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A B S T R A C T

In this paper, we introduce a computer-based method for menu planning, which applies evolutionary

computation. First, we formalize the n-day menu-planning problem, decomposing it into several sub-

problems at the daily-menu and meal-planning level. We reduce the problem to a multi-dimensional

knapsack problem. Then, we define an evolutionary algorithm that quickly finds a diverse set of feasible

solutions (i.e. optimal menus) with the optimum objective functions’ values, without examining all the

possibilities. As the problem is constrained, infeasible solutions need to be repaired in order to direct the

‘‘evolution’’ towards the feasible regions. We present greedy repairing methods that slightly differ at the

global level and the sub-problems’ levels. At the meal-planning level, we couple repairing with linear

programming to balance infeasible meals. We conclude the paper with the presentation of empirical

results, which showed that the evolutionary method may outperform a human. A computer was able to

find the Pareto-optimal front of 21-day menus with respect to a dietary advice in equal or less time than a

human professional, who designed a daily menu. However, the human factor is still important in the last

stage, when a solution has to be selected from the Pareto front.

� 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Increasing incidence of chronic diseases (CDs) in modern
societies requires a shift from adequate towards optimal nutrition,
not only providing us with the energy and nutrients but also
contributing to the well-being and health. Optimal nutrition, as
part of a healthy lifestyle, is an important factor in the prevention
of CDs and may also have a therapeutic potential.

Today, many recommendations and guidelines on optimal
nutrition, based on results of advanced research methods and
tailored to the needs of a society, are available. They consider the
current knowledge of the relationship between our immune
system, aetiology of CDs and health status. However, their
implementation in practice is difficult for several reasons,
including the complexity of dietary recommendations and guide-
lines and limited health literacy that may lead to misunderstand-
ing. Dollahite et al. (1995) found that professionally designed
menus published in diet manuals may fail to meet all recommen-
dations and guidelines.

In this paper, we propose a computer-based method for
planning optimal menus with respect to agreed evidence-based
dietary recommendations and guidelines. This method assists a
human in fitting regular menus to new health paradigms.
* Tel.: +386 1 477 33 63; fax: +386 1 477 38 82.
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The paper is organized as follows: Section 2 presents a brief
survey of computer-based methods for menu planning and an
introduction to evolutionary computation and multi-objective
optimization; Section 3 provides a formulation of the menu-
planning problem; Section 4 describes an evolutionary algorithm
for menu planning; and Section 5 presents empirical results and
concluding remarks.

2. Computer-based methods for menu planning

Menu planning is an art that one often learns by a costly
heuristic or trial-and-error process. A well-trained professional can
cope with the complexity of regular menu planning, but as soon as
one attempts to meet the needs of diverse groups, control costs and
quality, and schedule production tightly for maximum utilization
of labour and equipment time, the probability of success
diminishes. Therefore, computer-based methods, which facilitate
the routine decisions in menu planning, are useful.

2.1. History

Four decades ago, the need for computer-based methods for
menu planning was recognized. As a result, the quality of
information and data necessary for computerization of the
menu-planning process became available to many institutions
and its apparent feasibility thus increased. In 1964, Balintfy
(Balintify, 1964; Eckstein, 1983) applied linear programming

mailto:barbara.korousic@ijs.si
http://www.sciencedirect.com/science/journal/08891575
http://dx.doi.org/10.1016/j.jfca.2009.02.006


2 For a given system, the pareto-optimal front is a set of non-dominated solutions,

i.e. solutions that cannot be improved upon without hurting at least one of the

objectives. The term is named after Vilfredo Pareto, an Italian economist.
3 In computational complexity theory, the complexity class NP-complete

(standing for nondeterministic polynomial time) is a class of problems having

two properties:

� Any given solution to the problem can be verified quickly (in polynomial time);

the set of problems with this property is called NP.
� If the problem can be solved quickly (in polynomial time), then so can every

problem in NP.

Although any given solution to such a problem can be verified quickly, there is

no known efficient way to locate a solution in the first place. Indeed, the most

notable characteristic of NP-complete problems is that no fast solution to them is
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techniques to build the first computer-based menu planner, which
optimized menus for nutritional adequacy and budgeted food cost.
Brown (1966) developed primitive techniques for controlling the
palatability of individual non-selective menus using random

selection techniques. A year later, these techniques were adopted
by Eckstein (1967) to satisfy menus with several constraints,
comprising: cost, color, texture, shape, calories, variety and
acceptability by the target population.

