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Abstract 

An empirical study of randomly generated binary constraint satisfaction problems reveals that 
for problems with a given number of variables, domain size, and connectivity there is a critical 
level of constraint tightness at which a phase transition occurs. At the phase transition, problems 
change from being soluble to insoluble, and the difficulty of problems increases dramatically. 
A theory developed by Williams and Hogg [44], and independently developed by Smith [37], 
predicts where the hardest problems should occur. It is shown that the theory is in close agreement 
with the empirical results, except when constraint graphs are sparse. 

Keywords: Search phase transitions; Random binary constraint satisfaction problems; Empirical study of 
phase transition behavior in CSPs; Mushy region; Hard problems 

1. Introduction 

In the binary constraint satisfaction problem (CSP) we are given a set of variables, 
where each variable has a domain of values, and a set of constraints acting between 
pairs of variables. The problem is to find an assignment of values to variables, from 
their respective domains, such that the constraints are satisfied [ 5,24,26,27,40]. 

It has been shown that graph colouring problems exhibit a phase transition, where 
problems change from being easy to colour, to being hard to colour, and on to problems 
that obviously cannot be coloured [ 21. This easy-hard-easy phase transition occurs at a 
critical value of connectivity. This same phenomenon has been observed for Hamiltonian 
paths [ 21, satisfiability problems (SAT) [ 3,13,23,28], the travelling salesman problem 
[ 14,151, and has been anticipated for problems of search more generally [43,44]. The 
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graph colouring problem can be considered as a special case of the binary CSP. Variables 
correspond to nodes, a constraint between a pair of variables restricts those variables to 
different colours, there is a uniform domain size (i.e. k, the number of colours), and 
one colour can conflict with only one colour in the domain of an adjacent variable (the 
probability of a conflict across a constraint is l/k). For a given number of colours there 
is a critical value of a single control parameter, namely connectivity, that dictates where 
the phase transition occurs [ 421. 

It has been known for some time that CSPs exhibit similar behaviour [ 11,351. Most 
notably, in Gaschnig’s thesis Ill], when studying randomly generated n-queen problems 
it was observed that 

. . . the number of steps executed depends strongly on degree of constraints . . . a 
plot of the data suggests the existence of a single sharp peak . . . . I 

More recent studies [ 6,8,9,36] have exploited this peak in problem complexity when 
investigating the performance of algorithms. Consequently, this paper is not answering 
the question “Is there a phase transition in binary CSPs?“, but rather it is providing 
extensive experimental evidence of its behaviour and compares that to a theory developed 
by Williams and Hogg [ 441 and independently by Smith [ 371 

The body of the paper is organised as follows. Section 2 describes how the random 
problems were created, and Section 3 gives a brief description of the algorithms used 
in this study. The experiments are then reported in Section 4, and in Section 5 a 
comparison is made with the theory. Section 6 concludes this study, and Appendix A 
gives a breakdown of the computational effort associated with this study. 

2. Problem generation 

The randomly generated (binary) CSPs are character&d by the 4-tuple (n, m, ~1, pz), 
where IZ is the number of variables, m is the uniform domain size, pi is the portion of 
the n . (n - 1) /2 possible constraints in the graph, and p2 is the portion of the m* value 
pairs in each constraint that are disallowed by the constraint. That is, pi may be thought 
of as the density of the constraint graph, and p2 as the tightness of constraints. 

In generating a CSP (n, m,pl ,p2) exactly pi . n . (n - 1)/2 constraints are randomly 
selected (rounded to the nearest integer), and for each constraint selected exactly p2 . m2 
conflicting pairs of values are selected (again, rounded to the nearest integer). This is 
referred to as Model B by Palmer [ 291, Model 1 in BollobGs [ 11, and is the same 
technique as employed by Smith [ 37,391. 2 It should be noted that at low values of pt 
the constraint graph may be disconnected, and when p2 = 0 constraints will contain no 
conflicts. The CSP (n, m, 1, ~2) corresponds to the clique K,,; (n, m,pl , 1) corresponds 
to the problem where all constraints are unsatisfiable; (n, m, 0, ~2) is the null graph Nn; 
and (n,m,pl ,O) has no conflicts. 

