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Abstract. It has long been accepted that dynamic variable ordering heuris-

tics outperform static orderings. But just how dynamic are dynamic vari-
able ordering heuristics? This paper examines the behaviour of a number

of heuristics, and attempts to measure the entropy of the search process at

di�erent depths in the search tree.

1 Introduction

Many studies have shown that dynamic variable ordering (dvo [9]) heuristics out

perform static variable ordering heuristics. But just how dynamic are dynamic

variable ordering heuristics? This might be important because if we discover

that some dvo heuristic H1 results in less search e�ort than heuristic H2 and

H1 is more dynamic than H2 then we might expect that we can make a fur-

ther improvement by increasing the dynamism of H1. Conversely if we discover

that H1 is better and less dynamic then we might plan to make H1 even more

ponderous. But how do we measure the dynamism of a heuristic? To investigate

this we �rst look inside the search process, and de�ne our measure of entropy.

We then measure entropy for a variety of heuristics. A further examination of

the search process reveals that the di�erent heuristics have di�erent signatures,

distributing their search e�ort over di�erent depths of the search tree.

2 Inside Search

Tabulated below is the number of selections of each variable at each depth

in the search tree, for a single instance of a randomly generated binary csp,

h20; 10; 0:5;0:37i1, as seen by a forward checking routine with a dynamic vari-

able ordering heuristic. Each row corresponds to a depth in search (20 in all) and

each column represents a variable (again, 20 in all, with the �rst column entry

being row/depth number). Looking at row 3 for example we see that variable

V3 was selected 8 times, variable V7 selected once, V8 selected 3 times, and so

on. A variable Vi is selected at depth d if at depth d � 1 the current variable is

consistently instantiated and the next variable selected by the heuristic at depth

d is Vi. The data below corresponds to a single soluble instance.

1 The problem has 20 variables, each with a domain of 10 values. The proportion

of constraints in the graph is 0.5, and the proportion of possible pairs of values in

con
ict across a constraint is 0.37.
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Visits at Depth Entropy

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0.0

3 0 0 8 0 0 0 1 3 0 0 2 0 0 0 1 1 0 0 1 0 2.28

4 0 7 5 1 0 0 8 3 0 0 1 0 4 0 0 11 0 0 3 0 2.85

5 0 2 5 2 2 0 6 4 7 0 3 0 3 0 0 5 0 0 11 0 3.24

6 0 3 1 2 0 0 3 2 2 0 2 0 3 0 2 4 0 0 5 1 3.44

7 0 4 0 0 1 1 1 1 0 2 0 0 2 2 0 0 0 0 0 3 2.98

8 0 0 0 0 2 0 1 0 0 3 1 0 1 0 1 0 0 1 0 1 2.85

9 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2.0

10 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1.0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0.0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.0

13 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0.0

14 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.0

15 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0.0

16 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0

17 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0.0

19 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0

20 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0

The column out to the right is the measured value of entropy for the data in

that row.

3 Entropy

Entropy is a measure of the disorder within a system, or the information within

the system (i.e. the number of bits required to represent that system). If the

system is totally ordered, we will require few bits of information to represent

the system, and it will have low entropy. If the system is very disordered we will

require many bits to describe the system, and it will have high entropy. Therefore,

we might measure the entropy resulting from the variable ordering heuristic at

each depth in the search tree. If the heuristic is static, always selecting the same

variable at a given depth, then entropy will be a minimum. If the heuristic is very

dynamic, selecting freely any future variable at a given depth, entropy should

be a maximum.

From thermodynamics, entropy is k:log(w) where k is Boltzmann's constant

and w is the disorder parameter, the probability that the system will stay in

its current state rather than any other state. For our application we measure

entropy at depth d as
nX

i=1

�pd;i:log2(pd;i) (1)

where pd;i is the probability of selecting variable Vi at depth d. Looking at

the tabulation above, for the �rst row d = 1, only one variable is selected at this

depth (the root of the search tree) and entropy is zero. At depth d = 2 we see
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that only V17 is visited, but three times. Again p2;17 = 1 and entropy is again

zero. The third row d = 3, there are 17 visits at this depth, variable V3 is visited

8 times, consequently p3;3 = 8=17, p3;7 = 1=17, p3;8 = 3=17, and so on. The

entropy at depth d = 3 is then

-[8/17.log(8/17) + 1/17.log(1/17) + 3/17.log(3/17) +

2/17.log(2/17) + 1/17.log(1/17) + 1/17.log(1/17) +

1/17.log(1/17)]

= 2.28

If all the n variables are selected the same number of times at depth d, then

the entropy at that depth is log2(n), and this is a maximum, the number of bits

required to represent the n variables selected. Conversely if only 1 variable is

ever selected at depth d then entropy at that depth is zero (we require no bits

to represent this). If a dvo heuristic is highly dynamic at a certain depth we

expect a correspondingly high entropy, and if the variable ordering is static we

have zero entropy.

4 Entropy at Depth

Experiments were carried out on 100 instances of h20; 10; 0:5;0:37i problems

(from the crossover point [7]). Of these, 54 were soluble and 46 insoluble. The

search algorithm used was forward checking with con
ict-directed backjumping

(fc-cbj [8]). Five heuristics were investigated:

{ FF, fail-�rst, choosing the variable with smallest current domain, tie breaking

randomly [6, 9].

