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Abstract 

We describe an experimental investigation of the satisfiability phase transition for several dif- 
ferent classes of randomly generated problems. We show that the “conventional” picture of easy- 
hard-easy problem difficulty is inadequate. In particular, there is a region of very variable problem 
difficulty where problems are typically underconstrained and satisfiable. Within this region, prob- 
lems can be orders of magnitude harder than problems in the middle of the satisfiability phase 
transition. These extraordinarily hard problems appear to be associated with a “constraint gap”. 
That is, a region where search is a maximum as the amount of constraint propagation is a min- 
imum. We show that the position and shape of this constraint gap change little with problem 
size. Unlike hard problems in the middle of the satisfiability phase transition, hard problems in 
the variable region are not critically constrained between satisfiability and unsatisfiability. Indeed, 
hard problems in the variable region often contain a small and unique minimal unsatisfiable subset 
or reduce at an early stage in search to a hard unsatisfiable subproblem with a small and unique 
minimal unsatisfiable subset. The difficulty in solving such problems is thus in identifying the 
minimal unsatisfiable subset from the many irrelevant clauses. The existence of a constraint gap 
greatly hinders our ability to find such minimal unsatisfiable subsets. However, it remains open 
whether these problems remain hard for more intelligent backtracking procedures. We conjecture 
that these results will generalize both to other SAT problem classes, and to the phase transitions 
of other NP-hard problems. 
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1. Introduction 

Many randomly generated NP-hard problems display a phase transition as some pa- 
rameter is varied, and as the problems go from being almost always soluble to being 
almost always insoluble [ 31. This phase transition is often associated with problems 
which are typically hard to solve. In this paper, we show that with several different 
classes of satisfiability problems including random 3-SAT, the phase transition is indeed 
associated with problems which are typically hard but there are also regions of very vari- 
able problem difficulty in which problems are usually easy but sometimes extraordinarily 
hard. We identify the cause of this behaviour and show that it does not disappear with 
better algorithms or heuristics. We predict that similar regions of very variable problem 
difficulty will be found with many other NP-hard problems besides satisfiability. The 
extraordinarily hard problems found in these regions may be of use in analysing and 
comparing the performance of algorithms for NP-hard problems. 

2. Satisfiability 

Propositional satisfiability (or SAT) is the problem of deciding if there is an assign- 
ment of truth values for the variables in a propositional formula that makes the formula 
true using the standard interpretation for logical connectives. We will consider SAT 
problems in conjunctive normal form (CNF) ; a formula, 2, in CNF is a conjunction 
of clauses, where a clause is a disjunction of literals, and a literal is a negated or 
un-negated variable. A standard procedure for determining satisfiability is due to Davis, 
Putnam, Logemann, and Loveland [ 5,6]. We call this the “Davis-Putnam procedure”. * 
See Fig. 1. 

procedure DP( 2) 
if .Z is empty then return satisfiable 
if 2 contains an empty clause then return unsatisfiable 
(Tautology) if 2 contains a tautologous clause c then return DP( 2 - c) 
(Unit propagation) if 2 contains a unit clause (1) then 

return DP( 2 simplified by assigning 2 to True) 
(Pure literal deletion) if 2 contains a literal I but not the negation of 1 then 

return DP( 2 simplified by assigning 1 to True) 
(Split) if DP( 2 simplified by assigning a literal 1 to True) is satisfiable 

then returu satisfiable 
else return DP( 2 simplified by assigning the negation of 1 to True) 

Fig. 1. The Davis-Putnam procedure. 

2 We follow recent nomenclature in this, for example [ 8,141. Davis and F’utnam [ 61 introduced the unit 
and pure rules, while it was Davis, Logemann, and Loveland [5] who introduced the split rule and the use 

of backtracking. The latter authors modestly presented the difference as merely one of implementation. 
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An empty clause contains no literals, a unit clause contains just a single literal, and a 
tautologous clause contains both a literal and its negation. To simplify a set of clauses 
by the assignment of the literal I to True, we delete every clause that contains 1 and 
delete the negation of 1 whenever it occurs in the remaining clauses. Note that the 
Davis-Putnam procedure is non-deterministic since the literal used by the split rule is 
unspecified. As in previous studies (e.g. [ 8,14]), we will split upon the first literal 
in the first clause. We call this variant of the Davis-Putnam procedure “DP”. With 
good heuristics for choosing the literal to split on, an efficient implementation of the 
Davis-Putnam procedure is still the best complete procedure for satisfiability [ 71. 

3. Constant probability model 

The constant probability model of randomly generated problems has been the subject 
of considerable theoretical and experimental attention. In this model, given N variables 
and L clauses, each clause is generated so that it contains each of the 2N different 
literals with probability p. Our experiments use a variant of the constant probability 
model proposed in [ 111 and since used in other experimental studies [ 8,9,14]. In this 
problem class, if an empty or unit clause is generated, it is discarded and another clause 
generated in its place. This is because the inclusion of empty or unit clauses typically 
makes problems easier. We shall call this the “CP” model. In all our experiments, as in 
[ 8,9], we choose p so that 2Np = 3 and the mean clause length remains approximately 
constant as N varies. In [ 141, it is shown that there is a phase transition between 
satisfiability and unsatisfiability for CP as the ratio of clauses to variables, L/N, is 
varied. If 2Np is kept constant, then this phase transition occurs at L/N M 2.80 as 
N--too [9]. 

The satisfiability phase transition is of computational importance since there is an 
easy-hard-easy pattern in problem difficulty as we cross the phase transition with the 
hardest instances occurring in the phase transition [ 141. When the ratio of clauses to 
variables is large, problems are usually overconstrained, and thus easily shown to be 
unsatisfiable. When the ratio is small, problems are usually underconstrained, and a 
satisfying assignment can be “guessed” quickly. The hard instances tend to occur in the 
phase transition where the problems are neither overconstrained nor underconstrained. 
In [ 81, we showed that whilst median problem difficulty has a simple easy-hard- 
easy pattern, there is also a region of very variable and sometimes exceptionally hard 
problem difficulty at a high-percentage satisfiability. The worst-case problems in this 
region can be orders of magnitude harder than those in the middle of the satisfiability 
phase transition. These extraordinary problems can easily dominate the mean problem 
difficulty. Similar behaviour has been observed by Hogg and Williams for randomly 
generated 3-colourability problems [ lo]. 