In the 1970s, interest in computer applications in menu
planning appeared to wane; lack of funding and inadequate
software components were contributing causes.

In the 1990s, when the field of artificial intelligence was
revived, the menu-planning problem became popular again. Two
types of menu planners, case-based and rule-based, were imple-
mented. One of them was JULIA (Hinrichs, 1992), an interactive
menu planner that was used to plan meals to satisfy a group of
guests, despite conflicting food preferences and evolving con-
straints. Ganeshan and Farmer (1995) implemented a Prolog
catering system. Marling et al. (1999) designed a menu-planning
tool for individuals, taking dietary requirements and personal
preferences into account. That tool integrated case-based and rule-
based reasoning to meet multiple constraints.

A comprehensive review of the use of optimization techniques
based on linear and nonlinear programming was given by Darmon
et al. (2002).

2.2. Evolutionary computation

The computer-based method for menu planning we have
recently proposed (Koroušić Seljak, 2004) is based on evolutionary

computation.
In computer science, evolutionary computation is a subfield of

artificial intelligence that involves numerical and combinatorical

optimization (CO) problems. Evolutionary computation uses
iterative progress, such as growth or development in a population
of potential problem solutions. The field comprises many
techniques, mostly involving metaheuristic1 optimization algo-
rithms, such as evolutionary algorithms (EAs) and swarm
intelligence (Korošec and Šilc, 2008). These techniques rely on
analogies to natural processes; some of them have been inspired by
biological mechanisms of evolution. The first ideas were developed
in the 1960s by Holland (1961) and Fogel (Fogel and Owens, 1966),
and have already reached a stage of some maturity (Michalewicz,
1996).

In recent years, numerous algorithms taking inspiration from
nature have also been proposed to handle continuous optimization
problems: real-coded genetic algorithms using some specific
operators, evolution strategies using Gaussian mutations with
adaptive or self-adaptive update strategies, and differential
evolution, to name a few.

As real-world optimization problems may involve objectives,
constraints and parameters, which constantly change with
time, dynamic consideration using evolutionary computation
methods have also raised a lot of interest within the last
few years. For these dynamic and uncertain optimization
problems the objective of the evolutionary algorithm is no
longer to simply locate the global optimum solution, but to
continuously track the optimum in dynamic environments, or to
find a robust solution that operates optimally in the presence of
uncertainties.
1 A metaheuristic is a heuristic method for solving a very general class of

computational problems by combining user-given black-box procedures — usually

heuristics themselves — in, it is hoped, an efficient way. The name combines the

Greek prefix ‘‘meta’’ (‘‘beyond’’, here in the sense of ‘‘higher level’’) and ‘‘heuristic’’

(from eyriskein, heuriskein, ‘‘to find’’).
Optimization is a procedure of finding and comparing feasible
solutions until no better solution can be found. Solutions, which in
our case are healthy menus, are termed as follows:

� good or bad in terms of multiple conflicting objectives, such as:
cost, quality of ingredients, aesthetic standards or other factors;
and
� feasible if they satisfy all the problem constraints that are defined

by dietary recommendations and guidelines.

While classical deterministic optimization methods can at
best find one solution in one simulation run, evolutionary
techniques are more efficient in finding multiple trade-off
optimal solutions in a single simulation run. These solutions
have a wide range of values for each objective representing the
multi-dimensional Pareto-optimal front,2 requiring an additional
decision-making activity for choosing a single solution from the
front.

3. Menu-planning model

As today’s computers have few limitations, satisfiable menus
can be automatically or semi-automatically generated by efficient
software (SW) techniques, but only if the menu-planning process is
well defined.

Mathematically, menu planning can be reduced to a multi-

dimensional (i.e. multi-constrained and multi-objective) knapsack

problem (MDKP), which is a widely studied CO problem that has
many direct counterparts (Garey and Johnson, 1979).

3.1. Formulation of the MDKP

Given foods of different values and volumes, the MDKP is to find
the most valuable combination of foods that fits in a knapsack of
fixed volumes. Values are defined subjectively with respect to food
quality, cost and aesthetic parameters (comprising taste, consis-
tency, color, temperature, shape and method of preparation).
Knapsack volumes are defined by dietary recommendations and
guidelines.

