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Abstract

In this paper, we prove that the maximum k-club problem (MkCP) defined on an undirected graph is NP-hard. We
also give an integer programming formulation for this problem as well as an exact branch-and-bound algorithm and
computational results on instances involving up to 200 vertices. Instances defined on very dense graphs can be solved to
optimality within insignificant computing times. When £ = 2, the most difficult cases appear to be those where the graph

density is around 0.15. © 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The purpose of this article is to develop an
exact branch-and-bound algorithm for the maxi-
mum k-club problem (MACP) defined as follows.
Let G = (V,E) be an undirected connected graph,
where V = {1,...,n} is the vertex set, and the edge
set E'is a subset of {(i,/) : i,/ € V, i < j}. A subset
S of V induces a subgraph H(S) of G defined as
H(S)=(S,F(S)), where F(S)={(i,j) €E:i, j€S}.

* Corresponding author. Tel.: +1-514-343-6143; fax: +1-514-
343-7121.
E-mail address: gilbert@crt.unmontreal.ca (G. Laporte).

Denoted by ¢;; the length of a shortest chain (de-
fined as the number of its edges) between two
vertices i and j of S using only edges of F(S). The
diameter of H(S) is defined as max; jes{c;}. A k-
club is a vertex set S inducing a subgraph H(S) of
diameter at most k. The MkACP consists of deter-
mining a maximum cardinality k-club in G.

The concept of k-club is related to, but different
from that of k-clique (or simply clique if £ = 1). A
k-clique is a set S of vertices such that every pair is
linked by a chain in G, but not necessarily in H(S),
having a length at most equal to k. In other words,
some of these chains may use vertices outside S,
which is not the case of a k-club. While a k-club is
always a k-clique, the reverse is not true as
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illustrated by Fig. 1 taken from Alba [1,2] and
Mokken [11]. Here S = {1,2,3,4,5} is a 2-clique
but not a 2-club since the only chain of length 2
linking 4 and 5 passes through 6 which is outside
S.

Social and behavioral scientists frequently use
network analysis to identify highly connected
structures in societies and organizations. For ex-
ample, Baker [3] has analyzed market networks,
Snyder and Kick [13] have studied transactional
interactions between nations, and Mintz and
Schwartz [10] have investigated interlocking di-
rectorates in major corporations. Studies of this
type rely on the identification of dense structures
in a graph of which k-clubs are the most strongly
interconnected. A common tool used in network
analysis is the UCINET [14] package developed at
the University of California at Irvine which makes
use of the enumerative algorithm of Bron and
Kerbosch [5] to identify dense structures in graphs.
Because of its nature, this type of approach is
limited to relatively small graph sizes. Heuristics
are more than often necessary. In a previous study
[4], we have developed three constructive heuristics
for the MACP. Here, we propose for the first time
an exact enumerative algorithm for the same
problem.

The remainder of this article is organized as
follows. In Section 2, we prove that the MkCP is
NP-hard. In Section 3, we formulate the problem
as an integer linear program. The enumerative al-
gorithm is described in Section 4, followed by
computational results in Section 5.

6

Fig. 1. S ={1,2,3,4,5} is a 2-clique, but not a 2-club.

2. Complexity analysis

We prove in this section that the MACP is NP-
complete by reduction from the clique problem.
The MACP in decision form can be stated as fol-
lows.

Given a graph G = (V,E) and an integer
t<|V]|, does there exist S C V with |S| > ¢
and such that in the subgraph induced by S
there exists a chain of length not exceeding
k between each pair of vertices?

Proposition 1. The MkCP is in NP.

Proof. One can verify in polynomial time that the
vertex set of an induced subgraph of G is a k-club
by determining a shortest chain between each pair
of its vertices (using, for example, Floyd’s algo-
rithm [6]). O

To prove that the MACP is NP-complete, we will
use two types of reduction: one for the even values
of k and one for the odd values of k. The idea is to
replace each original edge by a chain of k edges, and
the subtlety lies in how these chains are intercon-
nected. Let G’ = (V',E’) be a connected graph and
suppose that k is even. For each edge e = (7, j') of
G’ create k — 1 artificial vertices v§,v5, ..., v5_,, to-
gether with the chain (¢, v¢, v, ..., v, /). Let V be
the set of all artificial vertices and let V = V" U V.
The vertices of V' are said to be natural. The vertices
v{)p» 1.€., the middle vertices of all chains are pair-
wise joined together by an edge to form a complete
subgraph (see Fig. 2(a)). Finally, let E be the set of
all edges that either belong to a chain or to the
complete subgraph.

