ |V (H) \ S|, starting from l = 1, we initiate a bounded enumeration search with the goal of adding l vertices
to the current feasible solution. If at any point in this search we are successful in adding l vertices, we update S, recompute
the candidate set as described before, and repeat. If we are unsuccessful in this search for l vertices to add, either because it
is not possible, or because we have reached a termination criterion specified in terms of number of tree nodes pruned, we
increment l and restart the search with the same S and V (H) as long as l ≤ |V (H) \ S|. The overall procedure stops when
either l exceeds |V (H) \ S| or if a user-specified time limit is reached.

We maintain the following conditions for the graph G associated with any active tree node: (C1) F is a k-clique in G;
(C2) dG(v, u) ≤ k, ∀u ∈ F , v ∈ U . Note that at each such node, S ⊆ F , F \ S ⊆ V (H) \ S, U ⊆ V (H) \ S and vertices in
(V (H)\S)\(F ∪U) have been deleted leading to this node of the search tree.While processing a tree node created to include
a vertex i ∈ U , if |F \ S| = l then the present node is pruned since we are only interested in subsets of V (H) \ S of size l.
Otherwise, vertex i is added to F and removed fromU . Note that F ∪{i}will be a k-clique inG. However, (C2)may be violated
by some vertices too far from i in the new U . Thus every vertex v ∈ U \ {i} violating (C2) is recursively deleted until no such
vertex exists. Similarly, while processing a tree node created to delete a vertex i ∈ U , if |(V (H)\S)\ (F ∪U)| = |V (H)\S|− l
then the present tree node is pruned. Otherwise, after removing vertex i, every vertex v ∈ U \{i} violating (C2) is recursively
deleted until no such vertex exists.

In any of these two cases, if removing these vertices results in (C1) being violated, the present node is pruned by
infeasibility. If (C1) and (C2) are still satisfied and U = ∅ or if dG(u, v) ≤ k, ∀u, v ∈ U then G is a k-club. In this case,
the lower-bounding procedure is terminated and restarted with the initial solution S = F ∪ U , the associated candidate set
V (H) \ S and l = 1. Otherwise, two new child nodes are created by using the branching strategy and added to the list of
active search tree nodes. After processing a tree node, this node will be removed from the set of active nodes. Whenever the
set of active nodes is empty, the bounded enumeration for the present value of l terminates. After terminating the search for
the subsets of V (H)\S with size l, if l = |V (H)\S| then the lower-bounding algorithm terminates otherwise, a new bounded
enumeration starts for the subsets of size l + 1. The overall lower-bounding procedure is also limited by a user-specified
time limit.

6. Branch-and-bound framework to find the k-club number of a graph

In order to study the effectiveness of the bounding techniques proposed in Section 5, we incorporate them in a BB
algorithm. Two lower-bounding and two upper-bounding schemes (in total four combinations) are tested. Given a graph
G = (V , E) and an integer k ≥ 2, the first lower-bounding technique is to select the larger of the two solutions found
by drop and constellation heuristics (denoted by DC). The second technique is the bounded enumeration based lower-
bounding technique (denoted by BE) proposed in Section 5.2 which will return a solution at least as good as the first. The
lower-bounding scheme is only used once at the beginning of the BB algorithm in order to initialize the incumbent solution.

The upper-bounding scheme is used at each node of the BB tree to find an upper-bound on the k-club number of the
graph G associated with that node. The first technique is to use ωk(G) as the upper-bound on ωk(G) (denoted by KC). To
find ωk(G), the maximum clique problem is solved on Gk by using Östergård’s algorithm [31]. The second technique is the
distance k-coloring based upper-bounding technique (denoted by CO) introduced in Section 5.1. To properly color Gk, two
heuristics are employed. First, a simple greedy heuristic that repeatedly colors the largest degree uncolored node in the
power graph with the color not yet assigned to any of its neighbors. Second, we use the well known DSATUR heuristic [33]
for graph coloring. In general, the greedy heuristic is faster than DSATUR, but the quality of the solution found by DSATUR
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is better. Since finding tighter upper-bounds in top levels of the search tree is much more critical, we use DSATUR while
processing higher tree levels and use the greedy heuristic for finding upper-bounds in lower levels. A threshold parameter
was used to determine the tree level after which the upper-bounding heuristic should be switched from DSATUR to greedy
algorithm.