Fig. 2(a) gives the mean and median number of branches used by DP for 1000 
problems from the CP model at N = 100 with L/N from 0.1 to 6.0 in intervals of 
0.1. The number of branches is the number of leaf nodes in the search tree. It pro- 
vides a good indication of problem difficulty and run time. The dotted line indicates the 
observed probability that problems were satisfiable. There is a very considerable differ- 
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Fig. 2. CP problems tested using DP, N = 100. Mean and median branches. 

ence between mean and median performance. The worst-case mean of 62.5 branches 
occurs at L/N = 2.4 in a mostly satisfiable region, whilst the worst-case median of 
just 9 branches occurs at L/N = 3.9 in the middle of the satisfiability phase transi- 
tion. Despite testing 1000 problems at each point, there is a large amount of noise 
in the mean, especially in the region of L/N from about 2 to 4, and despite the use 
of a logarithmic scale. In Fig. 2(b), we therefore tested 100,000 problems per point. 
Due to the large cost of testing this number of problems, we restricted our attention 
to the region L/N = 1.5 to 5.0. Although the noise is reduced considerably by taking 
100,000 problems, there is still a large difference between mean and median perfor- 
mance. The greatest difference is in the region that was previously noisy and where 
median performance is only 1 or 2 branches. There is a secondary peak in mean prob- 
lem difficulty of 24.3 branches at L/N = 3.0. The worst-case mean of 35.0 branches 
occurs at L/N = 3.6, close to the worst-case median of 9 branches in the middle of the 
satisfiability phase transition. The variable behaviour in the satisfiable region increases 
rapidly with N and eventually dominates the mean [ 81. The worst mean performance 
at large N therefore occurs in the satisfiable region and not in the middle of the phase 
transition. 

To explore this phenomenon further, in Fig. 3 (a) we give a breakdown in percentiles 
for the number of branches used from 50% (median) up to 100% (worst case) in 
the experiment described above in which 100,000 problems were tested at each point. 
The 99.9% contour, for example, gives the difficulty of the problem which took more 
branches than all but 0.1% of problems: in this case, this would be the hundredth hardest 
problem at each point. Interestingly, the worst-case contour is very noisy despite the very 
large number of problems tested and the logarithmic scale it is plotted on. Furthermore, 
the different contours are widely separated, especially at smaller values of L/N, showing 
how, for example, the tenth worst problem can be almost an order of magnitude harder 
than the hundredth worst problem. As we examine contours closer to the worst case, 
they peak at smaller values of L/N. In particular, the worst case was 185,902 branches 
at L/N = 2.9, while at L/N = 3.9, the point of worst median performance, the worst 
case was just 10,959 branches, more than an order of magnitude smaller. 
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Fig. 3. CP problems tested using DP, N = 100. 

In [ 81, we show that similar behaviour for CP is observed with better splitting 
heuristics. However, variable and difficult behaviour in the high-percentage satisfiable 
region is not apparent till larger N. 

4. Constraint gap 

In the Davis-Putnam procedure, the split rule is the only rule which gives rise to 
exponential behaviour. The other rules simplify the problem and do not branch the 
search. In particular, the unit and pure rules take advantage of constraints to commit 
in polynomial time to particular truth assignments. Since the extremely bad worst-case 
performance in the mostly satisfiable region is presumably due to exponential behaviour, 
we therefore conjecture that both the unit and pure rules will be of less importance than 
the split rule in this region. 

In Fig. 3 (b) we plot the mean ratio of pure literal deletions to splits, of unit propa- 
gations to splits and of the sum of pure literal deletions and unit propagations to splits 
for CP at N = 100. The uppermost (solid) line shows the ratio of all constraint prop- 
agations to splits. Underneath this, plotted to the same scale, are the ratio of number 
of applications of the pure rule to splits (peaking to the left), and the ratio of number 
of applications of the unit rule to splits (peaking to the right). Since the split rule is 
merely formalized guessing, the ratio of all propagations to splits indicates the number 
of variable assignments that can be deduced for each guess during search. To avoid divi- 
sion by zero, we exclude the trivial problems which tend to occur at small L/N that are 
solved with no splits. Such problems can be solved in polynomial time using a simple 
preprocessing step which exhaustively applies the unit and pure rules. As a guide, the 
dotted line repeats the probability of satisfiability from Fig. 2(a). We show the effect 
of both unit and pure propagations individually, and of them both together. The number 
of pures dominates behaviour at small values of L/N, while unit propagations start to 
dominate at large values. The ratio of all propagations to splits shows a large peak of 
73.5 at L/N = 1.3. In this region, almost all problems are trivial, being solved almost 
exclusively by pure literal deletion. However, with increasing L/N, the number of pure 
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Fig. 4. CP problems tested using DP 

literal deletions drops very rapidly, and applications of unit propagation take over. A 
local maximum of 33.8 propagations per split is reached at L/N = 5.2, though in this 
region performance is comparatively noisy. 

The most interesting region in Fig. 3(b) is the region where neither pure literal 
deletions nor unit propagations dominate behaviour, since in this region the total number 
of propagations shows a pronounced minimum. The minimum in the mean ratio of the 
sum of units and pures to splits is 9.8 and occurs at L/N = 2.5, close to the position of 
the hardest worst case. 

These graphs confirm that the unit and pure rules are not effective in the mostly 
satisfiable region. There appears to be a “constraint gap”; that is, there seems to be a 
region where the unit and pure rules are often unable to identify constraints on the truth 
assignments and we have to use the split rule extensively. This would suggest that the 
depth of search (i.e. the depth of nesting of split rule applications) would also peak 
in this region. In Fig. 4(a), we plot the mean minimum, and mean maximum depth 
of search. The peak of the minimum depth is 10.0 at L/N = 2.5 while the peak of 
maximum depth is 11.6 at L/N = 2.8. This coincides closely with the minimum in the 
ratio of the sum of units and pures to splits, and with the position of the hardest worst 
case. For unsatisfiable problems, a peak in minimum search depth corresponds to an 
exponentially larger peak in problem difficulty, as all branches must be searched to at 
least the minimum depth of the tree. We confirmed this by plotting the logarithm of 
problem difficulty for unsatisfiable problems alone. This was approximately proportional 
to mean minimum search depth. 