’ The quote is from page 180. As further work Gaschnig proposed ‘W-2: Study problem structure using 
parameterized random problems” and ‘W-7: Relation between efficiency and number of solutions”. 

2 and is available electronically [ 341. 
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Table 1 
Translation of nomenclatures 

n m PI P2 

Dechter & Meiri 
Frost & Dcchter 
Freuder & Wallace 
Haselbiick 
Williams & Hogg 

1 -P1 
2cl(n(n - 1)) 
Zc/(n(n - 1)) 

d 

2alO-Q - 1)) 

P2 
t 

1-P 
t 

n/b2 

Random constraint graphs have been used in empirical studies before. For example, 
Dechter and Meiri [6] generated random problems (n, k,pt ,p*), where k is domain 
size, p1 is the probability that a given pair of variables will not be constrained, and p2 
is the probability that when a constraint exists a pair of values will not be allowed. In 
Freuder and Wallace’s study of partial constraint satisfaction problems [7] CSPs are of 
the form (n, d, c, p), where d is domain size, c is the number of constraints, and p is the 
number of pairs allowed across a constraint. In Haselbock’s study of interchangeabilities 
[20], the CSP ( n, a, d, t) has domain sizes in the range 1 to a, d is the density of the 
constraint graph, and t is the tightness of those constraints. In Frost and Dechter’s studies 
[ 8,9] CSPs are generated as (n, k, c, t) where n and k are as before, c is the number 
of constraints in the graph, and t is the tightness of the constraints. More recently, 
Williams and Hogg [44] categorise a binary CSP as (p, b, a, n), where 1~ is the number 
of variables, b is the uniform domain size, there are a randomly selected constraints, 
and for each constraint n of its b2 possible assignments are selected as being locally 
nogood. 

An entry in Table 1 allows a translation from one nomenclature to another. For 
example, Frost and Dechter’s problem (n, k, c, t) translates to (n, k, (2c/( n( n - 1) ) , t), 
and Williams and Hogg’s problem (,u, b, a, n) translates to (p, b, 2u/(,~( ,u- l)), n/b2). 

3. The algorithms 

Only systematic (i.e. complete) algorithms are suitable for this study, the reason 
being that the stochastic techniques would not terminate when presented with an over- 
constrained problem. Therefore, the algorithms used are complete and find a first solution 
to (n, m, PI , ~2) or report that none exists. The algorithms are based on forward checking 
(FC) [ 191 and the conflict-directed backjumper (CBJ) [ 311, 3 and are described in 
detail in [30]. 

The default algorithm used in this study is forward checking with conflict-directed 
backjumping [ 301, using the directed k-consistency (DKC) extension [ 311 and the 
fail-first (FF) heuristic [ 19,351, and will be referred to as either FC-CBJ-DKC-FP or 
the default algorithm. The study also looks briefly at conflict-directed backjumping [ 311 
with the max-cardinality (MC) heuristic [6], and this will be referred to as CBJ-MC. 

3 The most distinguishing feature of CBJ is that it jumps back to the cause of a conflict, rather than 
backtracking chronologically. CBJ can be thought of as a marriage of Gaschnig’s backjumping routine (BJ) 
I 1 I I and Dechter’s graph-based backjumper (GBJ) [4]. 
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The selection of the default algorithm was based on previous computational experience 
[30-331. 