The structure of each BB tree node is similar to the one used for the proposed BE algorithm with the difference that the
root node of the BB tree is initialized by setting F = ∅ and U = V . A vertex dichotomy branching rule is also employed in
this algorithm. Based on the preliminary computational results, selecting a vertex in U withminimum number of vertices at
distance atmost k inG for branching alongwith the best bound search (BBS) strategy performed better than other branching
and search strategies. The reason for this observation is that in this BB algorithm, unlike the proposed BE technique which
focuses on feasibility, the emphasis is on finding a maximum k-club in G and proving optimality. In case of a tie in choosing
the branching vertex, the vertex withminimum degree in Gwill be selected to branch upon. If a tie still exists, the branching
vertex will be selected randomly from tied vertices. Properties (C1) and (C2), mentioned in Section 5.2, are also maintained
during the course of this BB algorithm. Note that at each node of the BB search tree, vertices in V \ (F ∪U) have been deleted
along the path connecting the root node of the search tree to the current node.

While processing a BB tree node, if the corresponding upper-bound is less than or equal to the size of the incumbent
k-club, the node is then pruned by bound. Otherwise, if the BB node is created to delete a vertex i ∈ U , this vertex is
removed from U and every vertex v ∈ U \ {i} violating (C2) is recursively deleted until no such vertex exists. Similarly, if the
BB node is created to include a vertex i ∈ U , this vertex is added to F and removed from U . Note that the new F will satisfy
(C1) but (C2) can be violated by some vertices in U \ {i} which are too far from i. Thus every vertex v ∈ U \ {i} violating (C2)
is recursively deleted until no such vertex exists.

If deleting these vertices in any of these two cases results in (C1) being violated, the current BB tree node is pruned
by infeasibility. Note that it would be incorrect to prune this node by infeasibility if diam(G[F ]) > k. We employ the
necessary condition that F must be a k-clique in G for this purpose. If (C1) and (C2) are still satisfied and U = ∅ or if
dG(u, v) ≤ k, ∀u, v ∈ U then G is a k-club. So the current BB tree node is pruned by feasibility and the incumbent solution
is updated if necessary. Otherwise, the upper-bounding technique is used to find an upper-bound on the k-club number
of the new G. Again, if the estimated upper-bound is less than or equal to the size of the incumbent solution, the node is
fathomed by bound otherwise by using the branching strategy, two new child nodes are created and added to the list of
active BB tree nodes. The processed BB node then will be removed from the set of active BB nodes. Whenever the set of
active BB nodes is empty, the BB algorithm terminates and the size of the incumbent solution will be equal to the k-club
number of G. In addition to this termination criterion, a maximum time allowed is also used to stop the BB algorithm. In case
of termination by time limit, the gap between the best upper-bound (the largest upper-bound among all active BB nodes)
and the incumbent solution is reported.

Note that for any active node, to compute the upper-bound by distance coloringG, we only need to distance color G[U] as
F is a k-clique and every vertex in U is at distance no more than k from every vertex in F . That is, we need |F | colors to color
nodes in F and none of these can be used to color nodes in U . The upper-bound for the active node under consideration is
equal to the number of colors used to color G[U] plus the cardinality of set F . Another key operation which has a clear
effect on the algorithm running time is updating the distance k-neighborhood of each vertex of the graph obtained by
deleting vertices. Given a graph G = (V , E) and an integer k ≥ 2, the distance k-neighborhood of v ∈ V is the set
Nk

G(v) = {u ∈ V : dG(v, u) ≤ k} = NGk(v), that is the neighborhood of v in the power graph Gk. After deleting a vertex
i, we only need to update the k-neighborhood of vertices in Nk

G(i). This observation also helps reduce the time taken to
update pairwise distances in G − i, after vertex deletion.

