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Network robustness issues are crucial in a variety of application areas. In many situations, one of the key
robustness requirements is the connectivity between each pair of nodes through a path that is short
enough, which makes a network cluster more robust with respect to potential network component dis-
ruptions. A k-club, which by definition is a subgraph of a diameter of at most k, is a structure that
addresses this requirement (assuming that k is small enough with respect to the size of the original net-
work). We develop a new compact linear 0–1 programming formulation for finding maximum k-clubs
that has substantially fewer entities compared to the previously known formulation (O(kn2) instead of
O(nk+1), which is important in the general case of k > 2) and is rather tight despite its compactness. More-
over, we introduce a new related concept referred to as an R-robust k-club (or, (k,R)-club), which naturally
arises from the developed k-club formulations and extends the standard definition of a k-club by explic-
itly requiring that there must be at least R distinct paths of length at most k between all pairs of nodes. A
compact formulation for the maximum R-robust k-club problem is also developed, and error and attack
tolerance properties of the important special case of R-robust 2-clubs are investigated. Computational
results are presented for multiple types of random graph instances.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Large-scale complex networks play a crucial role in a great vari-
ety of areas nowadays. Although a significant amount of work has
been done on studying structural properties of networks in terms
of their connectivity, the research on various characteristics of
complex networks is far from complete. In addition to the large-
scale and complex nature of networks, one often needs to deal with
uncertain potential disruptions that can interfere with the opera-
tion of a networked system. These issues can be caused by a variety
of factors, including man-made and natural disruptions, which
may result in failures of components (nodes and/or edges) in the
network.

A natural approach to taking into account potential multiple
network component failures is to consider robust network clusters
that ensure a sufficient degree of ‘‘robust connectivity’’ between
the nodes. Note that the conventional definition of connectivity
(e.g., the existence of a path between every two nodes) may not
provide the required robustness characteristics, since a long path
between a pair of nodes can make the connection vulnerable,
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especially if every node and/or edge in the path can potentially fail.
In this context, the shorter the path between every pair of nodes is,
the more ‘‘robust’’ the corresponding network structure becomes
(although special cases of ‘‘vulnerable’’ networks with short con-
nectivity paths can still be constructed). However, the robustness
characteristics can be substantially improved if there are multiple
distinct paths between every pair of nodes. This would ensure that
a network cluster stays connected even if some nodes and/or edges
are deleted from the network.

Clearly, a clique is a very robust network structure in the afore-
mentioned context, since every two nodes in a clique are directly
connected by an edge. It is easy to see that the deletion of any
number of nodes from a clique would not violate the clique struc-
ture of the remaining nodes. Moreover, a clique with q nodes is
guaranteed to remain a connected network if at most q � 2 edges
are randomly deleted.

There has been a lot of work related to various aspects of finding
large cliques in networks (for an extensive review of the maximum
clique problem see Bomze et al., 1999). However, in most practical
situations, cliques are overly restrictive structures, since it is chal-
lenging to construct a network with all the possible connections
in the presence of obstacles and other limitations in real-life situ-
ations. Therefore, several concepts referred to as clique relaxations
have been introduced. The main idea behind these concepts is to
‘‘relax’’ certain properties of a clique while still maintaining
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sufficient connectivity and robustness characteristics of the ob-
tained network structures. Note that in many cases the maximum
size of these clique relaxations is substantially larger than the max-
imum size of cliques in the same network, which provides a signif-
icant advantage in situations when large robust clusters need to be
identified.

The ideas for these clique relaxations originally come from the
study of social networks; however, these definitions can be utilized
in a variety of other application areas, such as communication/infor-
mation exchange networks, energy networks, etc. There are three
main directions for possible relaxations of the clique definition:

1. Density-based relaxations – relaxing the requirement for the
edge density of a clique to be 1: quasi-cliques (c – dense sub-
graphs) (Abello et al., 2002);

2. Degree-based relaxations – relaxing the requirement for the
degree of each node in a clique of size q to be q � 1: k-plexes
(Seidman and Foster, 1978);

3. Path (diameter)-based relaxations – relaxing the requirement for
the length of the path between any two nodes in a clique to be
1: k-cliques (Luce, 1950) and k-clubs (Mokken, 1979).

A quasi-clique (also referred to as a c-dense subgraph) is a sub-
graph that has the edge density of at least c, where c 2 (0,1].
Clearly, a quasi-clique becomes a clique if c = 1. A k-plex is a sub-
graph in which the degree of each node is at least q � k (assuming
that q is the number of nodes in this subgraph). A k-clique is a sub-
graph where the length of the path between any two nodes is at
most k (note that in this definition other nodes in this path are
not required to belong to the k-clique), whereas a k-club is a sub-
graph that has a diameter of at most k (in this definition, all the
nodes in the shortest path connecting any given pair of nodes with-
in a k-club have to also belong to this k-club). Obviously, for k = 1, a
k-plex, a k-clique or a k-club would also be a clique.

Although these definitions are rather straightforward and intu-
itively clear, mathematically rigorous studies on related optimiza-
tion aspects (e.g., mathematical programming formulations for
finding the largest clique relaxations in graphs) have started to ap-
pear only within the past few years. The compact linear 0–1 formu-
lation for the maximum quasi-clique problem with O(n) variables
and constraints has been developed by Pattillo et al. (2011). The
maximum k-plex problem has been addressed by Balasundaram
et al. (2011), where they provide the most compact formulation
with n variables and constraints.

In this paper, we will concentrate on the third type of clique
relaxations mentioned above and develop new compact formula-
tions for the maximum k-club problem. Due to the above consider-
ations, a k-club can be viewed as a ‘‘tighter’’ structure than a
k-clique; therefore, it is more applicable for connectivity and clus-
tering problems on networks where robustness issues play an
important role. For instance, in the context of real-life sparse net-
works (e.g., communication networks), identifying the maximum
k-club would mean identifying the largest possible cluster in a net-
work that can serve as a system of communication ‘‘hubs’’ that are
connected and have short transmission paths between each other.
In many other applications (e.g., network-based data mining),
maximal k-clubs would denote large tightly connected clusters.