The standard of comparison of constraint satisfaction algorithms has traditionally been 
the number of consistency checks performed, i.e. the number of times pairs of variable 
instantiations were tested for compatibility. The objective is then to reduce the number 
of consistency checks. Although it can be argued that this measure can be reduced by 
other means, such as constraint recording [9,10,16], this may lead to a trading of 
maintenance of that information against the cost of re-exploration. This has lead to an 
argument that run time should be taken as the standard of comparison [ 171. A previous 
study [ 301 showed that FC-CBJ performed less consistency checks and took less run 
time than other algorithms. The DKC extension and FF heuristic has lead to a further 
reduction in run time. Since the main thrust of this study is to examine problems, not 
algorithms, the fastest and most reliable algorithm was chosen, thus allowing the largest 
amount of experimentation possible. 

The algorithms were initially encoded in Sun Common Lisp, SCLisp version 4.0, and 
run on SUN SPARCstation IPCs with 16MB of memory. In order to increase the rate 
that experiments could be performed the algorithms were later recoded in C [ 251. The 
Common Lisp implementation of the algorithms and problem generator are available 
electronically (see [ 341) . 

4. The experiments 

The first part of this study looks at what happens when we increase the tightness 
of constraints (pz), increase the density of the constraint graph (pt ), and change 
algorithms (from FC-CBJ-DKC-FF to CBJ-MC). The effect of the number of variables 
(n) and the domain size (m) is then investigated. The last subsection relates some of 
the computational experiences of the experiments. 

4.1. Constraint tightness, graph density, and choice of algorithm 

Problems were generated with 20 variables and a uniform domain size of 10. Col- 
lectively, these problems will be referred to by the tuple (20,lO). ‘Ihe density of the 
constraint graph, pt , was varied from 0.1 to 1 .O in steps of 0.1, and for each value of 
pr the constraint tightness p2 was varied from 0.01 to 0.99 in steps of 0.01.4 At each 
setting of (2O,lO,pt,p2) 100 problems were generated. The search algorithm was then 
applied to each problem. Numerous statistics were gathered, such as the search effort 
expended in terms of consistency checks, the number of backtracks, CPU time used, 
and whether the problem was soluble or insoluble. In total 99,000 (20,lO) problems 
were investigated. 

Fig. 1 shows what happens when pz is varied. Fig. 1 (a) shows search effort, measured 
as average number of consistency checks for 100 problems at (20,10,0.5,pz), against 
constraint tightness (~2). As p2 increases from 0.01 to 0.27 the search effort falls. This 

4 Clearly there is no point investigating problems with p2 = 0 or problems with p2 = 1 .O. 
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Fig. 1. Search effort against p2 for (20,10,0.5). 

is due to the increasing effectiveness of domain filtering as pz increases. The onset of 
backtracking is at p2 M 0.25, and when p2 M 0.3 the search effort begins to increase 
rapidly, reaching a maximum at p2 x 0.38, and then falls away. 5 The vertical bar on the 
left-hand side is the largest value of p2 at which all problems were soluble (~2 = 0.35) 
and the right-hand vertical bar is the smallest value of p2 at which all problems were 
insoluble (~2 = 0.41). Therefore all problems to the left of the first vertical are soluble, 
and all problems to the right of the second vertical are insoluble. In the region between 
(i.e. 0.35 < pz < 0.41) there is a mixture of soluble and insoluble problems, and Smith 
has referred to this as the mushy region [ 37].6 It is in this region that the average 
search effort is maximal. 

’ At p2 = 0.37, the average effort is 45,262 checks aad, at pz = 0.38, the average effort is 45,710 checks. 
’ An analogy is drawn from the process of freezing, where an intermediate state is reached, neither liquid 

nor solid. 
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Fig. 2. Frequency distribution of problem difficulty for (20,10,0.5,0.37). 

Fig. 1 (b) is again the (20,10,0.5) problems, but five curves are drawn, namely the 

median, the mean, the minimum, maximum, and the standard deviation. There are a 
number of points worth noting. Firstly, the location of the peak in the median search 

effort (43,945 checks) coincides with the peak in the mean (45,710 checks), at p2 M 

0.38. This closely corresponds to the crossover point, where 50% of the problems were 

soluble. At p2 = 0.37, 56% of the problems were soluble, and at p2 = 0.38, 26% were 

soluble. Secondly, the peak in the maximum search effort (175,409 checks) occurs 
before the peak in the mean search effort. 