7. Implementation details and computational test results

All algorithms were implemented in C++ and all numerical experiments were conducted on a Dell R⃝ workstation with
Intel

R⃝

Xeon
R⃝

W 3550 @ 3.07 GHz processor and 3.00 GB RAM. The test-bed of instances consists of graphs generated
randomly by using the algorithm introduced in [15]. The edge density of the graphs produced by this algorithm is controlled
by two parameters a and b. The expected edge density d is (a + b)/2 and vertex degree variance (VDV) increases with
b − a. We considered k = 2 and 3 and edge densities d = 0.0125, 0.025, 0.05, 0.1, 0.15, 0.2 and 0.25 were studied. The
experiments were performed on graphs of order n = 50, 100, 150 and 200. For each order and density, 10 samples with
minimum VDV (a = b = d) and 10 samples with maximum VDV (a = 0, b = 2d) were generated.

It should be noted that we do not explicitly require the test instances to be connected. Especially the sparse instances
could consist of multiple connected components in which case the maximum k-club problem can be decomposed by
component. This would be particularly useful to recognize in integer programming approaches, and is implicitly used in
our BB algorithm. Also important to note is the fact that the maximum k-club may or may not be in the largest order or
the most dense connected component. Table 1 shows the average size of the largest connected component in generated
test instances. For a given n and for low edge densities, the average size of the largest connected component in instances
with minimum VDV is larger than the one for instances with maximum VDV (except for n = 50 and density 0.025) and this
difference disappears as the edge density increases.

We also observed that some of the higher order, higher density test instances were trivial since their diameter was less
than or equal to the value of k under consideration. While this is expected in general, it was interesting to note that in
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Table 1
Average size of the largest connected component in generated test instances.

n VDV Edge density
0.0125 0.025 0.05 0.1 0.15 0.2 0.25

50 Min 5.6 16.6 43.6 49.5 50 50 50
Max 4.4 21.6 41.8 48.8 49.1 50 50

100 Min 37.2 91.1 99.7 100 100 100 100
Max 29.4 87.6 99.4 100 100 100 100

150 Min 112.5 147.6 149.9 150 150 150 150
Max 109 144 149.6 150 150 150 150

200 Min 178.4 198 200 200 200 200 200
Max 172.7 197.3 199.9 200 200 200 200

Table 2
Number of trivial test instances in each sample of 10 instances.

k n VDV Edge density
0.1 0.15 0.2 0.25

2
150 Min – – – 7

Max – – – –

200 Min – – – 10
Max – – – 1

3

50 Min – 2 10 10
Max – 1 1 10

100 Min – 10 10 10
Max – 7 10 10

150 Min 9 10 10 10
Max 1 10 10 10

200 Min 10 10 10 10
Max 7 10 10 10

Table 3
Challenging densities (among the ones considered) where both BE
and DC took the maximum time among all densities.

k n = 50 n = 100 n = 150 n = 200

2 0.25 0.2 0.15, 0.2 0.15
3 0.1 0.1 0.05 0.05

such cases, for any given k, the minimum VDV scheme appears to have a propensity for producing trivial instances. This is
attributable to the fact that when VDV is maximum, there is potential for both large k-clubs (higher degree vertices) as well
as isolated vertices. Hence, the entire graph may not have low diameter. We have summarized the number of such trivial
instances in Table 2.

7.1. Experiments with the lower-bounding techniques

We first consider the numerical results comparing the two lower-bounding techniques DC and BE discussed in Section 6.
The maximum time allowed for BE is 600 s and the number of nodes pruned during BE is limited to 200 for each subset size.
We summarize the key observations here. For a particular k, VDV and n, the average solution size increases as expected with
edge density, and more interestingly, the average running time reaches a peak and then drops. This peak occurs at the same
or consecutive densities for both lower-bounding techniques indicating that finding good feasible solutions is challenging
in these instances. Furthermore for a given k, we find the densities that are challenging to be the same across minimum and
maximum VDV instances, and to be decreasing as n increases. This information is summarized in Table 3.

Themain result of these experiments is that the BE approach is beneficial compared toDC when used on such challenging
densities (especially on 150 and 200 vertex instances) as opposed to the non-challenging ones where the DC approach is
preferable. Recall that BE approach will take more time as it includes DC in it, but has the potential for returning larger
k-clubs. Table 4 summarizes the results of these experiments.