5. Scaling of the constraint gap 

The importance of the constraint gap depends in part upon the relationship of the 
constraint gap to the phase transition from satisfiability to unsatisfiability. For instance, 
if the constraint gap occurs at or near to the satisfiability phase transition, then it is 
likely to prove much more costly than if the constraint gap occurs well away in a 
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region of otherwise very easy problems. To help determine the relationship between 
the constraint gap and the satisfiability phase transition, we draw upon an analogy with 
phase transitions in physical systems. 

One of the most unusual and theoretically interesting phase transitions occurs in 
spin glasses. Each of the N atoms in a spin glass has a magnetic spin which can 
have only one of two values, “up” or “down” ( 1 or -1). The system therefore has 
2N possible configurations. Macroscopic properties of a configuration (e.g. the energy, 
entropy) depend only on interactions between the spins of nearest neighbours. Due to 
the differences in separation of the atoms, some of these interactions are ferromagnetic 
(promoting alignment of spins) whilst others are anti-ferromagnetic (promoting opposite 
spins). The net effect is a random force. An analogy can be made between such spin 
glasses and randomly generated SAT problems. Each of the N variables in a truth 
assignment has one of two values, “True” or “False”. The system therefore has 2N 
possible configurations. Macroscopic property like satisfiability depend only on the 
interaction between variables neighbouring each other in a clause. Due to the random 
polarities of these variables, the net effect on a variable is a random “preference” towards 
True or False. 

Kirkpatrick et al. [ 131 have used this analogy to suggest a fascinating scaling result for 
random k-SAT (this randomly generated problem class contains clauses of fixed length 
k; it is described in Section 6). They propose that there is a fundamental function f, 
and values LY and v, such that 

Prob(sat) =f((L/N- cu)N’/“). (1) 

Here we show that this relation also holds for problem classes like CP which contain 
clauses of mixed lengths. In Fig. 4(b) we plot the probability of satisfiability for CP 
along the y-axis and (L/N - ~y)Nr/~ along the x-axis. For convenience, we have also 
multiplied the x-ordinate by loo-*/” and added LY so that the values on the x-axis give 
the equivalent value of L/N at N = 100. The dashed line gives the point L/N = LY. We 
set (Y to 2.9 as this was the experimentally observed position of the satisfiability phase 
transition. A value for u was found by trial and error. Using LI = 2.5, we found a very 
good fit with the curves for N = 25,50,75,100,150,200, and 250. These plots are never 
more than 0.3 apart in terms of L/N as measured at N = 100. This is a slightly less good 
fit than has been observed for random 3-SAT [ 131 or for random mixed SAT [9] (this 
problem class contains a fixed distribution of clause lengths; it is defined in Section 
7). This may be because, in the CP model, the distribution of clause lengths changes 
slightly with problem size, or because the expected number of tautologies, which are 
allowed in the CP model but not in random 3-SAT or random mixed SAT, changes with 
problem size. 

The normalized ratios of units to splits and pures to splits are, like the probability of 
satisfiability, macroscopic properties of the satisfiability system which vary with N and 
L between 0 and 100%. We therefore investigated how these features of search scale as 
the problem size changes. Very surprisingly, the normalized ratio of units to splits seems 
to scale in a very simple fashion similar to that of probability of satisfiability. That is, 
there exists a function g, and constants cyu, v,, such that, 
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Fig. 5. CP problems tested using DP, N = 25 to 300. 

units/splits 

max( units/splits) 
= g( (L/N - (Y~)N+~). 

The normalizing maximal values are for a fixed N and varying L. In Fig. 5(a) we plot 

the normalized ratios of units to splits for CP problems for N = 25,50,75,100,150, 

and 300. The x-axes are scaled in the same way as in Fig. 4(b). Using Q,, = 3.3 and 
L;,, = 2.5, we found a very good fit to Eq. (2), as can be seen clearly from the graph, 

particularly in the region of L/N from approximately 2 to 4. Behaviour at very small 
or large values of L/N does not seem to fit the model as closely. It is particularly 

important to note that the value of CY, used here, namely 3.3, is larger than values of 

L/N where we earlier observed very bad worst-case behaviour, and the constraint gap. 
The maximum ratio of units to splits seems to scale as approximately h’c’.6. We would 
expect less than linear scaling of this ratio, as otherwise the number of splits required 

would not increase with N. Sublinear scaling of this ratio suggests exponential growth 
in the number of branches required to be searched. 

The scaling of the ratio of pures to splits is less simple than that of units. In Fig. 5(b) 
we show the ratios of the number of pure literal deletions to splits for the same values 
of N as before, normalized by the relevant maximum value on the y-axis but unscaled 
on the x-axis. It can be seen that there is a very large peak at very low L/N, in a 

region where most problems are proved to be satisfiable simply by a large number of 
applications of the pure rule. This peak moves slightly to the right with increasing N. By 
contrast, the decline from this peak value is very fast, and takes place with dramatically 
increasing speed as N increases. Unlike unit propagations, the peak of ratio of pures to 
splits seems to approach the number of variables as N increases. However, this peak 
occurs at extremely small values of L/N, suggesting that such problems are essentially 

trivial. It seems likely that in the constraint gap, and beyond, scaling of the number of 
pures to splits is indeed sublinear. For example, at L/N = 2, the ratio of pures to splits 
increases only from 16 at N = 100 to 18 at N = 300, hardly increasing at all while 
the problem size triples. It is harder to come to any definite conclusion as it was for 
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unit propagations. However, it should be noted that the peak in pure applications seems 
to occur at significantly lower values of L/N than where we observed bad behaviour 
and the constraint gap. As the behaviour at low L/N is dominated by easy or trivial 
problems, it is possible that if these could be eliminated in a suitable way, we would 
observe a similar scaling to that seen with the probability of satisfiability and of unit 
propagations to splits. 

These results suggest that the constraint gap will get more pronounced with increasing 
N. In particular, the decline on the number of unit propagations as N increases and L/N 
decreases below LY, gets sharper. The behaviour of the pure rule is less clear-cut, but 
seems to show broadly similar behaviour. In [ 81, we showed worst-case behaviour is 
due to unsatisfiable problems and to unsatisfiable subproblems of satisfiable problems 
[ 81. As pure literal deletions only directly help to solve satisfiable problems (though at 
least simplifying unsatisfiable problems), we would not expect pure literal deletion to 
help suppress bad worst-case behaviour in the constraint gap, even if the utility of the 
pure literal rule did not decay. 