When k is odd, the reduction is slightly differ-
ent. Create an extra artificial vertex v, and let again
V =V'UV. The vertices vy and v, of each
chain are joined to v by an edge (see Fig. 2(b)). Let
E be the set of all edges that either belong to a
chain or are incident to v. In Fig. 3, we illustrate
the construction for £ =2, 3 and 4 on a particular
graph.

The following observations follow from the
construction of G = (V,E):
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Fig. 2. Illustration of the structure of the artificial vertices for k even (a) and odd (b). The natural vertices are shown in black and the

artificial vertices in white.

Fig. 3. lllustration of the construction for £ =2, 3 and 4 on a graph G'.

1. For any two artificial vertices there exists a
chain of length at most k£ — 1 between them in-
volving only artificial vertices.

2. For any natural vertex and any artificial vertex
there exists a chain of length at most k& between
them involving only artificial vertices.

3. The shortest distance between two natural
vertices is k if they are joined by an edge
in G, and k+ 1 otherwise. All intermediate
vertices of such a shortest chain are artifi-
cial.

It follows from observations 1 and 2 that

Lemma 1. If S is a k-club of G, then so too is
SUV.

In other words, if all the artificial vertices are ad-
ded to a k-club of G, it remains a k-club.

Lemma 2. There exists a clique C' in G’ of size t' if
and only if there exists a k-club C in G whose size is
t=1+1V|.

Proof. = follows directly from observation 3 and
Lemma 1 by taking C=C' U V.
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<: C must contain at least # natural vertices.
By observation 3, every pair of these vertices must
be joined by an edge in G’ and hence form a
clique. O

Proposition 2. The k-club problem is NP-complete.

Proof. The thesis follows from Proposition 1,
Lemma 2, and the fact that the construction is
polynomial in the input size. [

3. Formulation

The MACP can be formulated as an integer
linear program as follows. For any two vertices
Ljev,let C,"] be the sets of all chains of length at
most k linking i and j, and denoted by ¥; the vertex
set of a chain ¢. For every i € V, let x; be a binary
variable equal to 1 if and only if 7 belongs to the
solution. Let y, be an auxiliary binary variable
associated with every chain ¢ € U,«‘jeny‘j = C. The
problem is then

maximize Z X; (1)

IS4

subject to
Z)’t Zx +x;— 1

zecf/.

V(i,j) ¢ E, Cj #0, (2)
w<x., VteC, Vrel (3)
xi+x<1 V() ¢E, Ci=0, (4)
x;i=0o0rl VieV, (5)
y=0o0r1 VteC. (6)

In this formulation, constraints (2) express the fact
that if two vertices i and j are not linked by an edge
but are linked by a chain of length at most &, then
both vertices can belong to the solution only if y, is
equal to 1 for at least one such chain. Constraints
(3) guarantee that all vertices of a chain ¢ for which
v, = | belong to the solution. Constraints (4) mean
that two vertices not linked by an edge or a chain
of length at most k cannot simultaneously belong
to the solution.

This formulation can be simplified if £ = 2. For
ieV,let N={jeV:(ij) or (j,i) € E}. Then
variables y, are not needed and the formulation
reduces to

maximize Z X, (7)
icV
subject to
Z X =x+x—1
reN;NN;
V(i,j) € E, NinN; # 0, (8)
xi+x <l V(ij) ¢E NN =0, 9)
x;=0o0rl VieV. (10)

Constraint (8) play the same role as (2) and (3),
while constraints (9) are a rewriting of (4).

4. Algorithm

Our exact algorithm is based on DROP [4], an
earlier heuristic which gave good results for this
problem. The DROP heuristic proceeds by re-
moving vertices one at a time until those that are
left form a k-club. A vertex lying too far from the
largest number of vertices is favored for removal at
each step. In order to efficiently identify such a
vertex, DROP relies on an algorithm that incre-
mentally updates shortest chain lengths between
pairs of vertices [12].