That is, the single most difficult problem was encountered at p2 = 0.37, inside the 
mushy region, but to the left of the peak in the average and median search effort. 
Furthermore, the hardest problem was insoluble. This is a pattern that repeats itself, 

with the hardest problem tending to be insoluble and close to the lower boundary of 

the mushy region. The minimum search effort peaks close to the upper boundary of 
the mushy region, at p2 = 0.40. This suggests that given a sample of problems in the 
mushy region, the insoluble problems might be harder than soluble problems. Fig. 2 and 
Table 2 tend to support this conjecture. Finally, we see that the variation in the search 

effort (i.e. contour S&V) is at a maximum where the very hardest problem occurred, 

at p2 = 0.37. 
Fig. 2 shows a frequency distribution of problem difficulty (x-axis) against number 

of problems at that difficulty (y-axis) for 1,000 problems at (20,10,0.5,0.37), i.e. 
we see a slice through the curve in Fig. 1 (a) close to where the mean and the median 
search effort reaches a maximum. Two frequency distributions are given, one for the 440 
insoluble problems, the other for the 560 soluble problems in the sample. The vertical 
bar shows the average problem difficulty for the whole sample. The insoluble problems 
were on average harder than the soluble problems, the easiest insoluble problem was 
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Table 2 

A closer look at the mushy region of (20,10,0.5) 

,I m PI P2 #problems P u median min max 

20 IO 0.5 0.35 all 1,000 17,291 27,104 9113 487 438,498 

20 IO 0.5 0.35 soluble 990 16,149 24,027 9,024 487 438,498 

20 IO 0.5 0.35 insoluble IO 130,338 58,317 123,648 32,519 244,938 

20 10 0.5 0.36 all I.000 32,319 33,780 21,049 480 268,290 

20 IO 0.5 0.36 soluble 883 25,212 24,800 17,049 480 190,682 

20 10 0.5 0.36 insoluble I I7 86,127 38,679 74,370 33,l I3 268,290 

20 IO 0.5 0.37 all 1,000 45,353 33,187 42,084 511 224,022 

20 10 0.5 0.37 soluble 560 27,523 23,762 21,147 511 184,089 

20 IO 0.5 0.37 insoluble 440 68,046 30,906 58,972 22,492 224,022 

20 IO 0.5 0.38 all 1,000 46,997 24,223 44,034 561 211,627 

20 IO 0.5 0.38 soluble 228 27,412 20,393 22,952 561 103,969 

20 IO 0.5 0.38 insoluble 722 52.78 1 22,147 48,538 16,249 211,627 

much harder than the easiest soluble problem, and the hardest problem was insoluble. 
Both distributions are skewed with a few extremely hard problems out to the right, and 

the distribution is more dispersed for soluble than insoluble problems. Fig. 2 gives some 

explanation as to why the curve of the minimum number of consistency checks in Fig. 

1 (b) peaks at the upper boundary of the mushy region, As p2 increases the number 
of soluble (relatively easy) problems decreases and the number of insoluble (relatively 
hard) problems increases. At the upper boundary of the mushy region all problems are 
insoluble (by definition), consequently the easiest problems in the sample continue to 

be relatively hard. 