3.2. Complexity of the MDKP

MDKP is easy to formulate, yet its decision problem is NP-

complete3 (Garey and Johnson, 1979). In complexity theory, the
NP-complete problems are the most difficult problems, which
cannot be solved by exact SW techniques in deterministic
known. That is, the time required to solve the problem using any currently known

algorithm increases very quickly as the size of the problem grows. As a result, the

time required to solve even moderately large versions of many of these problems

easily reaches into billions or trillions of years, using any amount of computing

power available today. As a consequence, determining whether or not it is possible

to solve these problems quickly is one of the principal unsolved problems in

computer science today.
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polynomial time but require time that is superpolynomial in the
input size.

The knapsack values and the volumes are linear, but highly
complex, because they are weakly correlated. As there are at least
two optimal solutions that are not indifferent to each other, the
problem is multimodal.

Another difficulty is that foods are selected from a food
composition database (FCDB), which consists of several thousand
items having tens of composition parameters. As a consequence,
the decision space contains a large set of potential solutions to the
menu-planning problem. Moreover, the problem landscape
defined by the decision and the objective space contains several
peaks.

However, there exist heuristic SW techniques, such as evolu-
tionary computation techniques, that work ‘‘reasonably well’’ on
many problem’s instances, but for which there is no proof that they
are both always fast and always produce a good result.

Comprehensive reviews of multi-constrained 0-1 knapsack
problems, presenting a subset of MDKPs, and associated heuristic
algorithms was given by Chu and Beasley (1998) and by Ishibuchi
and Kaige (2003).

4. Evolutionary method for menu planning

We applied the state-of-the-art evolutionary algorithm (EA)
NSGA-II (Elitist Non-Dominated Sorting Genetic Algorithm) (Deb,
2001) in a multi-level way (Gunawan et al., 2003) to solve the
MDKP of menu planning. The main idea behind the method is to
develop healthy meals and daily menus independently, guiding the
optimization to overall Pareto-optimal n-day menus (Fig. 1). All
objectives are treated as equally important. The decision on the
best compromise to be chosen among adequate Pareto-optimal
solutions is made after the search.
Fig. 1. Schematic of the evolutionary method for menu planning. *LO –
At the meal-planning level we solve three sub-problems (for
planning meals that are composed of a breakfast and a morning
snack, a lunch and an afternoon snack, and a dinner and a light
snack before bedtime, respectively), and at the daily-menu
planning level we solve five sub-problems (for daily menus with
the main meal consisting of red meat, white meat, fish, soya/
legumes, or eggs/curd, respectively).

4.1. Some basic definitions

In general, NSGA-II is a multi-objective EA that can be
characterized by the use of three ideas: Pareto-dominance-based
‘‘fitness’’ evaluation, diversity maintenance, and elitism.

The algorithm comprises the following steps:

1. Initialize ‘‘population’’ of potential solutions

2. Evaluate ‘‘fitness’’ of ‘‘individuals’’

3. Estimate feasibility of individuals

4. Repair infeasible individuals

5. Selection:

� Non-dominated sorting

� Individual comparison

6. Recombination: Combine traits of ‘‘parents’’

7. Mutation: Random walk around an individual

8. Evaluate ‘‘offspring’’ solutions

9. Replacement: Best among parents and offspring (Fig. 2)
10. Return to Step 5 or terminate

The non-dominated sorting procedure identifies the best non-
dominated set (i.e. a set of solutions that are not dominated by any
individual in the population), discards them from the population
temporarily, identifies the next best non-dominated set, and
continues till all the solutions are classified.
local optimization (greedy repair) and **LP – linear programming.



Fig. 2. Elitist replacement in NSGA-II.
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The crowding-distance sorting procedure assigns each potential
solution a crowding distance (i.e. an average distance from its
nearest neighbours on either side of the solution along each of the
objectives of the problem). A particular solution is more crowded
than another solution if its front density in the neighborhood is
higher.

During selection, NSGA-II uses a crowded comparison opera-
tor, which takes into consideration both the non-domination
rank of an individual in the population and its crowding
distance: i.e. non-dominated solutions are preferred over
dominated solutions, but between two solutions with the same
non-domination rank, the one that resides in the less crowded
region is preferred.