7.2. Experiments with the branch-and-bound framework

The remainder of our computational experiments are designed to study the performance of four different BB algorithms
obtained by using different strategies for lower-bounding and upper-bounding. The four BB algorithms are denoted by
DC/CO, DC/KC , BE/CO and BE/KC (see Section 6) in the numerical results. Tables 5 and 6 report the computational results
obtained by solving the maximum k-club problem on 200-vertex graphs for k = 2 and k = 3, respectively. Average best
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Table 4
Minimum and maximum percentage increase in average best objective value found by BE over DC , and increase
in average running time in seconds for the challenging densities (over 10 samples).

k Metric n = 50 n = 100 n = 150 n = 200

2 Best obj (1.48, 2.53) (0.71, 3.92) (0.25, 5.31) (2.06, 17.44)
Time (0.75, 0.75) (8.20, 10.20) (15.51, 36.93) (98.81, 218.45)

3 Best obj (0.69, 1.59) (0.00, 0.11) (4.22, 7.26) (3.03, 5.35)
Time (0.68, 0.70) (7.10, 7.64) (25.24, 30.00) (143.55, 159.93)

Table 5
Average size of the best 2-club found, average running time (in seconds), and percentage optimality gap for each BB algorithm on 200-vertex instances.

VDV Metric Algorithm Edge density
0.0125 0.025 0.05 0.1 0.15 0.2 0.25

Min

Best obj

DC/CO 8.20 12.70 20.70 33.60 58.50 195.50 200.00
DC/KC 8.20 12.70 20.70 33.60 58.50 195.50 200.00
BE/CO 8.20 12.70 20.70 33.60 68.70 195.50 200.00
BE/KC 8.20 12.70 20.70 33.60 68.70 195.50 200.00

Time

DC/CO 2.54 71.62 298.98 3604.30 3613.16 880.00 0.00
DC/KC 0.95 2.12 16.71 4554.49 5276.76 331.06 0.00
BE/CO 2.65 71.93 300.04 3605.00 3618.83 913.00 0.00
BE/KC 1.01 2.53 18.18 4548.06 4542.85 361.98 0.00

Gap

DC/CO 0.00 0.00 0.00 37.78 56.14 0.00 0.00
DC/KC 0.00 0.00 0.00 83.20 70.75 0.00 0.00
BE/CO 0.00 0.00 0.00 37.66 48.78 0.00 0.00
BE/KC 0.00 0.00 0.00 83.20 65.65 0.00 0.00

Max

Best obj

DC/CO 9.20 14.30 23.40 39.10 126.20 178.20 196.40
DC/KC 9.20 14.30 23.40 39.10 126.20 177.20 196.40
BE/CO 9.20 14.30 23.40 39.10 128.80 178.20 196.40
BE/KC 9.20 14.30 23.40 39.10 128.80 177.40 196.40

Time

DC/CO 2.61 48.14 299.68 3608.07 3403.16 1664.25 777.07
DC/KC 0.96 2.24 42.41 4884.64 4377.61 5603.51 116.33
BE/CO 2.68 48.07 300.83 3604.49 3411.23 1747.34 813.20
BE/KC 1.03 2.67 44.07 4878.12 4395.17 5606.31 151.69

Gap

DC/CO 0.00 0.00 0.00 29.77 8.00 0.06 0.00
DC/KC 0.00 0.00 0.00 80.45 36.90 10.35 0.00
BE/CO 0.00 0.00 0.00 29.34 6.05 0.06 0.00
BE/KC 0.00 0.00 0.00 80.45 35.60 10.25 0.00

objective value, running time and optimality gap across the 10 samples in each category of test instances are reported in
these tables.

Although we present the results for 200-vertex instances here, the result are similar across different orders and the
subsequent observations are made considering all the instances in our test bed. The complete set of computational results
including instances of smaller orders (n = 50, 100 and 150) can be obtained from the corresponding author.