{ BZ, Brelaz heuristic, essentially FF tie breaking on the variable with most

constraints acting into the future subproblem, and tie breaking further ran-

domly [1].

{ GEL, Geelen's combined variable and value ordering heuristic, selecting the

most promising value for the least promising variable [2].

{ KP, the minimise-� heuristic, selecting the variable that leaves the future

subproblem with the lowest � value [5].

{ RAND, a random selection at each point. When a variable is selected we

pick at random from the future variables. RAND is the straw man to show

just what e�ect natural dynamism has on entropy at depth.

We might say that as we move from FF to BZ to KP to GEL we move towards

more informed heuristics.

Figure 1 shows average entropy at depth (on the left) for the 54 soluble

instances, and (on the right) for the 46 insoluble instances. A contour is given

for each of the heuristics. The contour for RAND (our straw man) shows that

at depths 5 to about 12 entropy is constant at about 4.2, and this corresponds

closely to what theory predicts. That is, at depth 1 a variable has been selected

and is withdrawn from future selections. Consequently greater depths can select
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Fig. 1. Entropy at Depth for h20; 10; 0:5;0:37i problems; on the left (a) 54 soluble

problems, and on the right (b) 46 insoluble problems. Note that the tail of the

contours in (b) for RAND, FF, and BZ have relatively small sample sizes.

from at most 19 variables. If each variable is selected at a given depth with equal

probability entropy will be log2(19) � 4:25, and this is what we observe.

The FF heuristic is signi�cantly di�erent from RAND; entropy is generally

lower at all depths, and entropy falls away at a shallower depth. More generally,

what we see is less entropic behaviour as heuristics become more informed. This

pattern appears to hold, but maybe to a lesser extent over insoluble problems

(Figure 1(b)).

5 E�ort inside search

We now investigate how e�ort is distributed across the depths of search. First
we tabulate the overall performance of the heuristics, in terms of consistency
checks and nodes visited.

Soluble Insoluble

Checks Nodes Checks Nodes

RAND 444.8 29.7 1216.7 80.3

FF 29.1 1.1 68.8 2.7

BZ 15.4 0.6 34.8 1.3

KP 16.8 0.7 37.8 1.6

GEL 16.8 0.7 59.6 2.6

The table above shows for each heuristic the performance measured as the

average number of consistency checks (measured in thousands) for the soluble

and the insoluble problems, and nodes visited (again in thousands). No claims

are drawn from the above results, for example that one heuristic is better than

another, because the sample size is too small and the problem data too speci�c2.

2 For example, we will get a di�erent ranking of the heuristics if we vary problem

features[3].

20 P. Prosser



The contours in Figure 2 show, for the RAND heuristic, the average number

of consistency checks performed at varying depths in the search tree, nodes

visited, and variables selected. Note that the y-axis is a logscale. The curves

look quite natural, with the peak in search e�ort taking place in the �rst third

of search.
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Fig. 2. Average Checks, Nodes Visited and Variables Selected at Depth for

h20; 10; 0:5;0:37i problems using RAND dvo; on the left (a) 54 soluble prob-

lems, and on the right (b) 46 insoluble problems.

Figure 3 shows average consistency checks only, for the four dvo's: FF, BZ,

KP, and GEL. The contours are very di�erent from RAND, compressing the

search e�ort into a relatively narrow band at shallow depth. Also note that KP

and GEL typically dispense with search after depth 9, thereafter walking to

the solution without backtracking. Figure 3 suggests that each heuristic has a

di�erent signature. KP and GEL appear to squeeze all the search e�ort up to a

shallow depth, and are reminiscent of the di�erent signatures of forward checking

and mac-based algorithms [10].
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Fig. 3. Average Checks at Depth for h20; 10; 0:5; 0:37i problems; on the left (a)

54 soluble problems, and on the right (b) 46 insoluble problems.
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Figure 4 shows the average number of nodes visited by each of the heuristics

(excluding RAND) at various depths. These contours are very similar to those

in Figure 3, as expected, showing that consistency checks correlate with visits.
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Fig. 4. The average number of nodes visited at depth for the h20; 10; 0:5;0:37i
problems; on the left (a) 54 soluble problems, and on the right (b) 46 insoluble

problems.

6 Conclusion

A small empirical study has been presented, investigating the behaviour of dy-

namic variable ordering heuristics. We have attempted to measure the dynamism

of dvo heuristics using entropy, and it appears that the more informed a heuristic

the less entropic/dynamic its behaviour. We also see that the heuristics exam-

ined have markedly di�erent signatures, moving the search e�ort to di�erent

depths in the search tree.

Further work should be done, in particular di�erent ways of measuring en-

tropy should be explored. Rather than measure it across depths in the search

tree, maybe it can be measured along paths, or maybe just arcs in the search

tree. We might also investigate the heuristic signature, and see if we can predict

how search e�ort grows at depths for di�erent heuristics (maybe using �nite

size scaling [4]). This might then allows us to predict how search cost scales for

di�erent heuristics within the search process.
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