4.1.1. Representation structures

In order to apply NSGA-II to the problem of menu planning, we
first encode potential solutions of the n-day menu-planning
problem and its sub-problems (of the daily menu and meal
planning) by integer-valued coding. In our representation:

� at the n-day menu level, a ‘‘chromosome’’ contains n integer data,
n 2 N, n � 2, carrying the information about n daily menus:
[d1,d2,. . .,dn];
� at the daily-menu level, a ‘‘chromosome’’ contains m integer

data, m 2 N, m � 3 carrying the information about m basic and
not composite meals: [o1,o2,. . .,om];
� at the meal level, a ‘‘chromosome’’ is formed of j pairs (ci,xi),

where ci denotes the FCDB code4 of a food item i and xi its
quantity expressed in grams: [(c1,x1, (c2,x2),. . .,(cj,xj)]. By default,
the number of pairs j varies between 1 and 10, depending on the
number of meal courses.

4.1.2. Initialization

The algorithm starts the ‘‘evolution’’ from an initial ‘‘popula-
tion’’ of either random potential solutions or solutions (n-day
menus) known from experience. The population’s size remains
constant over all ‘‘generations’’.

The menu-planning sub-problems at the daily and the meal
level operate on local populations. Initially, the local population at
the daily-menu level is filled with decomposed n-day menus from
the global population, and the local population at the meal level is
filled with decomposed daily menus from the daily-menu
population.

Beside the global and the local populations, we use additional
pools of potential meal and daily-menu solutions (Fig. 1) that have
a function of an archive of the union of solutions generated by each
sub-problem. Initially, the pools are empty.
4 FCDBs normally consist of composition data for foods ordered by major food

groups and subgroups (e.g. plain yogurt made of skim milk and plain yogurt made of

whole milk have consecutive food codes).
4.1.3. Fitness

Each potential solution is evaluated as good or bad in terms of
objectives using its fitness values. These are non-negative integer
numbers calculated by the following objective functions:

f kð~xÞ ¼
1Pn

i¼1 vikxi

; k ¼ 1;2; f 3ð~xÞ ¼
Xn

i¼1

vi3xi;

f 4ð~xÞ ¼
Xl

i¼1

li f 4;ið~xÞ; li�0^
Xl

i¼1

li ¼ 1; f 4;lð~xÞ

¼
Xnal

j¼1

Xn

i¼1

hl jðxiÞ �
Pn

i¼1 hðxiÞ
nal

�����
�����

0
@

1
A�Xl

i¼1

hðxiÞ; (1)

hl jðxiÞ ¼
0; if xi ¼ 0
1; if xi >0^ vil ¼ j

�
; hðxiÞ

¼ 0; if xi ¼ 0
1; otherwise

�
; xi 2N[f0g; i ¼ 1;2; . . . ;n; l ¼ 1;2; . . . 6;

where xi denotes the quantity of the food item i (expressed in
grams), vi1 and vi2 its functionality and quality in the season,
respectively, li the scalarization weight associated with the
aesthetic parameter i, vi3, vi4, vi5, vi6, vi7, vi8 and vi9 the cost, the
taste, the consistency, the color, the temperature, the shape, and
the method of preparation, respectively, and nal

the number of
possibilities for the lth aestetic parameter. In order to reduce the
number of objective functions, we apply the normalized weighted
sum scalarization technique for assessment of the meal’s or menu’s
variety.

The aim of EA at the global and the local levels is to minimize the
objective functions of (1).

4.1.4. Feasibility

We estimate feasibility of a potential solution by constraint

functions that differ at the global and the local levels.
At the meal level, the constraints are the least restrictive:

� The energy provided by a meal is limited by a lower and an upper
bound:

g3ð~xÞ ¼
XNC

i¼1

viExi

100
�0:9E; g4ð~xÞ ¼

XNC

i¼1

viExi

100
� 1:1E; (2)

where viE denotes the number of calories in 100 g of the food

item i, xi the quantity of the item i expressed in grams, and E the

recommended caloric value for the meal.
� The meal’s energy density is limited both upwards and down-

wards:
g5ð~xÞ ¼
PNC

i¼1 viExiPNC

i¼1 xi

�0:5E; g6ð~xÞ ¼
PNC

i¼1 viExiPNC

i¼1 xi

�1:5E: (3)



Table 1
Parameters of NSGA-II.