The branch-and-bound algorithm we developed
uses the DROP heuristic to guide its branching. It
also uses solutions to the maximum stable set
problem on an auxiliary graph for its bounding. At
the root node of the search tree, two branches are
generated corresponding to removing or keeping
the vertex selected by a single iteration of the
DROP heuristic. The branch that removes the
vertex is explored first, thus trusting the heuristic.
The process is then recursively applied until a
terminal node is reached, yielding a depth-first
search. Note that the first terminal node reached
corresponds to the solution given by the DROP
heuristic.

Deciding to remove a vertex may increase some
of the shortest chain lengths since this vertex can
no longer be used. Deciding to keep a given vertex
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v may also increase shortest chain lengths since
every vertex whose shortest chain to v is longer
than k& should immediately be deleted: shortest
chains certainly do not get shorter as vertices are
removed. This reasoning applies not only at the
node where the decision to keep v is made, but also
throughout the subtree rooted at that node, as new
vertices come to lie too far from v. In fact, a pair of
vertices kept in a tentative solution may become
too far from one another, in which case a terminal
failure node has been reached.

We now describe the upper bound computed
at the nodes of the search tree. Let G = (V,E) be
the current graph at a given node. Associate to it
an auxiliary graph H = (V,F) on the same vertex
set, where F = {(u,v) : the shortest chain linking
u and v in G has length greater than k}. Clearly,
if (u,v) € F, vertices u and v cannot both belong
to the same k-club in G. In fact, the largest stable

Table 1

set in H, that is a subset of its vertices without
any edge between a pair of them, provides an
upper bound on the size of the largest k-club in
G. The maximum stable set problem [7] is well
known to be NP-complete and several heuristics,
but also exact algorithms, have been implemented
to solve it [9]. Note that we require an exact so-
lution to the stable set problem since otherwise
the upper bound derived may not be valid. Note
also that although running an exact algorithm for
this problem can in principle be costly, H often
contains several isolated vertices that can be set
apart, so that the size of the auxiliary problem is
considerably reduced (see Table 3), which ensures
the effectiveness of our approach. This upper
bound is not necessarily tight as shown in Fig. 4.
Here, H yields a maximum stable set of cardi-
nality 6, while the maximum 2-club in G is
{2,3,4,5,6}.

2-Clubs, each entry corresponds to an average over 30 random instances (three different density ranges with 10 instances each)

n Average Largest 2-club Computation time Number of terminal nodes

density DROP heuristic  DROP exact No upper Stable set No upper Stable set
bound bound

50 0.05 6.8 7.5 2.7 2.9 479 44.4
0.1 8.6 11.1 1.9 1.6 156.2 49.4
0.15 13.2 15.8 22 1.2 397.8 60.9
0.2 18.8 23.4 3.5 1.6 688.4 83.3
0.25 30.9 34.5 1.9 0.5 390.9 47.1
0.3 44.4 449 0.2 0.1 33.6 7.7

100 0.05 8.3 12.5 71.5 71.7 299.1 102.0
0.1 12.3 20.1 120.9 51.6 3306.4 268.5
0.15 23.6 32.1 1752.2 931.3 57833.1 2912.5
0.2 60.2 68.2 1620.8 181.2 39613.0 747.0
0.25 93.5 94.1 2.2 0.6 58.1 8.6
0.3 99.5 99.5 0.4 0.3 1.9 1.5

150 0.05 7.9 17.8 582.6 351.8 1560.3 215.9
0.1 17.1 29.3 7354.3 3150.3 82846.0 1626.2
0.15 41.3 - - - - -
0.2 127.2 134.2 603.7 11.3 6174.0 77.0
0.25 149.5 149.5 1.2 1.2 1.6 1.7
0.3 150.0 150.0 1.2 1.2 1.1 1.1

200 0.05 8.4 22.0 3082.9 2198.4 4464.4 390.4
0.1 18.4 - - - - -
0.15 63.0 - - - - -
0.2 194.0 194.3 109.8 43 638.3 8.6
0.25 200.0 200.0 2.9 2.9 1.0 1.0
0.3 200.0 200.0 3.0 3.0 1.0 1.0
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Fig. 4. Example for which the upper bound is not tight.