These experiments were repeated with p2 = 0.35 (just entering the mushy region), 
p2 = 0.36 (just before the average search effort peaks), and p2 = 0.38 (just before 

leaving the mushy region), and the results are shown in Table 2. There are three 
rows for each problem, showing statistics on the entire sample of 1,000 problems, and 
statistics on the soluble and insoluble problems in that sample. The first five columns 

identify the problems and if those problems are the entire sample, the soluble problems, 

or the insoluble problems. The next column (#problems) gives the number of problems 
in that sample, then the average number of consistency checks for the sample (p), the 
standard deviation (a), the median, the easiest problem (min), and the hardest problem 

(max). In the mushy region, as pz increases the number of soluble problems falls and 

the average difficulty of those problems increases, and then gradually falls away. For 
the insoluble problems, as p2 increases the number of insoluble problems increases and 

difficulty of those problems decreases. Insoluble problems are on average harder than 
their soluble counterpart, therefore as p2 increases the average difficulty is dominated 
by an increasing number of insoluble problems. This ultimately leads to all problems 
being insoluble, and a gradual decay in the average difficulty. 

Looking again at Table 2 it is interesting to note that as a result of increasing the 
sample size, from 100 to 1,000, we have found harder problems. Comparing the contour 
of maximum search effort in Fig. l(b) with the max column in Table 2 we see that at 
p2 = 0.37 the value has increased from 175,409 checks to 224,022 checks. Furthermore, 
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Fig. 3. (20,lO.O.S) for two different algorithms, FC-CBJ-DKC-FF and CBJ-MC, showing for each algorithm 

the maximum and median search effort. 

we now see that the very hardest problem is soluble and occurred at p2 = 0.35 taking 
438,498 checks. This tends to add weight to the observations made by Hogg and 
Williams [ 211. 

The location of the peak search effort appears to be algorithm-independent. Fig. 

3 shows the performance of conflict-directed backjumping with the max-cardinality 
heuristic (CBJ-MC) and the default algorithm (FC-CBJ-DKC-FF). Two curves are 

drawn for each algorithm, namely the median search effort and the maximum search 
effort. Note also, that the y-axis is on a logarithmic scale. Both algorithms encounter 

the very hardest problems at the same value of p2 (i.e. p2 = 0.37), the medians peak 
at the same position (i.e. p2 = 0.38), and both algorithms have similar signatures (the 

curves are of similar shape). The default algorithm is on average an order of magnitude 

better than CBJ-MC on the hard (20,10,0.5) problems. The 100 problems at each 
value of p2 in the mushy region were analysed, and again it was seen that CBJ-MC 
found the insoluble problems significantly harder than the soluble problems, and as 
p2 increased the difficulty of the soluble problems increased and the difficulty of the 

insoluble problems decreased. 
Therefore, the phenomenon described in Table 2 and Fig. 2 appears to be a feature 

of the problem and not the algorithm (i.e. algorithm-independent). Fig. 4 shows what 
happens when the density of the constraint graph is increased. Fig. 4 shows the search 
effort for the (20,10,1.0) problems, and is comparable to Fig. 1 (i.e. (20,10,0.5)). 
On the top (Fig. 4(a)) the average search effort is plotted along with the boundaries 
of the mushy region, and on the bottom (Fig. 4(b)) the maximum, mean, median, 

standard deviation, and minimum search effort are shown. The curves have a similar 
signature, but Fig. 4(a) is more pronounced than Fig. l(a) and is translated left to 
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Fig. 4. Search effort against p2 for (20.10.1.0). 

smaller values of p2. It should be noted that the scale on the y-axis of Fig. 4(a) goes 
to 250,000 whereas in Fig. 1 (a) the scale goes to 50,000. That is, as the density of the 
constraint graph increases (and all else remains the same) the difficulty of the problems 
increases [33]. The peak of the average search effort (233,641 checks) occurred at 
p2 = 0.22, and coincides with the peak in the median (243,170 checks). Again, the very 
hardest problem (535,616 checks, and insoluble) occurred before the peak in the mean, 
at p2 = 0.20, and the standard deviation peaks at p2 = 0.21. 