Parameter n-Day menu planning Daily-menu planning Meal planning

String length 7 5 10

Population size 100 100 100

Pool size – 500 300

Crossover type Two-pointa/Simulated binary (SBX) (Deb, 2001; Deb et al., 2007)b

Crossover probability 0.7a/0.9b

Mutation type Linear descending mutationc

Mutation probability 0.14–0.01 0.20–0.01 0.10–0.01

Probability of mutating a code or a quantity – – 0.5

Selection type Binary tournament selection (based on the crowded comparison and feasibility operators)

No. of iterations 250 250 250

a For codes.
b For quantities.
c Either on a code or on a quantity.

6 The design of the penalty function may greatly affect the algorithms ability to

explore the feasible regions of the search space. Repair functions, on the other hand,
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� The macronutrients are balanced:

g7ð~xÞ ¼
XNC

i¼1

viP4xi� bPl
E; g8ð~xÞ ¼

XNC

i¼1

viP4xi � bPuE;

g9ð~xÞ ¼
XNC

i¼1

viL9xi� bLl
E; g10ð~xÞ ¼

XNC

i¼1

viL9xi � bLu E;

g11ð~xÞ ¼
XNC

i¼1

viC4xi� bCl
E; g12ð~xÞ ¼

XNC

i¼1

viC4xi � bCu
E;

(4)

where viP, viL, viC denote the quantity of proteins, lipids and

carbohydrates, respectively, in 100 g of the food item i. Because

the quantities are expressed in grams, conversion factors5 are

required to attain to calories. bPl
;bPu; bLl

; bLu ; bCl
; bCu denote the

lower and the upper percentage of energy supplied by proteins,

lipids and carbohydrates, respectively.
� Each food quantity (truncated by ei) is limited by its original

portion size:

g1ð~xÞ ¼ b
xi

ei
c ei�0:25Pi; g2ð~xÞ ¼ b

xi

ei
c ei � 2Pi: (5)

At the daily-menu level, there are additional constraints that
need to be satisfied:
� Simple sugars account for only 10% or less of RDI for the energy:

g13ð~xÞ ¼
XNC

i¼1

viS4xi � 0:1Ed; (6)

where Ed denotes RDI for energy.
� The saturated fatty acids’ intake is equal to or less than 10% of RDI

for the energy:

g14ð~xÞ ¼
XNC

i¼1

viF9xi � 0:1Ed: (7)

� RDI for the dietary fiber is DF grams per 1000-calorie energy
intake and should not exceed 40 g:

g15ð~xÞ ¼
XNC

i¼1

viV xi�DF
Ed

1000
; g16ð~xÞ ¼

XNC

i¼1

viV xi � 40: (8)

� The lower and the upper bounds for daily sodium intake are set at
Nal and Nau, respectively:

g17ð~xÞ ¼
XNC

i¼1

viNaxi�Nal; g18ð~xÞ ¼
XNC

i¼1

viNaxi � Nau: (9)
5 We apply the conversion factors 4 for proteins and carbohydrates, and 9 for

lipids.
At the n-day menu level, beside the meal and the daily-menu
constraints, a chromosome presenting a n-day menu has to satisfy
all the remaining constraints for nutrients, such as cholesterol,
monounsaturated fatty acids, omega-3 and omega-6 polyunsatu-
rated fatty acids, trans-fatty acids, water-soluble and fat-soluble
vitamins, water, major minerals, and trace minerals, to be termed a
feasible solution. Formal definitions of these constraints are similar
to that of Eqs. (5) or (8).