The running time limit for all algorithms is 3600 s. This was enforced by checking the elapsed time after each BB node
was processed, which in some instances exceeded the time limit by the time it took to process the last BB node before
termination. If an instance cannot be solved to optimality within the time limit, relative optimality gap is reported. The
percentage gap is calculated as 100 × (upper − bound − bestsolutionsize)/upper − bound. The settings used for BE are as
stated before. The tree level threshold parameter for switching the upper-bounding heuristic fromDSATUR to simple greedy
is set at 0.10 × n.

For a given k, VDV and n, as edge density increases the average incumbent solution size found by all algorithms increases,
while generally the average running time and optimality gap increase up to a peak and then decrease. The peak average
running time can be used to determine the challenging densities for these BB algorithms. It can be observed that for a given
k, the challenging densities are the same for both minimum and maximum VDV instances, and decrease as n increases.
Table 7 identifies these challenging densities for all BB algorithms.

For a given k,n, VDVand for densities that are not challenging, the quality of the solution foundby all algorithms are nearly
identical. Considering average running time for these non-challenging densities,DC/KC almost always performs better than
the other algorithms. This observation is attributable to the fact that on these densities, BE does not significantly improve the
quality of the initial solution. Furthermore, it appears that solving themaximum k-clique problemwhich returns potentially
tighter upper-bounds is not as hard on these densities. Likewise for these non-challenging densities, all the algorithms return
a zero optimality gap on nearly all the instances.

However, for challenging densities, BE/CO outperforms all the other algorithms in terms of solution quality. This
observation can be explained by the fact that on these densities, BE often returns a larger initial solution in a reasonable
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Table 6
Average size of the best 3-club found, average running time (in seconds), and percentage optimality gap for each BB algorithm on 200-vertex instances.

VDV Metric Algorithm Edge density
0.0125 0.025 0.05 0.1 0.15 0.2 0.25

Min

Best obj

DC/CO 13.60 25.40 89.70 200.00 200.00 200.00 200.00
DC/KC 13.60 20.70 89.70 200.00 200.00 200.00 200.00
BE/CO 13.60 25.40 94.50 200.00 200.00 200.00 200.00
BE/KC 13.60 23.40 94.50 200.00 200.00 200.00 200.00

Time

DC/CO 87.90 442.32 3616.94 0.00 0.00 0.00 0.00
DC/KC 17.24 3684.29 4108.80 0.00 0.00 0.00 0.00
BE/CO 88.28 431.66 3619.46 0.00 0.00 0.00 0.00
BE/KC 17.98 3702.84 4160.96 0.00 0.00 0.00 0.00

Gap

DC/CO 0.00 0.00 31.64 0.00 0.00 0.00 0.00
DC/KC 0.00 89.30 55.15 0.00 0.00 0.00 0.00
BE/CO 0.00 0.00 28.13 0.00 0.00 0.00 0.00
BE/KC 0.00 87.92 52.75 0.00 0.00 0.00 0.00

Max

Best obj

DC/CO 14.80 31.90 119.10 199.70 200.00 200.00 200.00
DC/KC 14.80 24.90 118.70 199.70 200.00 200.00 200.00
BE/CO 14.80 31.90 122.50 199.70 200.00 200.00 200.00
BE/KC 14.80 29.40 122.30 199.70 200.00 200.00 200.00

Time

DC/CO 91.39 477.40 3275.85 262.39 0.00 0.00 0.00
DC/KC 63.03 3760.07 4523.58 32.50 0.00 0.00 0.00
BE/CO 91.75 464.38 3304.12 268.81 0.00 0.00 0.00
BE/KC 62.81 3757.28 4526.92 38.81 0.00 0.00 0.00

Gap

DC/CO 0.00 0.00 12.29 0.00 0.00 0.00 0.00
DC/KC 0.00 87.39 40.65 0.00 0.00 0.00 0.00
BE/CO 0.00 0.00 9.64 0.00 0.00 0.00 0.00
BE/KC 0.00 85.11 38.85 0.00 0.00 0.00 0.00

Table 7
Challenging densities (among the ones considered) where all four BB
algorithms took the maximum time across all densities.

k n = 50 n = 100 n = 150 n = 200

2 0.2, 0.25 0.15, 0.2 0.15, 0.2 0.1, 0.15, 0.2
3 0.1 0.05 0.05 0.05

amount of time. Furthermore, solving the maximum k-clique problem to optimality on these densities is relatively harder
than finding a feasible distance k-coloring, requiring longer times to compute the upper-bound at each node. This results
in fewer BB nodes being enumerated in a specified time limit, affecting the incumbent solution quality adversely. Due to
similar reasons, both DC/CO and BE/CO perform better than the other two algorithms in terms of average running time
metric. In terms of optimality gap, DC/CO and BE/CO outperform the other two algorithms while BE/CO is slightly better
than DC/CO.