In the next sections, we will present more rigorous definitions
of the concepts used in this paper and describe the new compact
formulations of the maximum k-club problem. As an alternative
to the approach of directly formulating the linear 0–1 problem
with O(nk+1) entities used by Bourjolly et al. (2002) and Balasunda-
ram et al. (2005), our approach will be based on formulating a pre-
liminary non-linear 0–1 problem for finding the maximum k-club,
and then utilizing the structure of the problem to formulate it as a
linear 0–1 problem with O(kn2) entities. Approaches of linearizing
non-linear 0–1 problems can potentially be efficient for certain
classes of problems. Specifically, linearization techniques for qua-
dratic/polynomial 0–1 (Adams and Forrester, 2007; Cha-
ovalitwongse et al., 2004; Glover and Woolsey, 1974) and
fractional 0–1 (Wu, 1997; Prokopyev et al., 2005) problems have
been addressed in the literature. In this paper, we will demonstrate
that for the considered class of maximum k-club problems efficient
linearization techniques that use the special structure of k-clubs
can be developed.

Further in this paper, we will also define the new concept of an R-
robust k-club, which naturally arises from the developed k-club for-
mulation and provides an additional degree of robustness for the
considered network clusters. In addition, we will consider an impor-
tant special case of an R-robust 2-club and demonstrate its attractive
properties of error and attack tolerance. We will also present com-
putational results for different types of networks that can be repre-
sented by power-law, uniform and other random graph models.
2. Notations, definitions, and previous work

To facilitate further discussion, we will use the following defini-
tions and notations. Denote by G = (V,E) a simple undirected graph
with the set of n vertices (nodes) V and the set of edges (links) E. Let
A = {aij}i, j=1,. . .,n be the adjacency matrix of G, which is an n � n 0–1
matrix, where an element aij = 1 if there is an edge (undirected arc)
between nodes i and j, and aij = 0 otherwise. Let dG(i, j) be the length
of a shortest path between vertices i and j in G and d(G) = maxi,j2Vd-
G(i, j) be the diameter of G.

For a subset of vertices S # V, G(S) denotes the subgraph in-
duced by S on G, G(S) = (S,S � S \ E). A clique C is a subset of V such
that the subgraph G(C) induced by C on G has all possible edges.
Clearly, the diameter of any clique is 1, since all pairs of vertices
are directly connected.

As mentioned in the previous section, a k-club is a diameter-
based clique relaxation, and in terms of the above notations, it
can be formally defined as a subset of vertices S # V such that
the diameter of induced subgraph G(S) is at most k. The maximum
k-club problem is computationally challenging, and the decision
version of this problem has been shown to be NP-complete (Balas-
undaram et al., 2005).

The only previously known mathematical programming formu-
lation for the general case (k > 2) of the maximum k-club problem
has been proposed in Bourjolly et al. (2002) and Balasundaram
et al. (2005). Since it will be referred to in the analysis later in this
paper, we briefly outline this formulation before proceeding with
further discussion. For any two vertices i, j 2 V, let Ck

ij be the set of
all paths of length at most k linking i and j, and Vt is the vertex
set of path t. For every i 2 V, let xi be a binary variable equal to 1
if and only if it belongs to solution. Let yt be an auxiliary binary var-
iable associated with every path t 2 [i;j2VC

k
ij ¼ C. Note that

Ck
ij

��� ��� ¼ Oðnk�1Þ, therefore jCj ¼ Oðnkþ1Þ. The problem is then formu-
lated as follows:

max
Xn

i¼1

xi ð1Þ

subject to
X
t2Ck

ij

yt P xi þ xj � 1; 8ði; jÞ R E; Ck
ij – ;;

yt 6 xr ; 8t 2 C;8r 2 Vt ;

xi þ xj 6 1; 8ði; jÞ R E; Ck
ij – ;;

xi; yt 2 f0;1g; 8i 2 V ;8t 2 C:

For k > 2, this linear 0–1 formulation has significant drawbacks: it is
rather extensive and generally requires O(nk+1) entities; moreover,
formulating the constraints requires explicit enumeration of all pos-
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sible paths of length at most k between all pairs of nodes. This makes
solving the maximum k-club problem using this formulation rather
challenging and in many cases computationally intractable even for
small values of k (e.g., k = 3,4,5, . . .). Clearly, as k increases, the num-
ber of entities in this formulation would become extremely large.

In the next sections, we present a new, substantially more com-
pact, linear 0–1 formulation for the maximum k-club problem,
which requires O(kn2) entities. Computational experiments with
the corresponding LP relaxations have also shown that the pro-
posed formulation is also rather tight, as the relative gap between
exact and LP relaxation objective values does not exceed 1% in
many instances, especially those with larger k (this will be dis-
cussed in more detail in Section 3.4).

In addition, will also extend the proposed formulation to re-
quire the paths between all pairs of nodes to be distinct, which
adds extra robustness properties to the considered k-club struc-
tures. This consideration will motivate us to introduce the new def-
inition of an R-robust k-club and to develop a compact linear
integer formulation for the maximum R-robust k-club problem.

3. Compact maximum k-club formulation

For the purposes of consistency and clarity, we will start the
discussion with the description of the preliminary formulations
of several special cases, namely, the maximum 2 and 3 – clubs.
We will then proceed with the formulation for the general case
of the maximum k-club problem and show how to reduce the
number of entities in the linear formulation to O(kn2).

3.1. Preliminary formulations: maximum 2, 3, k-club problems

3.1.1. Preliminary formulation of the maximum 2-club problem
Consider a simple undirected graph G = (V,E) with n nodes as

discussed in the previous section, and let A be the adjacency matrix
of G.

Now, consider a problem of finding a maximum 2-club in this
graph. Suppose we pick some subgraph Gs, and we want to check
whether this subgraph is a 2-club. For these purposes we define
x = (x1, . . . ,xn) to be a 0–1 vector with xi = 1 if node i belongs to
Gs, and xi = 0 otherwise.

The subgraph Gs is a 2-club if its diameter is less than or equal to
2. In other words, every pair of nodes (i, j) is connected directly, or
through some other node k. Such a connection of nodes (i, j) can be
easily formulated in terms of the following constraint:

aij þ
Xn

k¼1

aikakjxk P xixj;

Using the simple linearization, the problem of finding the max-
imum 2-club in the graph G can be formulated as

max
Xn

i¼1

xi

subject to aij þ
Xn

k¼1

aikakjxk P xi þ xj � 1;

xi 2 f0;1g;
where i = 1, . . . ,n; j = i + 1, . . . ,n.