4.1.5. Methods for repairing infeasible individuals

EAs have originally been developed for unconstrained pro-
blems. The most common way of incorporating constraints into
EAs has been the use of a penalty function. Due to difficulties
associated with the penalty methods, we apply a repair method6 to
handle constraints by NSGA-II:

� at the meal level, we first replace in each infeasible meal those
courses that mostly contribute to the violation of constraints
with similar but more appropriate ones (e.g. we replace beef
broth with vegetable soup if there is a lack of fiber in a meal), and
then convert infeasible solutions into feasible solutions using a
deterministic local optimization procedure of linear program-

ming (LP in Fig. 1). This procedure, based on the simplex method

(Bhatti, 2000), refines the quantities of foods to satisfy the meal
sub-problem constraints.
� at the daily-menu and the n-day menu level, we repair

infeasible individuals by replacing critical meals with more
appropriate ones. Critical meals are those that do not satisfy the
constraints on the major food groups (i.e. breads, cereal, rice,
and pasta/vegetables/fruits/milk, yogurt, and cheese/meat,
poultry, fish, beans, eggs, and nuts/fats, oils, and sweets). Here,
we use the problem-specific knowledge, considering a recom-
mendation that (i) a daily menu has to be composed of a certain
number of food units from each major food group and (ii) an n-
day menu has to include a diverse set of foods from the major
food groups. There may be limitations on frequency of red meat,
fish, potatoes, etc.

For this aim, we apply the Lamarckian repair scheme, in which
replacements of critical meals are used to generate new ‘‘offspring’’
(Ishibuchi et al., 2005).

The replacement of meal or menu elements that mostly
contribute to the violation of constraints requires a prior sorting
of elements. We apply the inverse non-dominated sorting,
restrict the search to the feasible regions. However, theoretical results recently

published by He and Zhou (2007) confirmed observations from experiments that

EAs using repairing infeasible solutions are better than those using penalizing

infeasible functions at the finding a feasible solution.



Table 2
An optimal menu for patients with chronic kidney disease developed by using the evolutionary algorithm (EA) method (Rotovnik Kozjek et al., 2008).

Female chronic patients Male chronic patients

Average body weight/

height in Slovenia (kg/cm)

61.2/164.9 70.2/177

Recommended caloric

value (RCV) (MJ/kcal)

8.8/2100 10/2400

Calculated quantity value (g/ml)

Female chronic patients Male chronic patients

Breakfast (25% of the RCV)

Low-protein bread 175/Prota: 2.9 g, AC: 2.9 g, EAC: 1 g, P: 56.1 mg, K: 106.4 mg 175/Prot: 2.9 g, AC: 2.9 g, EAC: 1 g, P: 56.1 mg, K: 106.4 mg

Grilled pepper 100/Prot: 0.9 g, AC: 0.3 g, EAC: 0.3 g, P: 13.7 mg, K: 117.6 mg 100/Prot: 0.9 g, AC: 0.3 g, EAC: 0.3 g, P: 13.7 mg, K: 117.6 mg

Olive oil 10/Prot: 0 g, AC: 0 g, EAC: 0 g, P: 0 mg, K: 0.1 mg 20/Prot: 0 g, AC: 0 g, EAC: 0 g, P: 0 mg, K: 0.2 mg

Blueberries 150/Prot: 0.9 g, AC: 0 g, EAC: 0 g, P: 19.5 mg, K: 117 mg 170/Prot: 1 g, AC: 0 g, EAC: 0 g, P: 22.1 mg, K: 132.6 mg

Sugar 5/Prot: 0 g, AC: 0 g, EAC: 0 g, P: 0 mg, K: 0.1 mg 10/Prot: 0 g, AC: 0 g, EAC: 0 g, P: 0 mg, K: 0.2 mg

Morning snack (15% of the RCV)

Millet, cooked in water,

with cream

100/Prot: 3.5 g, AC: 3.7 g, EAC: 1.3 g, P: 97.9 mg, K: 47.9 mg 110/Prot: 3.9 g, AC: 4.1 g, EAC: 1.5 g, P: 107.7 mg, K: 52.7 mg

Diet margarine 5/Prot: 0 g, AC: 0 g, EAC: 0 g, P: 0 mg, K: 0 mg 10/Prot: 0 g, AC: 0 g, EAC: 0 g, P: 0 mg, K: 0 mg

Stewed pears 100/Prot: 0.3 g, AC: 0 g, EAC: 0 g, P: 8 mg, K: 65 mg 120/Prot: 0.3 g, AC: 0 g, EAC: 0 g, P: 9.6 mg, K: 78 mg

Lunch (30% of the RCV)

Stewed rice 210/Prot: 4.1 g, AC: 0 g, EAC: 0 g, P: 75.6 mg, K: 65.1 mg 240/Prot: 4.7 g, AC: 0 g, EAC: 0 g, P: 86.4 mg, K: 74.4 mg