These results show that the constraint gap for CP, like the phase transition between 
satisfiability and unsatisfiability, occurs at a fixed value of L/N; that is, at a fixed ratio 
of constraints to variables. The constraint gap seems to be open between approximately 
L/N = 2 and 3.3. The position of the constraint gap is thus fixed relative to the position 
of the satisfiability phase transition. From the shape of g, the scaling of the maximal 
values, and the value u, it also appears that the constraint gap will become more 
pronounced as N increases. 

6. Random k-SAT 

Following [ 141, many studies of the satisfiability phase transition have concentrated 
on the random k-SAT problem class. A problem in random k-SAT consists of L clauses, 
each of which has k literals chosen uniformly from the N possible variables, each literal 
being positive or negative with probability 3. Unlike CP, all clauses in the random 
k-SAT model are of the same length. In [ 141, it was shown that there is a satisfiability 
phase transition for random 3-SAT at L/N M 4.3, and that median behaviour displays a 
simple easy-hard-easy pattern through this phase transition. In [ 81 we showed that hard 
random 3-SAT problems can also occur in the mostly satisfiable region, and Crawford 
and Auton also anecdotally report this for very large problems [4]. Indeed, problems in 
the mostly satisfiable region can be several orders of magnitude harder than the hardest 
problems from the middle of the satisfiability phase transition (the point of worst median 
performance). These extraordinarily hard problem appear to be rarer in random 3-SAT 
than in CP. Although we found such hard problems in a sample of 1000 for CP, it 
required 100,000 for random 3-SAT. As with CP, these hard random 3-SAT problems 
occur in the region of a constraint gap, a minimum in the ratio of constraint propagations 
to splits. Again, as with CP, the constraint gap and the probability of satisfiability scale 
as in Eqs. (1) and (2). 

In Fig. 6(a) and (b) we plot the probability of satisfiability and the normalized ratios 
of units to splits for random 3-SAT problems for N = 10 to 70 in steps of 10. Using 
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Fig. 6. Random 3-SAT problems tested using DP, N = 10 to 70. 

(Y = 4.15 and u = 1.5 (following [ 13]), cq, = 3.3 and v,, = 2.85, we found a very good 
fit to Eqs. ( 1) and (2). The peak ratio of units to splits seems to vary approximately 
as Nc6’. Again, mean minimum depth of search peaks at a small value of L/N. For 
example, at N = 50, the maximum value was 11.1 at L/N = 2.6. As with CP, we did 
not obtain a similar scaling result for the ratio of pures to splits. However, the region of 
many pure literal deletions again decays at a smaller value of L/N than the region of 
many unit propagations. 

To conclude, hard problems can also occur with random 3-SAT in the mostly satisfi- 
able region. These hard problems again appear to be associated with a constraint gap. 
This constraint gap occurs at a fixed value of L/N, and becomes more pronounced as 
N increase. The position of the constraint gap is fixed relative to the position of the 
satisfiability phase transition. While the satisfiability phase transition for CP seemed to 
be within the constraint gap (see Section 5), this does not seem to be the case for 
3-SAT. The probability phase transition seems to occur at approximately 4.2, while the 
constraint gap seems to end at approximately 3.3. This difference may account for some 
aspects of the differences in behaviour between CP and 3-SAT. 

7. Random mixed SAT 

In [ 91, we introduced a generalization of the random k-SAT model, called “random 
mixed SAT”. In the satisfiability phase transition, problems from random mixed SAT can 
be much harder than comparably sized random k-SAT problems. In the random mixed 
SAT model, a set of clauses is generated with respect to a probability distribution 4 on 
the integers. Each clause is generated as in random k-SAT except that k, the length of 
the clause, is chosen randomly according to 4. For example, if 9( 2) = +( 3) = 1, then 
clauses of length 2 and 3 appear with probability i, whilst if 4(2) = f and +(4) = 3, 
clauses of length 2 appear with probability f and of length 4 with probability 3. In this 
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Fig. 7. Random 2,4,4-SAT problems tested using DP, N = 100. 

paper, we will call these problem classes “2,3-SAT” and “2,4,4-SAT” respectively. The 
frequency of occurrence of an integer in the name reflects the frequency of occurrence 
of clauses of this length in the problem. Random k-SAT is a special case of random 
mixed SAT in which 4(k) = 1, and 4(j) = 0 for j # k. For a given 4, we define the 
density of 4, d&, as 

M 

4 =def 
c 

4(k)(l -($P). 

k=l 

The density gives the mean fraction of all truth assignments that are consistent with any 
given clause generated by q%. The expected number of models of a random mixed SAT 
problem with N variables and L clauses is then 2N (dg) L. 

The random mixed SAT model may generate problems more similar to real-world 
problems than random k-SAT. For example, many structured problems encode into SAT 
problems with mixed clause lengths (e.g. scheduling problems can be encoded into SAT 
using large numbers of binary clauses). The random mixed SAT model also produces 
problems which can, as we have said, be much harder than random k-SAT. In [9], 
we showed that the satisfiability phase transition for random mixed SAT for a given 4 
seems to occur, as with random k-SAT, at a fixed ratio of L/N. For random 2,4,4-SAT, 
the phase transition occurs at L/N M 2.74, and we observed a similar kind of scaling 
as seen in Fig. 4(b), with constants LY = 2.74 and u = 3.5. 

Although random 2,4,4-SAT has the same density as random 3-SAT, problem difficulty 
through the satisfiability phase transition of random 2,4,4-SAT is more similar to that 
of CP than that of random 3-SAT. Fig. 7(a) shows the percentile branches used by 
DP for random 2,4,4-SAT problems at N = 100, with 10,000 problems tested at each 
value of L/N from 0.2 to 6.0 in steps of 0.2. Median problem difficulty shows a 
simple easy-hard-easy pattern, whilst the hardest problems are again found in a region 
of high-percentage satisfiability. The worst case was 104,885 branches at L/N = 2.8, 
while at L/N = 3.8 the point of worst median performance, the worst case was just 
7,534 branches, two orders of magnitude smaller. As with CP, these extraordinarily 
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hard problems appear to be associated with a constraint gap. In Fig. 7(b) we plot the 
mean ratio of constraint propagations to splits for random 2,4,4-SAT at N = 100. The 
minimum in the mean ratio of the sum of units and pures to splits is 10.1 and occurs 
at L/N = 2.6, close to the position of the hardest worst case. As with CP, the depth of 
search also peaks in this region. The peak of the minimum depth is 9.8 at L/N = 2.4 
while the peak of maximum depth is 11.3 at L/N = 2.8. It seems likely that we will 
observe a similar scaling of the constraint gap for 2,4,4SAT as we observed above for 
CP. 