Let d(i) = {j:aij = 1} be a neighborhood of node i. Using this defi-
nition, the problem formulation can be rewritten as

max
Xn

i¼1

xi

subject to
X

k2dðiÞ\dðjÞ
xk P xi þ xj � 1;

xi 2 f0;1g;
where i = 1, . . . ,n; j = i + 1, . . . ,n; j R d(i).
The number of constraints in this formulation depends on the
edge density of the graph G, and all the formulations presented be-
low can also be easily rewritten in terms of d(i) notations to reduce
the number of entities. This might be useful for computational pur-
poses, but for simplicity of understanding we keep formulations in
the presented format.

3.1.2. Preliminary formulation of the maximum 3-club problem
Using the same logic, we can formulate the maximum 3-club

problem as follows:

max
Xn

i¼1

xi

subject to aij þ
Xn

k¼1

aikakjxk þ
Xn

k¼1

Xn

m¼1

aikakmamjxkxm P xi þ xj � 1;

xi 2 f0;1g;

where i = 1, . . . ,n; j = i + 1, . . . ,n.
This is the problem with a linear objective and quadratic con-

straints. In a standard and straightforward linearization approach
(a more efficient alternative to this approach will be proposed later
in the paper), one can introduce new variables wij = xixj to linearize
this problem as follows:

max
Xn

i¼1

xi

subject to aij þ
Xn

k¼1

aikakjxk þ
Xn

k¼1

Xn

m¼1

aikakmamjwkm P xi þ xj � 1;

wij 6 xi; wij 6 xj; wij P xi þ xj � 1;
xi;wij 2 f0;1g;

where i = 1, . . . ,n; j = i + 1, . . . ,n. This formulation is linear and con-
tains O(n2) 0–1 variables and O(n2) constraints.

3.1.3. Preliminary formulation of the maximum k-club problem
Using the similar logic and notations as above, the maximum k-

club problem can be represented as:

max
Xn

i¼1

xi

subject to aijþ
Xn

k¼1

aikakjxkþ
Xn

k¼1

Xn

m¼1

aikakmamjxkxm

þ
Xn

k¼1

Xn

m¼1

Xn

t¼1

aikakmamtatjxkxmxtþ���

þ
Xn

i1¼1

Xn

i2¼1

. . .
Xn

ik�2¼1

Xn

ik�1¼1

aii1 ai1 i2 . . .aik�2 ik�1
aik�1 jxi1 . . .xik�1

P xiþxj�1;

xi 2f0;1g;

where i = 1, . . . ,n; j = i + 1, . . . ,n.
This formulation can be also linearized and simplified using the

same standard approaches as above, and the resulting linear for-
mulation will have O(nk�1) variables and constraints. However, in
the next section, we will show that the size of this formulation
can be substantially reduced by applying a more efficient lineariza-
tion technique that employs the special structure of k-clubs.

3.2. Compact linear integer programming formulation of the
maximum k-club problem

In this section, we describe how to linearize the maximum k-
club problem in order to obtain a more compact formulation. The
idea of this linearization is to define new variables wðlÞij ði; j ¼
1; . . . ;n; l ¼ 2; . . . ; kÞ, representing the number of distinct paths of
distance l from node i to j in the subgraph Gs(x) defined by vector
(x1, . . . ,xn). If node i or j does not belong to Gs(x), then wðlÞij ¼ 0.
We show that there are only O((k � 1)n2) variables and constraints.
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For l = 2 we can write

wð2Þij ¼ xixj

Xn

k¼1

aikakjxk:

Since wð2Þij 6 n, we can linearize it as follows:

wð2Þij 6
Xn

k¼1

aikakjxkþnð2� xi� xjÞ; wð2Þij P
Xn

k¼1

aikakjxk�nð2� xi� xjÞ;

wð2Þij 6 nxi; wð2Þij P�nxi; wð2Þij 6 nxj; wð2Þij P�nxj:

Other additional variables wðlÞij can be found recursively, since

wðlÞij ¼ xi

Xn

k¼1

wðl�1Þ
kj aik:

Similarly, using the fact that wðlÞij 6 nl�1 we can linearize it as

wðlÞij 6
Xn

k¼1

wðl�1Þ
kj aik þ nl�1ð1� xiÞ; wðlÞij P

Xn

k¼1

wðl�1Þ
kj aik � nl�1ð1� xiÞ;

wðlÞij 6 nl�1xi; wðlÞij P �nl�1xi:

Putting all these constraints together, the maximum k-club problem
can be formulated as

max
Xn

i¼1

xi

subject to
Xk

l¼2

wðlÞij P xi þ xj � 1; i ¼ 1; . . . ;n; j R dðiÞ;

wð2Þij 6
Xn

k¼1

aikakjxk þ nð2� xi � xjÞ;

wð2Þij P
Xn

k¼1

aikakjxk � nð2� xi � xjÞ;

wð2Þij 6 nxi; wð2Þij P �nxi; wð2Þij 6 nxj; wð2Þij P �nxj

and for l = 3, . . . ,k

wðlÞij 6
Xn

k¼1

wðl�1Þ
kj aik þ nl�1ð1� xiÞ; wðlÞij P

Xn

k¼1

wðl�1Þ
kj aik � nl�1ð1� xiÞ;

wðlÞij 6 nl�1xi; wðlÞij P �nl�1xi;

xi 2 f0;1g; wij 2 Zþ:

where i, j = 1, . . . ,n.

3.3. Compact linear 0–1 formulation of the maximum k-club problem

In this subsection we further refine the compact linear integer
programming formulation described above and transform that for-
mulation to an equivalent linear 0–1 programming problem. Recall
that wðlÞij ; ði; j ¼ 1; . . . ;n; l ¼ 2; . . . ; kÞ represents the number of dis-
tinct paths of length l from node i to j in the subgraph Gs(x) defined
by the 0–1 vector (x1, . . . ,xn). It means that wðlÞij is a non-negative
integer variable with the upper bound of nl�1. However, in the con-
text of the standard maximum k-club problem, we do not need to
know the number of distinct paths of distance l from node i to j in
the subgraph Gs(x). In this sense, these variables contain a lot of
‘‘unnecessary’’ information. Since we only need to check if there
is at least one path of length l between nodes i and j, the only infor-
mation we need to know about the variable wðlÞij is whether it has a
zero or a nonzero value.