Braised veal in vegetable sauce 210/Prot: 9.3 g, AC: 0.2 g, EAC: 0.1 g, P: 115.6 mg, K: 408.8 mg 240/Prot: 10.6 g, AC: 0.2 g, EAC: 0.1 g, P: 132.1 mg, K: 467.2 mg

Cucumber salad 170/Prot: 0.9 g, AC: 0.3 g, EAC: 0.2 g, P: 23.3 mg, K: 256.7 mg 190/Prot: 1 g, AC: 0.3 g, EAC: 0.2 g, P: 26.1 mg, K: 286.9 mg

Muffin 90/Prot: 3.6 g, AC: 4.1 g, EAC: 1.5 g, P: 99.8 mg, K: 86.8 mg 90/Prot: 3.6 g, AC: 4.1 g, EAC: 1.5 g, P: 99.8 mg, K: 86.8 mg

Afternoon snack (10% of the RCV)

Pancake 90/Prot: 2 g, AC: 2.1 g, EAC: 0.9 g, P: 47.5 mg, K: 76.2 mg 90/Prot: 2 g, AC: 2.1 g, EAC: 0.9 g, P: 47.5 mg, K: 76.2 mg

Honey 20/Prot: 0.1 g, AC: 0 g, EAC: 0 g, P: 1 mg, K: 9 mg 30/Prot: 0.1 g, AC: 0 g, EAC: 0 g, P: 1.5 mg, K: 13.5 mg

Yeast 4/Prot: 1.9 g, AC: 1 g, EAC: 0.8 g, P: 76 mg, K: 56.4 mg 5/Prot: 2.4 g, AC: 1.2 g, EAC: 1 g, P: 95 mg, K: 70.5 mg

Dinner (20% of the RCV) Calculated quantity value (g/ml)

Low-protein bread 140/Prot: 2.3 g, AC: 2.3 g, EAC: 0.8 g, P: 44.9 mg, K: 85.1 mg 175/Prot: 2.9 g, AC: 2.9 g, EAC: 1 g, P: 56.1 mg, K: 106.4 mg

Sour cream 40/Prot: 1.2 g, AC: 1.3 g, EAC: 0.6 g, P: 34 mg, K: 52.8 mg 50/Prot: 1.6 g, AC: 1.7 g, EAC: 0.7 g, P: 42.5 mg, K: 66 mg

Cooked asparagus 100/Prot: 1.7 g, AC: 0 g, EAC: 0 g, P: 37 mg, K: 136 mg 120/Prot: 2 g, AC: 0 g, EAC: 0 g, P: 44.4 mg, K: 163.2 mg

Green salad 70/Prot: 0.7 g, AC: 0.3 g, EAC: 0.2 g, P: 13.8 mg, K: 109.1 mg 80/Prot: 0.8 g, AC: 0.3 g, EAC: 0.3 g, P: 15.8 mg, K: 124.6 mg

Cooked white of an egg 5/Prot: 0.6 g, AC: 0.5 g, EAC: 0.2 g, P: 1.1 mg, K: 7.7 mg 5/Prot: 0.6 g, AC: 0.5 g, EAC: 0.2 g, P: 1.1 mg, K: 7.7 mg

Caloric value (MJ/kcal) 8.5/2013 10/2373

kcal/kg TT 33 34

Nutritional value Calculated value (the D–A–CH recommended values)

Protein (g/kg of body weight) 0.6 (0.55–0.6) 0.59 (0.55–0.6)

Amino acids (g) 19.1 20.7

Essential amino acidsb (% of all

the amino acids)

40 40

Essential amino acids (g/kg TT) 0.12 0.12

Branched-chained amino acids (%) 20.5 20.7

Isoleucine (g) 1 (0.6) 1.1 (0.7)

Leucine (g) 1.7 (0.9) 1.9 (1)

Valine (g) 1.2 (0.6) 1.3 (0.7)

Conditionally essential

aminoacidsc (% of all

the amino acids)

13 13

Fats

Percentage of energy (%) 29 32

Saturated fatty acids (%) 7.1 (<10) 7.1 (<10)

Monounsaturated fatty acids (%) 9 (>10) 10.8 (>10)

Polyunsaturated fatty acids (%) 6.5 (3–7) 6.3 (3–7)