8. k-colourability 

Another way of randomly generating SAT problems is to map random problems from 
some other NP-hard problem into SAT. For example, the k-colourability (k-COL) of 
random graphs can be easily mapped into SAT. Given a graph, G the k-colourability 
problem is to assign one of k labels to each vertex of G so that adjacent vertices carry 
different labels. For a graph with n vertices and e edges, our encoding of k-COL into 
SAT uses II . k variables. We generate random graphs to encode into SAT by choosing 
e edges from the n . (n - 1)/2 possible edges uniformly at random. We use ~(n, e) to 
denote graphs drawn from this class. 

In Fig. 8 (a) we plot the breakdown in percentiles for the number of branches used by 
DP for encodings of 3-colourability for 1000 problems taken from ~(n, e) with n = 40 
and e/n = 0.5 to 4 in steps of 0.1. The worst case was 2,905,Oll branches at e/n = 1.6, 
while at e/n = 2.4, the point of worst median performance, the worst case was just 
4,139 branches, 3 orders of magnitude smaller. As with the other random problem 
classes, median problem difficulty shows a simple easy-hard-easy pattern through the 
k-colourability phase transition. Very similar behaviour for k-colourability was observed 
by Hogg and Williams using two special-purpose colouring algorithms [ 101. 

The constraint gap seems to be an important feature in 3-COL as well as in other 
problem classes of satisfiability problems. However, pure literal deletions seem less 
important than previously. Even at e/n = 0.4 the number of pure propagations per 
split is only 3.8 at n = 40, compared to a peak of 34.9 unit propagations per split at 
e/n = 2.65. The number of unit propagations per split seems to scale similarly with n 
to the earlier cases of CP and 3-SAT, suggesting that once again the constraint gap is 
an important way of understanding search. In Fig. 8(b) we plot normalized values of 
the ratio of unit propagations to splits for n = 10, 20, 25, 30, 40, scaled by Eq. (2) 
with the values CY, = 2.4 and CJ = 3. The depth of search also peaks in the region of 
extraordinarily hard problems. 

9. Critically constrained problems 

Crawford and Auton [4] have suggested that hard problems in the satisfiability phase 
transition are critically constrained. That is, they are neither so underconstrained that 
we can guess one of the many models easily, nor so overconstrained that we can 
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Fig. 8. 3-COL problems from ,y(n, e) tested with DP. 

determine their unsatisfiability with little search. Such problems are on the knife edge 
between satisfiability and unsatisfiability. To test this hypothesis, we ran a series of 
experiments in which we added and deleted constraints from the hardest CP problems 

in the experiments described in Section 3. 

As the most important aspects of behaviour seem to arise on unsatisfiable prob- 
lems [ 81, we first examined behaviour on unsatisfiable problems only. We took the 
100 hardest unsatisfiable problems from 100,000 CP problems at each point and mea- 

sured the probability that they become satisfiable if we delete 20 clauses at random. 

This is shown in Fig. 9(a) by the dashed line. Noise in this graph is accounted for 

by the selection of a small number of problems at each point. For comparison, the 

solid line gives the probability that any unsatisfiable problem at each point becomes 
satisfiable if we delete 20 clauses at random, and the dotted line gives the overall prob- 
ability of satisfiability. This graph has two interesting features. First, it confirms that 

in the satisfiability phase transition, the hardest unsatisfiable problems are significantly 
more critically constrained than all problems. This is consistent with the suggestion 

of [4] that hard problems in the phase transition are critically constrained. Equally 

importantly, however, in the region of mostly satisfiable problems and of the con- 
straint gap, the hardest unsatisfiable problems are significantly less constrained than 
typical unsatisfiable problems. Yet these problems are precisely the ones that require 

most search to solve of all problems at all values of L/N. We defer detailed dis- 
cussion of these problems to the next section, where we show that the large amount 

of search arises precisely because these unsatisfiable problems are not critically con- 
strained, and hence contain little information to help towards proving unsatisfiabil- 
ity. 

Satisfiable problems are hard for rather different reasons to unsatisfiable ones. In 
particular, much search can only be needed if reductions early in search lead to un- 
satisfiable subproblems. This suggests that the hardest satisfiable problems should be 
more critically constrained at all values of L/N. To test this, we took the 100 hardest 
satisfiable problems from 100,000 at each point, and measured the probability that they 
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become unsatisfiable if we add 20 randomly generated CP clauses. This is shown in 
Fig. 9(b) by the dashed line. For comparison, the solid line gives the probability that 
any satisfiable problem at this point (not just one of the hardest 100) becomes unsatis- 
fiable if we add 20 randomly generated CP clauses. For reference, the dotted line gives 
the overall probability of satisfiability. It can be seen that except at large L/N (where 
there are very few satisfiable problems and so unusual effects may be due to noise), 
the worst satisfiable problems are easier to make unsatisfiable than typical problems. 
This suggests that the hardest satisfiable problems are more critically constrained than 
typical satisfiable problems. The most significant feature of the data may be that the 
largest discrepancy between the hardest satisfiable and all satisfiable problems is between 
L/N = 2 and 3. This is consistent with the observation in [8] that very hard satisfiable 
problems in this region arise because an incorrect choice at a branching point in search 
leads to a hard unsatisfiable subproblem. While unsatisfiable problems in this region 
are hard because they are not critically constrained, satisfiable problems can only give 
rise to hard unsatisfiable subproblems at an early stage in search if they are critically 
constrained. Even so, these problems are significantly less critically constrained than 
satisfiable problems in the middle of the phase transition. This helps to explain why 
the hardest satisfiable problems can often be solved very quickly if randomly different 
choices are made during search, as we showed in [ 81. 