To address this consideration, we define 0–1 variables
v ðlÞij ; ði; j ¼ 1; . . . ;n; l ¼ 2; . . . kÞ as follows: v ðlÞij ¼ 1 if there exists at
least one path of length l from node i to j in the subgraph Gs(x) de-
fined by vector (x1, . . . ,xn), and v ðlÞij ¼ 0 otherwise.
For l = 2, we can write

v ð2Þij ¼ min xixj

Xn

k¼1

aikakjxk;1

( )
:

This equality can be linearized as follows:

v ð2Þij 6 xi; v ð2Þij 6 xj;

v ð2Þij 6
Xn

k¼1

aikakjxk; v ð2Þij P
1
n

Xn

k¼1

aikakjxk

 !
þ ðxi þ xj � 2Þ;

where v ð2Þij is a 0–1 variable for any 1 6 i < j 6 n. Other additional
variables can be found recursively, since

v ðlÞij ¼min xi

Xn

k¼1

v ðl�1Þ
kj aik;1

( )
:

Similarly, we can linearize it as

v ðlÞij 6 xi; v ðlÞij 6
Xn

k¼1

aikv ðl�1Þ
kj ; v ðlÞij P

1
n

Xn

k¼1

aikv ðl�1Þ
kj

 !
þ ðxi � 1Þ;

where v ðlÞij is a 0–1 variable for any 2 6 l 6 k and 1 6 i < j 6 n.
Putting all these constraints together, the maximum k-club

problem can now be formulated as the following linear 0–1
problem:

max
Xn

i¼1

xi

subject to

Xk

l¼2

v ðlÞij P xi þ xj � 1; i ¼ 1; . . . ;n; j R dðiÞ

for j > i = 1, . . . ,n,

v ð2Þij 6 xi; v ð2Þij 6 xj; v ð2Þij 6
Xn

k¼1

aikakjxk;

v ð2Þij P
1
n

Xn

k¼1

aikakjxk

 !
þ ðxi þ xj � 2Þ;

and for l = 3, . . . ,k; j > i = 1, . . . ,n,

v ðlÞij 6 xi; v ðlÞij 6
Xn

k¼1

aikv ðl�1Þ
kj ; v ðlÞij P

1
n

Xn

k¼1

aikv ðl�1Þ
kj

 !
þ ðxi � 1Þ;

xi;v ðlÞij 2 f0;1g; i; j ¼ 1; . . . ;n; l ¼ 2; . . . ; k:

It should be noted that for tightness purposes 1/n in the above
constraints can be substituted for

1Pn
k¼1aikakj

:

Although we will use these tighter constraints for computa-
tional studies, for the sake of readability we will continue further
discussion in the next sections using the problem formulation in
the previous format.

3.4. Tightness of maximum k-club linear 0–1 problem formulations

Before proceeding with further material, an important issue
that needs to be discussed here is the tightness of different linear
0–1 formulations of the maximum k-club problem. As mentioned
above, the previously developed linear 0–1 formulation (1) with
O(nk+1) entities was proposed in Bourjolly et al. (2002) and Balas-
undaram et al. (2005), and it would be interesting to compare
the tightness of LP relaxations for that formulation and the one
proposed in this paper (note that this comparison would be
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significant for larger values of k, since for k = 2 the two formula-
tions are essentially the same, as formulation (1) can be simplified
for this special case).

One can hypothesize that formulation (1) is tight due to the
large number of constraints; however, it is computationally chal-
lenging to verify it directly by performing any meaningful compu-
tational experiments and obtain exact 0–1 and LP relaxation
solutions for this formulation for non-trivial problem instances
(i.e., connected graphs that are large enough, so that the maximum
k-clubs for larger k do not coincide with the whole graph). For in-
stance, for k P 4 and n P 100 (which is a reasonable ‘‘lower end’’
of the order of magnitude for n to produce non-trivial solutions
for relatively small values of k), the corresponding problems would
contain at least around 1010 entities, and for slightly larger values
of n and k (e.g., n = 100, k = 7), the size of the problems would grow
to around 1016 entities, which makes not only the 0–1 problems,
but also their LP relaxations, computationally intractable even for
the considered relatively small values of n and k.

It should be also mentioned that neither the linear 0–1 formu-
lation (1) from Bourjolly et al. (2002) and Balasundaram et al.
(2005), nor its LP relaxation, was ever implemented for any graph
instances in the previous literature (note that one needs to explic-
itly enumerate all the paths of length no more than k between all
pairs of nodes in order to just formulate the problem for each spe-
cific instance, which makes it rather challenging to implement this
formulation even before solving the problem). Bourjolly et al.
(2002) used an exact algorithm based on DROP (a heuristic devel-
oped in an earlier work by the same authors in Bourjolly et al.
(2000)) for solving the maximum k-club problem in their compu-
tational experiments. The reported computational experiments
suggested that this exact algorithm works well for k = 2 in graphs
with up to 200 nodes; however, for k = 3 and k = 4 the algorithm
was consistently able to handle only the graphs with up to
Table 1
Average exact size of the maximum k-club (k = 2, . . . ,7) for the considered random graph ins
linear 0–1 problem, and average tightness calculated as the relative gap between the e
percentage means that the LP relaxation objective was exactly equal to n/2, as is the case fo
n/2. As mentioned in Section 3.4, this gap is not worse than the relative LP relaxation gap

Graph parameters Maximum k-club size, CPU time, and LP

2 3

n = 100 p̂ ¼ 2% 7.3 12.2
0.9 s 2.9 s
85.4%⁄ 75.6%⁄

p̂ ¼ 3% 8.8 16.3
1.0 s 5.8 s
82.4%⁄ 67.4%⁄

p̂ ¼ 4% 10.6 21.1
1.1 s 14.4 s
78.8%⁄ 57.8%⁄

n = 200 p̂ ¼ 1% 7.9 12.6
6.5 s 15.3 s
92.1%⁄ 87.4%⁄

p̂ ¼ 1:5% 9.5 16.6
7.3 s 27.8 s
90.5%⁄ 83.4%⁄

p̂ ¼ 2% 11.5 20.4
8.9 s 77.8 s
88.5%⁄ 79.6%⁄

n = 300 p̂ ¼ 0:5% 7.0 10.0
20.1 s 36.9 s
95.3%⁄ 93.3%⁄

p̂ ¼ 1:0% 10.3 17.4
23.8 s 66.8 s
93.1%⁄ 88.4%⁄

p̂ ¼ 1:5% 12.8 25.1
30.6 s 285.6 s
91.5%⁄ 83.3%⁄
n = 100 nodes, and no computational results were reported for
for k > 4 (this may be partially due to the fact that the performance
of the algorithm depends on the quality of bounds produced by the
DROP heuristic, and this quality may be affected by larger values of
n and k). Balasundaram et al. (2005) used the special case of both
formulations with k = 2 for their computational experiments; how-
ever, for k > 2, another (simpler) formulation for the maximum k-
clique problem was used in order to find the maximum 3-clique
(which coincidentally was also a 3-club) in the S. Cerevisiae net-
work (this network will be considered in Section 5).