5. Computational results

The algorithm was coded in C++ and run on a
Sun Sparc Ultra 10 workstation (440 MHz). It was
tested on randomly generated graphs controlled by
two density parameters ¢ and b, using an algo-
rithm described in [8]. The expected edge density
of the graphs is equal to (a + b)/2 and the vertex
degree variance increases with b — a. Tests were
performed on 50-vertex to 200-vertex graphs for
combinations of ¢ and b that yielded meaningful
instances: when the graph density becomes too
large, all vertices belong to a maximum k-club and
the corresponding problem is then trivial. We also
computed 2-, 3-, and 4-clubs. A maximum of
10000 seconds was allowed to solve any individual
instance.

Table 1 summarizes our computational results
for finding maximum 2-clubs on the generated
graphs. The first column gives the number of
vertices while the second one represents the aver-
age density. Note that within an average density
class, different density ranges are generated by
varying the parameters a and b. For example, for
an average density of 0.2 we use pairs of values
a=02; b=0.2,a=0.15 b=0.25, and a = 0.1;
b=0.3. Since for every parameter setting we
generate 10 instances, each line in the table rep-
resents an average over 30 instances. In the third
and fourth columns we compare the results of our
algorithm with those of our earlier heuristic. The
fifth and sixth columns provide the computation

time in seconds with and without the use of our
stable set upper bound, whereas the last two col-
umns give the number of terminal nodes reached
in the search tree, again with and without the
bound.

A first observation stemming from these results
is that the heuristic yields near-optimal solutions
for high density values but leaves a substantial gap
otherwise. Another observation is that for k£ = 2,
the hardest instances seem to occur around a
density of 0.15, already known to be difficult for
the stable set problem. For graphs involving 150
and 200 vertices, we were not able to consistently
solve instances of that density within the pre-
scribed time limit. The number of terminal nodes
indicates that the upper bound is very effective in
pruning the search tree and, despite its inherent
cost, it also cuts down on the overall computation
time.

Table 2 compiles results for the 2-, 3-, and 4-
club problem on 100-vertex graphs. Different
graph densities had to be used in order to maintain
an interesting range of instances. Again an entry
corresponds to an average over 30 instances. We
observe that the computation time does not appear
to increase with k.

Table 2
k-Clubs, with n = 100 and stable set upper bound

k Average Largest Computation
density k-club time
2 0.5 12.5 71.7
0.1 20.1 51.6
0.15 32.1 931.3
0.2 68.2 181.2
0.25 94.1 0.6
0.3 99.5 0.3
3 0.25 14.1 103.5
0.5 28.3 56.8
0.75 63.8 60.8
0.1 93.3 1.0
0.125 99.4 0.3
0.15 99.9 0.3
4 0.013 12.9 13.4
0.025 25.7 88.3
0.038 47.6 443
0.05 76.2 11.1
0.063 94.7 1.1
0.075 99.2 0.4
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Table 3

Size of stable set subproblems solved

n k
2 3 4
Avg. Avg. Max. Max. Avg. Avg. Max. Max. Avg. Avg. Max. Max.
size density  size density  size density  size density  size density  size density

50 9.9 0.35 38 0.13

100 16.1 0.31 80 0.11 11.9 0.43 74 0.06 10.7 0.36 68 0.09

150 18.2 0.41 98 0.18

200 14.8 0.36 62 0.43

Table 3 gives an idea of the size of the stable set search Council under grants OGP0039359,

subproblems solved at each node of the search tree
to yield an upper bound. For each combination of
n and k considered, it provides an average size and
density of the subproblems over all relevant in-
stances. It also gives the size of the largest sub-
problem solved, with its density. The average
subproblem is seen to be rather small and so quite
tractable.

6. Conclusion

We have analyzed, formulated and solved the
MkCP on undirected graphs. This problem arises
naturally in the determination of highly intercon-
nected structures in networks. Applications of this
problem are encountered in several areas of orga-
nization theory and political science. We have
proved that the MACP is NP-hard. We have de-
veloped a branch-and-bound procedure that
maintains shortest path information and makes
use of upper bounds based on the computation of
maximal stable sets in a graph. Using this tech-
nique, instances of up to 200 vertices were solved
to optimality. Problem difficulty is directly de-
pendent of the graph density. Thus, instances de-
fined on very dense graphs can be solved within
insignificant amounts of time. For £ = 2, the most
difficult cases appear to be those for which the
density is around 0.15.
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