Carbohydrates

percentage of energy (%) 63.7 61.2

Total dietary fiber (g) 27 (25 oz. >30) 30 (24 oz. >30)

Water-soluble vitamins

Vitamin C (mg) 187 (110) 200 (100)

Vitamin B6 (mg) 1.1 (1.3) 1.2 (1.5)

Phonolic acid (mg equivalent) 334 (431) 385 (352)

P (mg) 765 (<1000) 858 (<1000)

K (mg) 1804 (<2000) 2031 (<2000)

Zn (mg) 4 (7.6) 5 (10)

Se (mg) 27 (30-70) 30 (30–70)

Na (mg) 2051 (1800–2500) 2282 (1800–2500)

I from the iodized cooking salt (mg) 55 (220) 60 (200)

Water (ml) 1337 (<2000) 1503 (<2000)

a Prot—protein; AC—amino acids; EAC—essential amino acids; P—phosphorus; K—potassium.
b Isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine.
c Arginine, cysteine, glycine and tyrosine.
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meaning that the replacingprocedure (LO inFig. 1) starts replacingthe
elements from the last front and ends replacing the elements from
the Pareto-optimal front. As a matter of fact,because the procedure is
greedy, the replacement is stopped as soon as the first improvement
is achieved. In this way, the cost of repair is minimized.

Parameter settings: The parameters of the NSGA-II procedure,
including the types of operators, are specified in Table 1. Detailed
description of the operators is beyond the scope of the paper.

4.1.6. Time complexity

The basic operations and their worst-case complexities are as
follows:

1. Non-dominated sorting of individuals is O(M(2N)2) and of all
infeasible individuals’ elements is O(M(2LC)2), where M denotes
the number of objectives (1), N the population’s size, and LC the
length of a chromosome;

2. Crowding distance assignment is O(M(2N)log(2N));
3. Sorting on the crowding comparison operator is O2N log(2N); and
4. Although it is known that specific variants of the simplex

method require exponential time in the worst case (Megiddo,
1987), our empirical results have shown that in our case the LP
complexity is OðNCo

2Þ, where NCo denotes the number of
constraints on the meal-planning sub-problem.

The overall complexity of EA for menu planning that solves L

sub-problems including the global problem of n-day menu
planning is O(LMN2), which is governed by the non-dominated
sorting part of the algorithm.

5. Empirical results and discussion

The evolutionary method for menu planning has already been
applied to the redesign of sample menus for children, workers and
patients with special nutrition needs, which have recently been
published in the Slovene Guidelines for Child Nutrition (Ribič
Hlastan et al., 2008), the Slovene Guidelines for Workplace
Nutrition (Pokorn et al., 2008), and the Slovene Recommendations
for Clinical Nutrition and Nutrition for Elderly People in Care
Homes (Rotovnik Kozjek et al., 2008), respectively.

The evolutionary method outperformed professionals in terms
of time and quality. While it takes an experienced nutritionist or
dietician from 30 min to 3 h to manually plan a daily menu for an
individual or a group of individuals, a computer (1.7 GHz
PentiumM, 512 MB RAM, Apache/PHP) needed from several
minutes to a couple of hours to design a well-converged and
well-distributed Pareto-optimal front of well-balanced optimal
21-day menus, depending on the complexity of the problem
instance. The analysis showed a large percentage of infeasible
solutions (an average 86%) in all sub-problems that we managed to
reduce by LO and LP (an average to 34%).

We selected the most appropriate solutions from the Pareto-
optimal fronts according to decisions made by a human after the
search.

In Table 2, an example of a daily menu for patients with chronic
kidney disease selected from the Pareto-optimal front developed
by the evolutionary method is given. The menu was optimized
upon a collection of daily menus for healthy adults, considering the
following specific constraints (Rotovnik Kozjek et al., 2008):

� Recommended value for protein: 0.55–0.6 g/kg of body weight;
� Recommended value for potassium (K): 1500–2000 mg.

The caloric and nutritional values were calculated using food
composition data from the national FCDB for meat and meat
products, the Souci–Fachmann–Kraut FCDB (Scherz and Senser,
2000) and the USDA FCDB, and a recipe calculation method
recommended by INFOODS that applies weight yield and retention
factors published by Bognár (2002).
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