These graphs show that the most critically constrained problems occur, as suggested by 
Crawford and Auton, in the middle of the satisfiability phase transition. We can neither 
add nor delete many constraints from problems in this region without changing their 
satisfiability. By comparison, hard unsatisfiable problems in the mostly satisfiable region 
are not critically constrained since we can delete many constraints without making them 
satisfiable. The hardest satisfiable problems in this region are more critically constrained 

than typical problems, and thus they can reduce at early point in search to a hard 
unsatisfiable problem. In the next section we will argue that, whilst problems in the 
middle of the satisfiability phase transition are difficult because they are so critically 

constrained, problems in the mostly satisfiable region are difficult because they are so 
uncritically constrained. 
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10. Minimal unsatisfiable subsets 

In [ 81, we showed that hard problems in the mostly satisfiable region are either hard 
unsatisfiable problems or are satisfiable problems that give rise to hard unsatisfiable 
subproblems following an incorrect split at the start of search. To explain the difficulty 
of problems in the mostly satisfiable region, we will therefore focus on unsatisfiable 
problems. Since hard unsatisfiable problems in the mostly satisfiable region are not 
critically constrained, we can delete many clauses from them without making them 
satisfiable. This suggests that hard unsatisfiable problems from the mostly satisfiable 
region contain a large number of irrelevant clauses. To test this hypothesis, we computed 
minimal unsatisfiable subsets of the hardest unsatisfiable problems. S is a minimal 
unsatisjiable subset of T iff S c T, S is unsatisfiable and there does not exist R with 
R c S and R unsatisfiable. To compute a minimal unsatisfiable subset of T, we deleted 
each clause of T in turn, adding it back only if deleting it makes the set of clauses 
satisfiable. Unfortunately, it is too computationally expensive to compute all minimal 
unsatisfiable subsets. We did, however, determine if the computed minimal unsatisfiable 
subset is unique. S is a unique minimal unsatisfiable subset of T iff S is a minimal 
unsatisfiable subset of T and for all sp E S, T - (4p) is satisfiable. 

In Fig. 10(a), at each value of L/N, we took the 100 hardest unsatisfiable CP 
problems for DP from 100,000 and measured the probability that they have a unique 
minimal unsatisfiable subset. For reference, the dotted line gives the probability of 
satisfiability for all problems at this point. In Fig. 10(b) we plot the average number 
of variables in the computed minimal unsatisfiable subset. When there is not a unique 
minimal unsatisfiable subset, our method of computation will tend to underestimate the 
average number of variables of all the minimal unsatisfiable subsets since there are 
more ways of computing a small minimal unsatisfiable subset than a large one. Again, 
for reference, the dotted line gives the probability of satisfiability for all problems 
at this point. A graph of the average number of clauses in the minimal unsatisfiable 
subsets looks very similar in shape to that of the number of variables in the minimal 
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unsatisfiable subsets. The ratio of clauses to variables in the minimal unsatisfiable subsets 
increases slowly from 1.15 at L/N = 2.2 to 1.29 at L/N = 4.6. The observed minimal 
unsatisfiable subsets are typically dominated by binary clauses, especially the very small 
minimal unsatisfiable subsets observed at small values of L/N. As the size of minimal 
unsatisfiable subsets increase, the number of non-binary clauses increases accordingly, 
but even so the average size of clauses we observed increased only from 2.05 at L/N = 
2.0 to 2.61 at L/N = 4.6. 

These graphs show that hard unsatisfiable problems in the mostly satisfiable region 
tend to have very small and unique minimal unsatisfiable subsets which mention few 
variables. The difficulty in solving such problems is thus one of irrelev,ancy. DP will 
waste most of its time splitting on irrelevant variables, Because of the constraint gap, 
few constraint propagations follow each split. We are thus unlikely to simplify on one of 
the variables in a minimal unsatisfiable subset. Only after DP has backtracked through a 
large number of irrelevant variable assignments, will we discover a minimal unsatisfiable 
subset. As the minimal unsatisfiable subsets of hard problems in the mostly satisfiable 
region are small and mention few variables, they have very short proofs. This suggests 
that most of the computation performed by DP was (logically speaking) unnecessary. It 
is, however, very hard to find a short proof since our heuristics and constraint propagation 
must identify the minimal unsatisfiable subset from the large number of irrelevant (and 
satisfiable) clauses. We are much more likely to find one of the many long proofs 
containing large amounts of unnecessary computation than one of the few short proofs 
containing little unnecessary computation. This explains why in [ 81 we found that hard 
unsatisfiable problems in the mostly satisfiable region can sometimes have short proofs 
but that such proofs are hard to find. 

Note that a search strategy optimized for short proofs (for example, breadth-first or 
iterative deepening search) will not ultimately help. If the length of the shortest proof of 
the minimal unsatisfiable subset is 1 splits, then the search space for a complete procedure 
like breadth first search is O(N’). This is polynomial if and only if I is bounded. 
Unfortunately, even though the minimal unsatisfiable subset is small in comparison to 
L and N, it could increase in size with N and still be hard to identify. The length of 
the shortest proof could therefore easily be unbounded. For example, the size of the 
minimal unsatisfiable subset, and E might increase as 0( fi> or O(log(N)). 

These results help to explain why hard problems are much rarer in the mostly satis- 
liable region of random 3-SAT than in the mostly satisfiable regions of CP and random 
2,4,4-SAT. CP and random 2,4,4SAT problems contain large numbers of binary clauses. 
It is thus not too difficult to hide a small and unique minimal unsatisfiable subset within 
a large satisfiable CP or random 2,4,4-SAT problem. By comparison, all clauses in a 
random 3-SAT problem must contain three literals. The minimal unsatisfiable subsets 
in random 3-SAT are therefore typically larger and mention more variables. It is thus 
more difficult to hide a minimal unsatisfiable subset within a satisfiable random 3-SAT 
problem. 

In the mostly satisfiable region, the problem of solving a rare unsatisfiable problem 
is that of identifying a single minimal unsatisfiable subset. Once found it is usually 
very easy to solve. However, there may be few clues available to its identification. On 
the other hand, in the middle of the phase transition, the identification of a minimal 
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unsatisfiable subset is not so important, because the minimal unsatisfiable subsets are 
comparatively large, and indeed may not in themselves be significantly easier than the 
problem as a whole. Furthermore, choice points in search are less likely to be wasted, 
because most splits contribute towards a proof of unsatisfiability, as is seen by the large 
number of variables in the minimal unsatisfiable subsets. In the mostly satisfiable region, 
bad choices can double search time, as they may make no contribution to deriving the 
unsatisfiability of the unique minimal unsatisfiable subset. 