Unlike formulation (1), the formulation proposed in this paper,
as well as its LP relaxation, is easily implementable and contains a
reasonable number of entities for the same ranges of n and k as
mentioned above in this subsection. Detailed computational re-
sults summarizing the exact and LP relaxation solutions for multi-
ple problem instances will be presented in Section 5. Interestingly,
in many considered instances (especially for k = 5,6,7), the tight-
ness of our formulation (i.e., the relative gap between exact and
LP relaxation objective values) is within a few percent, which
shows that the proposed formulation is not only compact, but also
rather tight, especially for more computationally challenging cases
with larger values of k.

In addition to the computational analysis, it is also important to
observe some general properties of the LP relaxations of both con-
sidered linear 0–1 formulations, which hold for any graph, regard-
less of n and k. Specifically, one can easily verify that xi = 0.5,
"i = 1, . . . ,n is a feasible solution for both the formulation proposed
in this paper and the formulation (1) by Bourjolly et al. (2002),
which implies that the optimal objective values for initial LP relax-
ations for both formulations are at least n/2. Therefore, it is clear
that both formulations will generally be not very tight for all prob-
lem instances with the size of the maximum k-club not exceeding
n/2 (i.e., for larger values of n and/or smaller values of k). For all
tances (10 instances for each combination of n; p̂), the average CPU time for solving the
xact and the LP relaxation objective values. An asterisk (*) next to the relative gap
r all considered problem instances with the exact maximum k-club size not exceeding
in formulation (1) by Bourjolly et al. (2002).

gap (%), for k = � � �

4 5 6 7

21.1 31.4 44.1 55.7
5.1 s 8.5 s 12.9 s 15.1 s
57.8%⁄ 37.2%⁄ 16.4%⁄ 1.6%
32.3 57.3 78.1 88.3
15.4 s 35.7 s 27.7 s 45.1 s
35.4%⁄ 2.7% 0.1% 0.0%
52.4 85.5 95.5 97.9
51.3 s 21.6 s 37.2 s 62.7 s
7.9% 0.1% 0.0% 0.0%

23.8 35.6 55.4 80.5
19.5 s 77.9 s 151.4 s 364.6 s
76.2%⁄ 64.4%⁄ 44.6%⁄ 21.5%⁄

34.8 62.0 117.0 158.9
74.5 s 760.8 s 1022.8 s 554.4 s
65.2%⁄ 38.0%⁄ 2.7% 0.1%
48.6 133.4 183.2 193.3
1259.7 s 940.1 s 472.5 s 879.9 s
51.4%⁄ 3.4% 0.0% 0.0%

15.9 21.3 29.2 36.5
48.0 s 56.7 s 83.4 s 111.3 s
89.4%⁄ 85.8%⁄ 80.5%⁄ 75.7%⁄

37.8 60.7 123.4 207.1
175.4 s 1633.2 s 26532.5 s 19934.1 s
74.8%⁄ 59.5%⁄ 18.3%⁄ 0.7%
62.0 187.4 275.4 292.5
5599.4 s 34475.1 s 2334.7 s 4782.4 s
58.7%⁄ 5.3% 0.0% 0.0%



A. Veremyev, V. Boginski / European Journal of Operational Research 218 (2012) 316–326 321
such instances, the lower bound on the relative LP relaxation gap
for both formulations is essentially determined by the structure
of each specific graph and the corresponding maximum k-club size.

Furthermore, as it will be indicated in Section 5, computational
experiments suggest that the optimal objective value for the LP
relaxation of the proposed formulation is always exactly equal to
n/2 for all considered instances with the maximum k-club not
exceeding n/2. Although it is not clear if this holds for all such in-
stances, since a formal proof is challenging due to a rather complex
recursive nature of the constraints in this formulation, the con-
ducted computational study (90 graph instances and 540 problem
instances, as outlined in Section 5) suggests that our formulation is
generally at least as good (or, at the very least, not substantially
worse) than the one by Bourjolly et al. (2002) in terms of tightness
due to the following summarizing arguments:

� For all instances with size of the maximum k-club not exceeding
n/2, the optimal LP relaxation objective for our formulation (n/2,
with xi = 0.5 "i = 1, . . . ,n) is equal to the lower bound for the
optimal LP relaxation objective of the formulation by Bourjolly
et al. (2002), since xi = 0.5 "i = 1, . . . ,n is also feasible for that
formulation;
� For all instances with the size of the maximum k-club exceeding

n/2, the average relative gap between the exact and LP relaxa-
tion objectives for our formulation is very small, and for some
instances it is exactly equal to 0% (see Table 1).

As a concluding remark of this section, we mention that
although it is generally beneficial to have a tight formulation for
a problem, solving the LP relaxation by itself will not necessarily
help one to identify the exact set of nodes that are included into
the maximum k-club, as it will only provide an upper bound on
the maximum k-club cardinality. Therefore, the main emphasis of
this paper is still on providing a linear 0–1 formulation for the con-
sidered problem that would be computationally tractable and able
to obtain exact optimal solutions in a reasonable time at least for
moderate-size graph instances. Later in this paper, we present
the results of computational experiments that demonstrate that
this is indeed the case, even for larger values of k (up to k = 7).
As it will be discussed in Section 5, the CPU time does not signifi-
cantly increase with k for the considered graphs. This attractive
characteristic allowed us to perform the the first known computa-
tional experiments that produced exact solutions to the maximum
k-club problems for k = 5,6,7 in graphs with up to 300 nodes, which
is a substantial improvement over all previously reported compu-
tational results in terms of both n and k.
4. R-robust k-clubs

Before presenting the computational results for the proposed
formulation and its LP relaxation, we define and analyze an impor-
tant extension of the standard k-club concept, which naturally fol-
lows from the above material.