The maximum value of pz for soluble (20,10,1.0) problems is 0.19, and the min- 
imum value where all problems are insoluble is p2 = 0.24; i.e. the mushy region for 
(20,10,1.0) is 0.04 wide, compared to 0.05 for (20,10,0.5). Again, the minimum 
search effort peaked at the upper boundary of the mushy region. The distribution of 
problem difficulty at (20,10,1 .O, 0.21) was investigated, as in Fig. 2 and Table 2 above. 
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Fig. 5. Search effort for (2O,lO,pt), against ~2, with p1 varying from (a) 0.1, (b) 0.2, (c) 0.3, to (d) 0.4. 

(20,10,1.0,0.21) was selected instead of (20,10,1.0,0.22) because only 10% of the 
problems were soluble at p2 = 0.22, whereas 62% were soluble at p2 = 0.21. Again, the 
insoluble problems were on average harder (370,598 checks) than the soluble problems 
( 15 1,734 checks), the easiest insoluble problem (291,47 1 checks) was harder than the 
easiest soluble problem ( 1,052 checks), and the hardest problem was insoluble (469,453 
checks). 

Up to this point, the analysis has tended to rely on the average search effort of 
an ensemble of problems. This is, arguably, a reasonable thing to do as it gives us 
an indication of the amount of effort that would be required to address a sample of 
(n, m, pi, ~2) problems. However, using the mean in isolation exposes only some of the 
structure of the phase transition phenomena. In order to get a better understanding we 
must look at the distribution about the mean (as in [ 12,211). 
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High variability in search effort was observed when the density of the constraint 
graphs was low. This is shown in Fig. 5. Each of the four graphs plots contours for 
the following percentiles: 100% (the very hardest problem), 95%, 90%, 75%, and 50% 
(the median). For example, the 90% contour gives the cost that was exceeded by only 
10% of the problems in the sample. Figs. 5(a) is for (20,lO.O. 1). Fig. 5(b) is for 
(20,10,0.2), Fig. 5(c) is for (20,10,0.3), and Fig. 5(d) is for (20,10,0.4). The x-axis 
is p2 and the y-axis is search effort, and is a logarithmic scale. At low values of pr , most 
notably when pi = 0.1, there is high variability in search effort, and this occurs well in 
advance of the peak in the median and mean search effort. For example, in Fig. 5(a) 
the 100% contour peaks at p2 = 0.77, whereas the 50% contour peaks at p2 = 0.84. As 
the density of the constraint graph increases (going from Fig. 5 (a) to 5 (d) ) this effect 
diminishes, and we see the locations of the peaks in the contours gradually moving 
together. Similarly, the mushy region narrows. In Fig. 5(a) the boundaries of the mushy 
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region are respectively 0.74 and 0.91 (i.e. 0.13 wide), and in Fig. 5 (d) the boundaries 
are 0.40 and 0.48 (i.e. 0.08) wide. This appears to bottom out at a width of 0.05 when 
pi = 0.5, remaining pretty much the same right up to pt = 1.0. 

This high variability in search effort has been observed in SAT, graph colouring, 
travelling salesman problems, and binary constraint satisfaction problems by others 
[ 12,14,15,21,39]. In most of these studies these exceptionally hard problems (referred 
to as EHPs by Smith [ 391 and Hogg and Williams [ 211) have often been large enough 
to influence the location of the peak in the mean search effort. In this study that has 
not been the case, and the peak in the mean and the median have generally coincided. 
This might be due to a number of things. Firstly, these EHPs are by definition rare, 
and one must have a relatively large sample in order to encounter them. Maybe a 
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Fig. 7. The mushy regions for all (20.10) problems. 

sample size of 100, or even 1,000, is too small for them to have a significant effect. 
A second possible reason is that EHPs are, to some degree, an algorithm-dependent 
phenomenon, such that they occur more frequently when using chronological backtrack- 
ers. This study used algorithms that jump back, consequently fewer EHPs might be 
encountered. 