8. Conclusion

The k-clubs can be used to model low diameter clusters in graph-based data mining applications. In this paper, k-club
maximality testing is proved to beNP-complete for k ≥ 2, thus settling a long-open problem. This is due to the nonhereditary
nature of k-clubs, and we discuss the implications of this property in detail. A class of graphs for which k-club maximality
testing is polynomial-time solvable have also been identified. A new dual coloring based upper-bounding technique and
a new bounded enumeration based lower-bounding strategy for the k-club number of a graph have been proposed. To
solve the maximum k-club problem, a combinatorial branch-and-bound framework is developed and the computational
performance of the proposed branch-and-bound frameworkwith four different combinations of lower- and upper-bounding
schemes is studied. It will be beneficial to develop metaheuristic approaches for detecting k-clubs in large-scale real-
life graphs, especially power-law graphs from bioinformatics applications. Identifying graph classes on which detecting
maximum and maximal k-clubs is polynomial-time solvable is another interesting challenge.

Acknowledgments

This research was supported in part by the US Department of Energy Grant DE-SC0002051. The authors would like to
thank the anonymous referees for several comments that improved this article.



F. Mahdavi Pajouh, B. Balasundaram / Discrete Optimization 9 (2012) 84–97 97

References

[1] J. Scott, Social Network Analysis: A Handbook, second ed., Sage Publications, London, 2000.
[2] I.M. Bomze, M. Budinich, P.M. Pardalos, M. Pelillo, The maximum clique problem, in: D.Z. Du, P.M. Pardalos (Eds.), Handbook of Combinatorial

Optimization, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999, pp. 1–74.
[3] S. Butenko,W.Wilhelm, Clique-detectionmodels in computational biochemistry and genomics, European Journal of Operational Research 173 (2006)

1–17.
[4] V. Boginski, S. Butenko, P. Pardalos, Mining market data: a network approach, Computers & Operations Research 33 (2006) 3171–3184.
[5] J. Abello, P. Pardalos, M. Resende, On maximum clique problems in very large graphs, in: J. Abello, J. Vitter (Eds.), External Memory Algorithms

and Visualization, in: DIMACS Series on Discrete Mathematics and Theoretical Computer Science, vol. 50, American Mathematical Society, 1999,
pp. 119–130.

[6] S.B. Seidman, B.L. Foster, A graph theoretic generalization of the clique concept, Journal of Mathematical Sociology 6 (1978) 139–154.
[7] R. Luce, Connectivity and generalized cliques in sociometric group structure, Psychometrika 15 (1950) 169–190.
[8] R. Alba, A graph-theoretic definition of a sociometric clique, Journal of Mathematical Sociology 3 (1973) 113–126.
[9] R. Mokken, Cliques, clubs and clans, Quality and Quantity 13 (1979) 161–173.

[10] D. Corneil, Y. Perl, Clustering and domination in perfect graphs, Discrete Applied Mathematics 9 (1984) 27–39.
[11] S.S. Ravi, D. Rosenkrantz, G.K. Tayi, Heuristics and special case algorithms for dispersion problems, Operations Research 42 (1994) 299–310.
[12] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, New York, 1979.
[13] J. Håstad, Clique is hard to approximate within n1−ϵ , Acta Mathematica 182 (1999) 105–142.
[14] R.G. Downey, M.R. Fellows, Fixed-parameter tractability and completeness II: on completeness for W [1], Theoretical Computer Science 141 (1995)

109–131.
[15] J.M. Bourjolly, G. Laporte, G. Pesant, An exact algorithm for the maximum k-club problem in an undirected graph, European Journal of Operational