Due to the network robustness considerations discussed in the
introductory sections of this paper, we note that the existence of a
‘‘short’’ path between any two nodes in a k-club (for relatively
small values of k) is a useful property in terms of robustness char-
acteristics; however, the main drawback of the standard definition
of a k-club is that the considered paths are not required to be dis-
tinct, which means that k-clubs can still be vulnerable to targeted
attacks that destroy appropriate network components. To address
this drawback, we propose to define another type of network clus-
ters, which have a property that multiple short paths exist between
any pair of nodes. More formally, we define a subgraph Gs to be an
R-robust k-club (or, a (k,R)-club) if there are at least R internally
node-disjoint paths of length at most k between every pair of nodes
in the subgraph Gs. It should be noted that although network clus-
ters that have this property have good attack tolerance character-
istics, developing mathematical programming techniques for
finding the exact solution of the maximum (k,R)-club problem is
not an easy task. To relax this definition, one can introduce alterna-
tive requirements for disjoint paths, such as: (1) internally edge-dis-
joint paths that may share common nodes; or (2) paths that have a
difference in at least one edge.

Here and further in the paper, we will consider R-robust k-clubs
in the context of the latter (relaxed) definition, that is, two paths
are considered distinct if they have a difference in at least one edge.
As it will be shown below, the aforementioned formulation for the
maximum k-club problem can be directly generalized to this defi-
nition of an R-robust k-club; however, it cannot be extended to R-
robust k-clubs with internally node-disjoint paths. Despite the dif-
ficulties in dealing with the general case of the problem, it is
important to note that for the special case of an R-robust 2-club,
all of the above definitions of disjoint paths are equivalent, which
means that in this case one can just assume that two paths are dis-
tinct if they have a difference in at least one edge, and this would
automatically imply that these paths are node-disjoint and edge-
disjoint.

In this section, we introduce a compact formulation for the
maximum R-robust k-club problem in the relaxed form. We will
show that it can be derived from the maximum k-club problem for-
mulation presented above. Furthermore, we will formally discuss
certain robustness properties of the aforementioned special case
of R-robust 2-clubs, which address the issues of error/attack toler-
ance (i.e., the resiliency to potential multiple failures of nodes
and/or edges in a network).

4.1. Maximum R-robust k-club problem

Here we provide a compact linear integer formulation for the
problem of finding a maximum R-robust k-club in the context of
the relaxed definition mentioned above. Recall that when we for-
mulated the maximum k-club problem we used variables
wðlÞij ði; j ¼ 1; . . . ;n; l ¼ 2; . . . ; kÞ, which represent the number of dis-
tinct paths of distance l from node i to j in the subgraph Gs(x) de-
fined by vector (x1, . . . ,xn). Thus, the problem formulation of
finding the maximum R-robust k-club is very similar to the prob-
lem of finding the maximum k-club with the only difference that
we require

aij þ
Xk

l¼2

wðlÞij P Rðxi þ xj � 1Þ; i < j ¼ 1; . . . ;n;

instead of

Xk

l¼2

wðlÞij P xi þ xj � 1; i ¼ 1; . . . ;n; j R dðiÞ:

Thus, the problem formulation can be written as follows:

max
Xn

i¼1

xi

subject to aij þ
Xk

l¼2

wðlÞij P Rðxi þ xj � 1Þ;

wð2Þij 6
Xn

k¼1

aikakjxk þ nð2� xi � xjÞ;

wð2Þij P
Xn

k¼1

aikakjxk � nð2� xi � xjÞ;

wð2Þij 6 nxi; wð2Þij P �nxi; wð2Þij 6 nxj; wð2Þij P �nxj
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and for l = 3, . . . ,k

wðlÞij 6
Xn

k¼1

wðl�1Þ
kj aik þ nl�1ð1� xiÞ; wðlÞij P

Xn

k¼1

wðl�1Þ
kj aik � nl�1ð1� xiÞ;

wðlÞij 6 nl�1xi; wðlÞij P �nl�1xi;

xi 2 f0;1g; wij 2 Zþ;

where i, j = 1, . . . ,n.
Note that the recursive method of calculating variables does not

allow us to extend this formulation and require all paths to be
node-disjoint. Clearly, the existence of certain number of node-dis-
joint paths is more desirable in practice, since it guarantees that
this cluster has the certain level of attack tolerance. In the next sec-
tion we will consider a special case with k = 2 where the node dis-
joint requirement is satisfied.

4.2. Important special case: R-robust 2-clubs

As it was noted above, in the case of R-robust 2-clubs, any two
nodes will have at least R completely distinct paths connecting
them; that is, these paths will not have any edges/nodes in com-
mon. As it will be shown in the next subsection, R-robust 2-clubs
have very attractive error and attack tolerance properties. Before
we proceed with these considerations, we present the formulation
of the maximum R-robust 2-club problem, which in this special
case will have only 0–1 variables, rather than integer variables
for the general case of the maximum R-robust k-club problem (in
the relaxed form) considered above.

The formulation of this problem is rather compact and can be
written as follows:

max
Xn

i¼1

xi

subject to aij þ
Xn

k¼1

aikakjxk P Rðxi þ xj � 1Þ;

xi 2 f0;1g;

where i = 1, . . . ,n; j = i + 1, . . . ,n.

4.3. Error and attack tolerance properties of R-robust 2-clubs

In this subsection, we consider in detail the properties of an
important special case of R-robust k-clubs – an R-robust 2-club.
As it has been mentioned before, the main attractive feature of
R-robust 2-clubs is the fact that all R paths between any two nodes
will be completely distinct, that is, they will not have any edges/
nodes in common.

An illustrative example of a 2-robust 2-club is given in Fig. 5(b).
If one compares the structure of this 2-robust 2-club to the struc-
ture of the regular 2-club in the same network (see Fig. 5(a)), it can
be easily seen that the deletion of the central node from the 2-club
will completely destroy the connectivity of this cluster; however,
the deletion of any one node or edge from the 2-robust 2-club will
not only preserve the connectivity of this cluster, but it also will not
violate its 2-club structure (i.e., all the remaining nodes will still be
connected through a path of at most two edges).