To conclude, hard unsatisfiable problems in the mostly satisfiable region often have 
very small and unique minimal unsatisfiable subsets. These minimal unsatisfiable subsets 
are hidden within much larger random satisfiable problems. It is thus very difficult to find 
such minimal unsatisfiable subsets. An analogy can be made with cryptography where 
it is very difficult to identify a short message if it is hidden in a long stream of white 
noise. By comparison, hard unsatisfiable problems in the middle of the satisfiability 
phase transition typically have much larger minimal unsatisfiable subsets which are not 
unique. 

11. Binary constraints 

The minimal unsatisfiable subsets often contain many binary clauses, or reduce to 
binary clauses after just one variable assignment. Since there exists a linear time al- 
gorithm for the satisfiability of binary clauses [I], problems containing such minimal 
unsatisfiable subsets can be solved in polynomial time. We have therefore augmented 
DP with the following rule: 

(Binary) if the binary clauses of (2 simplified with the literal 1 assigned to True) 
are unsatisfiable then assign the negation of 1 to True. 

This rule has a non-deterministic choice of literal; this may affect the number of pure, 
unit or binary rules applied but not the number of splits or branches. We tested DP 
augmented with the binary rule on lOO-variable CP problems. The worst mean perfor- 
mance was only 2.5 branches at L/N = 3.4, more than an order of magnitude less than 
the performance of DP alone. (Note that it cannot be deduced from this that run time 
is reduced, as there is a large overhead in applying the rule.) 

The binary rule is able to solve many of the (previously hard) unsatisfiable problems 
in the variable region, sometimes without search. For example, we tested the 100 worst 
unsatisfiable lOO-variable problems of 100,000 CP problems tested at L/N = 2.6. This 
point was chosen as it has very bad performance of the worst cases, and is in the middle 
of the constraint gap. DP augmented with the (Binary) rule was able to solve 92 of 
these 100 problems without needing to search at all. That is, the binary and near-binary 
clauses contained enough information alone to prove unsatisfiability. By contrast, at the 
point of worst median performance, L/N = 3.9, only 43 of the 100 worst problems were 
solved without search. 

It can thus be seen that in terms of reducing the amount of search, augmenting DP 
with the (Binary) rule is highly effective. Nevertheless, it is not able to eliminate the 
extremely bad worst-case performance in the mostly satisfiable region. Of the 8 of the 
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worst 100 unsatisfiable problems not solved trivially at L/N = 2.6, one required as many 
as 6,520 branches using the binary rule and another 2,454. By contrast, at L/N = 3.9, 
the worst of the 57 problems not solved trivially needed only 574 branches using the 
binary rule. Furthermore, the binary rule is not able to eliminate the constraint gap. The 
ratio of applications of the binary rule to splits is broadly similar in behaviour to the 
ratio of units to splits seen in Fig. 3(b), peaking at comparatively large values of L/N. 

The fact that the variable behaviour in an otherwise easy region of problems cannot 
be eliminated by the (Binary) rule is particularly significant. This rule was an especially 
good candidate to eliminate variable behaviour, since we showed above that the worst- 
case problems were associated with minimal unsatisfiable subsets largely containing 
binary clauses. Furthermore, we have shown in the past [8] that improved branching 
heuristics seem unable to eliminate the variable behaviour. Thus, neither better heuristics, 
nor better constraint propagation are able to eliminate variable behaviour. 

We also implemented a restricted version of the binary rule which just determines the 
satisfiability of the binary clauses and does not simplify on any of the literals. Although 
this restricted rule is less expensive, it appears to be of little use in reducing search; 
for CP at N = 100, 2Np = 3, it closed at most 20% of branches at large L/N but less 
than 3% of branches in the region of the constraint gap. It thus had little effect on mean 
behaviour. 

12. Intelligent backtracking 

There are three ways in which we can try to improve the behaviour of backtracking 
algorithms. We can improve the quality of our branching choices, we can increase the 
work we do between each branch to try to decrease the amount of branching, and we can 
use information gained during search to improve the quality of backtracking. Improved 
branching heuristics appear to be unable to eliminate exceptionally hard problems [ 81. 
Also, as we saw in Section 11, improved constraint propagation between branching 
points in search appears unable to eliminate the constraint gap or exceptionally hard 
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problems. This leaves open only the question of whether intelligent backtracking can rid 
us of these difficult problems. 

To test this, we used an implementation of the Davis-Putnam procedure written by 
Mark Stickel which uses a form of intelligent backtracking. 3 When a branch closes, the 
variable assignments which contributed to the generation of inconsistency are recorded. 
Backtracking then jumps over all other variable assignments since they are irrelevant to 
the closing of the branch. Such intelligent backtracking may identify branching points 
which were made on irrelevant variables outside the minimal unsatisfiable subset. When 
it succeeds in doing so, a dramatic reduction in search is achieved. 

Intelligent backtracking greatly reduced the number of exceptionally hard problems 
for small problem sizes. However, with increasing problem size they seem to reappear. 
At N = 300, we tested 10,000 problems from the constant probability model with 
2Np = 3, at each value of L/N from 0.2 to 6.0 in steps of 0.2, and additionally each 
value from 2.2 to 4.6 in steps of 0.05 to investigate the phase transition in more depth. 
Fig. 11 shows the percentile contours of results, and also the probability of satisfiability. 
The worst case observed was a sari&b/e problem that needed 1,386,500 branches at 
L/N = 3.2, where 90.14% of problems were soluble, and where median behaviour was 
only 2 branches. This is five orders of magnitude worse than the worst median behaviour 
of only 12 branches at L/N = 3.7, at which point the worst case we saw was 16,003 
branches. Further hard problems were seen at smaller values of L/N, for example one 
unsatisfiable problem needed 48,269 branches at L/N = 2.7, where 99.52% of problems 
were soluble. 

It is clear from these results that rare but exceptionally hard problems still occur in 
the mostly soluble and easy region. However, the worst cases may occur at slightly 
larger values of L/N than before, and not as clearly in the constraint gap. The existence 
of other hard problems at smaller values of L/N suggests that the constraint gap is 
still important. To investigate this further, extensive computational experiments will be 
required, both with larger problem and sample sizes. 

Other forms of intelligent backtracking are possible, such as dependency directed 
backtracking [ 151. Baker has shown that this can eliminate exceptionally hard problems 
from the underconstrained region in 3-COL for lOO-node random graphs [ 21. However, 
it remains an open question whether this or any other form of intelligent backtracking 
can eliminate such hard problems as problem sizes increase. 