Research 138 (2002) 21–28.
[16] B. Balasundaram, S. Butenko, S. Trukhanov, Novel approaches for analyzing biological networks, Journal of Combinatorial Optimization 10 (2005)

23–39.
[17] J.M. Bourjolly, G. Laporte, G. Pesant, Heuristics for finding k-clubs in an undirected graph, Computers & Operations Research 27 (2000) 559–569.
[18] S. Butenko, O. Prokopyev, On k-club and k-clique numbers in graphs, Technical Report, Texas A&M University, 2007.
[19] J. Marincek, B. Mohar, On approximating the maximum diameter ratio of graphs, Discrete Mathematics 244 (2002) 323–330.
[20] Y. Asahiro, E. Miyano, K. Samizo, Approximatingmaximum diameter-bounded subgraphs, in: A. Lpez-Ortiz (Ed.), LATIN 2010: Theoretical Informatics,

in: Lecture Notes in Computer Science, vol. 6034, Springer, Berlin/Heidelberg, 2010, pp. 615–626.
[21] A. Schäfer, C. Komusiewicz, H. Moser, R. Niedermeier, Parameterized computational complexity of finding small-diameter subgraphs, Optimization

Letters (2011) 1–9. doi:10.1007/s11590-011-0311-5.
[22] A. Schäfer, Exact algorithms for s-club finding and related problems, Master’s thesis, Diplomarbeit, Institut für Informatik, Friedrich–

Schiller–Universität Jena, 2009.
[23] F.D. Carvalho, M.T. Almeida, Upper bounds and heuristics for the 2-club problem, European Journal of Operational Research 210 (2011) 489–494.
[24] M.T. Almeida, F.D. Carvalho, The k-club problem: new results for k = 3, Technical Report CIO Working Paper 3/2008, CIO-Centro de Investigação

Operacional, 2008.
[25] A. Veremyev, V. Boginski, Identifying large robust network clusters via new compact formulations of maximum k-club problems, European Journal of

Operational Research 218 (2012) 316–326.
[26] M. Yannakakis, Node-and edge-deletion NP-complete problems, in: STOC’78: Proceedings of the 10th Annual ACM Symposium on Theory of

Computing, ACM Press, New York, NY, 1978, pp. 253–264.
[27] J.G. Oxley, Matroid Theory, Oxford University Press, Oxford, UK, 1992.
[28] R. Euler, M. Jünger, G. Reinelt, Generalizations of cliques, odd cycles and anticycles and their relation to independence system polyhedra, Mathematics

of Operations Research 12 (1987) 451–462.
[29] S.P. Borgatti, M.G. Everett, L.C. Freeman, UCINET 5 for Windows: Software for Social Network Analysis-User’s Guide, Analytic Technologies, 1999,

Accessed Jan 2010 http://www.analytictech.com/ucinet6/Ucinet_Guide.doc.
[30] R. Carraghan, P. Pardalos, An exact algorithm for the maximum clique problem, Operations Research Letters 9 (1990) 375–382.
[31] P.R.J. Östergård, A fast algorithm for the maximum clique problem, Discrete Applied Mathematics 120 (2002) 197–207.
[32] S.T. McCormick, Optimal approximation of sparse hessians and its equivalence to a graph coloring problem, Mathematical Programming 26 (1983)

153–171.
[33] D. Brélaz, New methods to color the vertices of a graph, Communications of the ACM 22 (1979) 251–256.

http://dx.doi.org/doi:10.1007/s11590-011-0311-5
http://www.analytictech.com/ucinet6/Ucinet_Guide.doc

	On inclusionwise maximal and maximum cardinality  k -clubs in graphs
	Introduction
	Previous work and our contributions

	NP-completeness of  k -club maximality testing
	Nonhereditary properties and maximality by inclusion
	Graphs with a polynomial time algorithm for finding maximal  k -clubs
	Bounding strategies for the  k -club number of a graph
	Distance  k -coloring based upper-bounding technique
	Bounded enumeration based lower-bounding technique

	Branch-and-bound framework to find the  k -club number of a graph
	Implementation details and computational test results
	Experiments with the lower-bounding techniques
	Experiments with the branch-and-bound framework

	Conclusion
	Acknowledgments
	References