This observation leads us to some interesting considerations
regarding the error and attack tolerance of R-robust 2-clubs. Attacks
on networks can be defined as ‘‘targeted’’ disruptions that attempt
to destroy certain components of the network (nodes or edges) in
order to interfere with network connectivity. A related notion of er-
rors, which essentially represent random (not targeted) disruptions
of network components, can also be considered. The ability of a
network to maintain certain connectivity characteristics in the
presence of errors and/or attacks is referred to as the error and/or
attack tolerance of a network. A well-known experimental study
of error and attack tolerance of power-law and uniform random
networks with respect to node failures is presented in Albert
et al. (2000).

Clearly, the issue of error and attack tolerance of a network is
important in a variety of applications; moreover, these issues need
to be generalized and considered with respect to both node failures
and edge failures. In this context, the definition of an R-robust 2-
club is attractive, since it explicitly addresses the error and attack
tolerance properties of these network clusters. Specifically, the fol-
lowing facts can be easily established.

Proposition 1. The deletion of any one node from an R-robust 2-club
guarantees that the remaining nodes and edges form at least an
(R � 1)-robust 2-club.
Proposition 2. The deletion of any one edge from an R-robust 2-club
guarantees that the remaining nodes and edges form at least an
(R � 1)-robust 2-club.

From these observations, a more general statement characteriz-
ing error and attack properties of R-robust 2-clubs immediately
follows.

Proposition 3. The deletion of any (R � 1) network components
(nodes and/or edges) from an R-robust 2-club guarantees that the
remaining nodes and edges form a 2-club.

These robustness characteristics are attractive due to the fol-
lowing considerations:

1. Error and attack tolerance properties of R-robust 2-clubs are
similar to those of cliques (the deletion of multiple network
components does not violate the connectivity of a cluster);
however, the size of R-robust 2-clubs is usually larger than
the size of cliques in real-world networks (this is especially true
for power-law networks, which is illustrated by Figs. 2 and
3(a)– (c));

2. The connectivity pattern that is preserved after the deletion of
(R � 1) network components is a 2-club (rather than just a reg-
ular connected component), which ensures that all nodes are
connected by a short path even after multiple network compo-
nent failures;

3. The number of network components that can be deleted with-
out violating the 2-club structure of the considered R-robust
2-club is determined solely by the user-defined parameter R
and does not depend on any other parameters, such as the size
of this R-robust 2-club or the size of the original network.

5. Computational experiments

In this section, we present the summary of computational
experiments conducted using the formulations developed above,
as well as demonstrate that the developed maximum k-club for-
mulation is tight, especially as k increases.

We have performed computational experiments with different
types of random graphs. First, we have considered power-law
and uniform random graph instances and investigated how the
size of the maximum k-clubs and R-robust k-clubs depends on
the parameters of these random graphs. In addition, we have per-
formed the experiments that demonstrate that the computational
tractability of the maximum k-club problem for any specific graph
instance does not significantly depend on k (assuming that k� n),
since the values of k > 2 do not substantially increase the size of
the problem (O(kn2)). This has been demonstrated using random
graph instances consistent with those used in Bourjolly et al.
(2002). As mentioned above, for the previously developed



Fig. 1. Average maximum k-club size for different values of k in a power-law (left) and uniform (right) random graphs with the same number of nodes (n = 100) and the same
edge densities for equal beta and implied beta.

Fig. 2. Comparison of the maximum clique and maximum 2-robust 2-club size in a power-law (left) and uniform (right) random graphs with the same number of nodes
(n = 100) and the same edge densities for equal beta and implied beta.
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formulation of the maximum k-club problem (O(nk+1) entities in
the general case), the size of the problem would increase drasti-
cally for k > 2, and it is challenging and impractical to implement
and use that formulation for any problem instances other than
those with k = 2 (in the special case of k = 2, both formulation ap-
proaches produce the same set of constraints). FICO Xpress-IVE
Version 1.21.02 solver was used for finding exact solutions for
the considered problems on random graph instances presented in
the plots and the table below.

The results of a series of computational experiments on uniform
and power-law random graph instances are presented in Figs. 1
and 2. These plots present the average size of the maximum k-
clubs and 2-robust 2-clubs compared to the maximum clique size
in the corresponding graphs. Note that power-law and uniform
random graph instances were generated so that they would have
the same edge density. Recall that a uniform random graph
G(n,p) has n nodes, where each pair of nodes is connected by an
edge independently with the probability p, whereas in a power-
law graph the probability that a node has a degree k is proportional
to k�b. Clearly, the parameters p and b determine the edge density
of the corresponding uniform and power-law random graph in-
stances; therefore, assuming that the graphs have the same num-
ber of nodes, the parameters b and p can be chosen to ensure
that the power-law and uniform random graph have the same edge
density. That is, for any value of p, there exists a value of b (referred
to as the implied b) that would produce a power-law graph with the
same edge density.

A brief formal description of how an implied b is calculated is
presented below. Given parameters a and b, a power-law graph
has y nodes with degree of x, where y and x satisfy

y ¼ ea

xb
:

Obviously, the maximum degree of that graph cannot be greater
than ea/b. Then, the number of nodes (n) in that graph can be com-
puted as follows

n ¼
Xea=b

x¼1

ea

xb
:

Thus, knowing the values of n and b, we can calculate a. The number
of edges can be calculated as

jEj ¼ 1=2
Xea=b

x¼1

x
ea

xb
:

Note, that in the uniform random graph, the expected number of
edges is

jEj ¼ p
nðn� 1Þ

2
:

Therefore, using the last two formulas, if p is fixed, we can com-
pute b to ensure that the power-law and uniform random graphs
have the same edge density, and vice versa. More details on
power-law random graphs can be found in Chung et al. (2004,
2001).

The figures demonstrate that k-clubs and 2-robust 2-clubs are
generally significantly larger than cliques in both uniform and
power-law random graphs, which motivates the practical signifi-
cance of these types of robust network clusters. Also, an interesting
observation is that the size of the maximum k-clubs decays at a
higher rate for uniform random graphs (the rate appears to be
exponential for uniform random graphs, and power-law with a
thicker tail for power-law random graphs). Fig. 3 shows the maxi-
mum clique and the maximum 2-robust and 3-robust 2-clubs in
the same power-law graph, and it can be seen that 2-robust and
3-robust 2-clubs are substantially larger than the maximum clique.