13. Related work 

Phase transitions are becoming increasingly important in the study of AI systems. 
Huberman and Hogg [ 121 predict that many large-scale systems will undergo sudden 
phase transitions that affect computational performance. They show, for example, that 
a simple model of heuristic search changes from linear to exponential behaviour at a 
phase boundary. Cheeseman et al. [ 31 observed that many NP-hard problems (e.g. graph 

3 This implementation lacks the pure literal deletion rule. This is unlikely to affect results qualitatively since 
the pure literal rule is not effective in the regions where hard problems occur. 
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colouring and Hamiltonian circuits) have a control parameter, that a phase transition 
between underconstrained (and typically soluble) problems and overconstrained (and 
typically insoluble) problems occurs at a critical values of this parameter, and that 
hard problems occur at this critical value. Williams and Hogg [ 161 give theoretical 
reasons why the solubility phase transition should coincide with peaks in problem 
difficulty. 

For random 3-SAT and CP, Mitchell et al. [ 141 demonstrated that the parameter is 
L/N, the ratio of clauses to variables, and that median performance of DP has an easy- 
hard-easy pattern through the phase transition with the hardest median instance occurring 
in the phase transition. Although they noted that the mean is influenced by a very small 
number of very large values, they concentrated solely on the median as they felt that “it 
appears to be a more informative statistic”. Our results suggest that the distribution of 
values is, in fact, of considerable importance in understanding problem difficulty, and 
that the median alone provides a somewhat incomplete picture. Crawford and Auton 
have also observed a secondary peak in mean problem difficulty for a tableau based 
procedure in a mostly satisfiable region of random 3-SAT [4]. However, they failed to 
observe this peak with DP and therefore speculated that it was probably an artifact of 
the branching heuristics used by their procedure. In fact it seems more likely that it is 
an artifact of the statistics they compiled, namely the number of nodes in the search 
tree. Obviously this is related to depth of search, and we observed a distinctive peak in 
this at low L/N in CP (see Section 4) and a similar one in 3-SAT (see Section 6). 
This would be enough to account for the secondary peak they report of approximately 
13 nodes at N = 50. It was only on much larger problems, with hundreds of variables, 
that they report occasional extremely hard behaviour. In [8] we were able to show, 
however, that unusually hard problems do occur at low L/N at N = 50 in 3-SAT using a 
simplified variant of DP, but that it requires very large sample sizes to be seen. For this 
effect in 3-SAT to be studied in more detail, larger problems and larger sample sizes 
will be needed. 

Hogg and Williams have observed extremely variable problem difficulty for graph 
colouring using both a backtracking algorithm based on the Berlaz heuristic and a 
heuristic repair algorithm [lo]. They found that the hardest three colouring problems 
were in an otherwise easy region of graphs of low connectivity. The median search cost, 
by comparison, shows the usual easy-hard-easy pattern through the three colourability 
phase transition. They propose that these very hard problems are associated with a 
transition between polynomial and exponential average search cost. 

14. Conclusions 

We have performed a detailed experimental investigation of the satisfiability phase 
transition for several different classes of randomly generated problems including the 
constant probability model, random k-SAT, random mixed SAT, and an encoding of 
k-COL into SAT. With each problem class, the median problem difficulty for the Davis- 
Putnam procedure displays an easy-hard-easy pattern with the hardest problems being 
associated with the satisfiability phase transition. We have shown, however, that the 
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“conventional” picture of easy-hard-easy behaviour is inadequate since the distribu- 
tion of problem difficulties has several other important features. In particular, all the 

problem classes have a region of very variable problem difficulty where problems are 

typically underconstrained and satisfiable. Within these regions, we have found prob- 
lems orders of magnitude harder than problems in the middle of the phase transition. 

These extraordinarily hard problems appear to be associated with a constraint gap, a 
minimum in the ratio of the constraint propagations to splits. The position and shape 
of both the constraint gap and the satisfiability phase transition are remarkably con- 

sistent with problem size. For example, both occur at fixed ratios of constraints to 

variables. 
We have shown that the hardest problems in the middle of the satisfiability phase 

transition are more critically constrained between being satisfiable and unsatisfiable than 
typical problems. By comparison, hard problems in the variable region arise for differ- 

ent reasons. The hardest unsatisfiable problems in the variable region are actually less 
critically constrained than typical unsatisfiable problems. Indeed, the hardest unsatisfi- 

able problems in the variable region often contain a very small and unique minimal 

unsatisfiable subset. The difficulty in solving such problems is thus in identifying the 
minimal unsatisfiable subset from the many irrelevant clauses. All branching points or 

constraint propagations during search which do not affect a variable in the minimal 

unsatisfiable subset represent entirely wasted work. As each branching point doubles the 

search space, search time can be exponential in the number of irrelevant choices. On 
the other hand, hard satisfiable problems in the variable region are much more critically 
constrained than typical satisfiable problems. As a result, an incorrect assignment at an 

early stage in search leads to an unsatisfiable subproblem, which then behaves like hard 
unsatisfiable problems in the same region, and contains a small and unique minimal 

unsatisfiable subset. 
The difficulty in solving the hardest unsatisfiable problems away from the probability 

phase transition is in identifying a small minimal unsatisfiable subset. The existence of 
a constraint gap greatly hinders our ability to find such minimal unsatisfiable subsets. 
Despite the fact that the minimal unsatisfiable subsets contain many binary clauses, 

or reduce to a large number of binary clauses after just one variable assignment, the 

addition of a rule to the Davis-Putnam procedure to propagate on binary or near- 

binary constraints reduces but does not eliminate very variable behaviour. We have 
shown elsewhere that improved branching heuristics also do not eliminate this behaviour. 

The fact that neither heuristically nor non-heuristically based improvements are able to 
eliminate this behaviour suggests that it is likely to be fundamental to the problem 

class. It remains possible that some form of intelligent backtracking might eliminate 
exceptionally hard problems or the constraint gap. Our results on one form of intelligent 
backtracking tentatively suggest otherwise. 

Given the range of problem classes used in our experiments, we believe that these 
results may generalize to other SAT problem classes, and perhaps even to the phase 
transitions of other NP-hard problems. The identification of factors like the constraint 

gap which help to make instances of an NP-complete problem like SAT hard should 
be useful both empirically for testing and improving algorithms and theoretically for 
understanding the fine detail of NP-hardness. 
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