In the next set of computational experiments we demonstrate
the advantages of the proposed model for solving the maximum
k-club problem for different values of k. As the proposed formula-
tion shows, the number of entities grows linearly as k increases.
Therefore, the computational time of solving the maximum k-club
problem should not vary drastically when k > 2 is still reasonably
small (as is often the case in practical settings). We considered
k = 2, 3, 4, 5, 6, 7 and tested the proposed formulation on randomly
generated 100-, 200-, and 300-node graphs controlled by two den-
sity parameters 0 6 a 6 b 6 1. We used the graph generation pro-
cedure from Gendreau et al. (1993), which was also used by
Bourjolly et al. (2002), in order to generate graphs with greater



Fig. 3. Graphical representation of (a) maximum clique (6 nodes), (b) 2-robust 2-club (19 nodes), and (c) 3-robust 2-club (15 nodes) in the same power-law network with 100
nodes and b = 1.2. The maximum 2-robust and 3-robust 2-clubs are substantially larger than the maximum clique, while they still have good robustness characteristics. The
figures were obtained using Pajek Version 1.26 (2010).

Fig. 4. General view of the protein–protein interaction network of the yeast S.
Cerevisiae.
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variance in node degrees compared to classical uniform random
graphs. The generation procedure is as follows. First, for every va-
lue of i = 1, . . . ,n, the numbers pi are randomly chosen from the
interval [a,b]. Then, the probability pij = (pi + pj)/2 is defined and
an edge (i,j) between nodes i and j in the graph is generated with
probability pij. Therefore, the larger the difference (b � a), the
greater the degree variance in the generated graph. The average
edge density of the generated graph is p̂ ¼ ðaþ bÞ=2. These exper-
iments were performed on a machine with Intel Core i7 CPU X 940
2.13 GHz processor, 8 GB RAM, running 64-bit Windows 7 Profes-
sional operating system.

Table 1 summarizes the computational results. For every pair
ðn; p̂Þ, we generated 10 graph instances (90 graph instances and
540 problem instances total) and reported the average maximum
k-club size, the average CPU time for solving the proposed linear
0–1 formulation, as well as the average tightness for each group
of problem instances (i.e., the average relative gap between the ex-
act 0–1 and the corresponding LP relaxation objective values). The
edge density of the considered graphs was chosen to make sure
that the optimal solutions for all k = 2, . . . ,7 are non-trivial and
do not coincide with the entire graph (as it was also mentioned
in Section 3.4).

Next, we considered a real-world network instance that repre-
sents protein–protein interactions of the yeast S. Cerevisiae. This
is a sparse power-law network with approximately 2,000 nodes
and edges (see Fig. 4). Note that this network has been considered
in (Balasundaram et al., 2005), where the maximum 2-club and the
maximum 3-club (which was obtained using the maximum 3-cli-
que problem formulation) were identified in this network. In this
study, we conducted computational experiments for this network
and found the maximum 2, 3, and 4 – clubs, as well as the maxi-
mum 2-robust 2-club using the proposed formulations. It is worth
mentioning that to our knowledge, this study is the first one that
produced the exact optimal solution of the maximum 4-club prob-
lem in the S. Cerevisiae network.

For computational purposes, we used the following preprocess-
ing procedure to decrease the size of the considered optimization
problems for the S. Cerevisiae network.

1. Identify connected components. Since any k-club is a connected
cluster, then any two nodes in the graph which are discon-
nected cannot belong to any k-club. Thus, any k-club is a subset
of a connected cluster. The connected clusters can be identified
in a polynomial time.



Fig. 5. Graphical representation of maximum 2, 3, and 4 – clubs ((a), (c), and (d)), as well as the maximum 2-robust 2-club (b), in the S. Cerevisiae network. The figures were
obtained using Pajek Version 1.26 (2010).
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2. Ignore any node that cannot belong to a large k-club. This network
is a typical example of a sparse power-law graph. In these
graphs, there are few nodes with large degrees and many nodes
with very low degrees. One can find some large k-club (assume
that its size is Nk) which has a node with the largest degree in
this network and use it as a lower bound on the maximum k-
club. Therefore, any node which has less than Nk k-distant
neighbors (i.e., nodes that are connected with the considered
node through a path of at most k edges) cannot belong to the
maximum k-club. We can ignore these nodes and reduce the
size of the optimization problem.

3. Ignore any node with a degree less than R in the maximum R-
robust 2-club problem. Since any node in an R-robust 2-club
should have a degree of at least R, then we can ignore any node
which has a degree less than R and also reduce the size of the
optimization problem.

The results of these computations are presented in Fig. 5. It can
be easily observed from this figure that the maximum 2, 3, and 4-
clubs are very vulnerable to node deletions (e.g., the deletion of
only one node would violate the cluster connectivity); however,
the maximum 2-robust 2-club would remain a 2-club if any one
node or edge is deleted.

6. Conclusion

In this paper, we have developed a new linear 0–1 program-
ming formulation with O(kn2) entities that allows one to find exact
solutions of the maximum k-club problem in the general case of
k > 2 substantially more efficiently than the previously known ap-
proaches. To the best of our knowledge, no previous studies on ex-
act algorithms for this problem have reported any computational
experiments for problem instances with k P 5, or any computa-
tional experiments with 200- and 300-node graphs for k > 2. Be-
sides the fact that the proposed formulation is compact, the
conducted computational study on a total of 540 problem in-
stances suggests that this formulation is at least as good in terms
of tightness as the formulation described in Bourjolly et al.
(2002) and Balasundaram et al. (2005).

In addition, we have introduced the new concept of an R-robust
k-club and developed the corresponding compact formulations for
certain special cases of the maximum R-robust k-club problem.
Moreover, we have shown that in the special case of R-robust 2-
clubs, one can guarantee and theoretically justify important
robustness characteristics of these network clusters, in particular,
their error and attack tolerance.

Directions of potential further research include more detailed
theoretical analysis of tightness of the two formulations, as well
as developing formulations and solution algorithms for the general
case of the maximum R-robust k-club problem with internally
node-disjoint paths.
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