From the previous figures it becomes apparent that for a given value of pt there is a 
value of ~2, call it pzc,+r, where the average search effort is maximal. High values of pt 
(dense constraint graphs) have low values of pzctit (require reIatively loose constraints to 
become hard to solve), and low values of pt (sparse constraint graphs) have high values 
of p2crit (tight constraints). As pr increases the peak average search effort increases and 
the definition of the curve becomes more pronounced (compare Figs. 1 and 4), and 
when p2 increases beyond pzc,.k the search effort falls away slowly. 

The mushy region has been defined by two boundaries. The lower boundary mushylwb 
is taken as the largest value of p2 where all problems were soluble, and the upper bound- 
ary mUShy@, is taken as the smallest value of pz where all problems were insoluble.7 
The hardest problems occurred in the mushy region, and as pi increased the width of 
the mushy region (i.e. mushyupb - mushylwb) decreased. When constraint graphs were 
sparse (and in particular when p1 = 0.1) there was high variability in search effort well 
before the crossover point. 

Fig. 6(a) shows a three-dimensional view of all (20,lO) problems and corresponds to 
the application of FC-CBJ-DKC-FF to 99,000 randomly generated problems. The x-axis 

is p2 (constraint tightness), the y-axis is PI (density of the constraint graph), and the 
z-axis is search effort measured as mean number of consistency checks performed over 

’ This is a pragmatic definition of those boundaries. For example, if enough samples are taken at some value 
of p2 < mushytwt, some insoluble problems will be discovered. Even if they were not created by the problem 
generator, they might be hand-crafted with little effort. The same holds true for rnu~hy,~t, < ~2; soluble 
problems may be discovered or created manually. 
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100 problems at a given point (20,10, PI, ~2). Going into the page p1 increases from 
0.1 to 1.0 in steps of 0.1, and moving left to right across the page p2 increases from 
0.01 to 0.99 in steps of 0.01. The peaks of the individual (2O,lO,pl) curves have been 
joined to enhance the picture. 

There is a ridge, and it tracks from right to left and climbs going into the page. Fig. 
6 might be considered as a map of the difficulty of all randomly generated (20,lO) 
problems. Fig. 6(b) shows where the soluble and insoluble problems exist for (20,lO). 
As in Fig. 6(a), the x-axis is ~2, the y-axis (going into the page) is ~1, and the Z- 
axis is psOl (where psOl is the ratio of soluble problems over the number of problems 
examined). There is a plateau where all problems are soluble ( psOl = 1 .O), and then an 
abrupt fall to a lower plateau where all problems are insoluble (p,,l = 0.0). Where Fig. 
6(a) looks like a ridge, Fig. 6(b) looks like a cliff face. 

Fig. 7 brings together the information displayed in Figs. l-6. The x-axis is PI and 
the y-axis is ~2. The lower curve is the lower boundary of the mushy region for a 
given value of ~1, and the top curve is the upper boundary of the mushy region for 
a given value of pl. The region between these two curves is the mushy region for all 
(20, 10) problems, the bold broken curve shows where the maximum average search 
effort occurred, and the faint broken line shows were the very hardest problem was 
encountered. Problems that exist below the lower curve tend to be easy and soluble, and 
problems that exist above the upper curve tend to be easy and insoluble. 

4.2. Increasing the number of variables 

The number of variables was increased from 20 to 30, the domain size was held at 10, 
pl was varied in steps of 0.1 from 0.1 to 1.0, at each setting (30,10, ~1) p2 was varied 
from 0.01 to 0.99 in steps of 0.01, and at each setting (3O,lO,pl ,p2) 100 problems were 
examined (i.e. 99,000 problems were examined). Fig. 8 (a) shows a three-dimensional 
view of all (30,lO) problems and is comparable to Fig. 6 (i.e. (20,lO)). Both figures 
have the same topography, namely a ridge, but (30,lO) is translated left to smaller 
values of p2 and is higher and steeper (note the scale in Fig. 8). 

The number of variables (n) was then increased from 20 to 60 in steps of 10, domain 
size was held at 10, pi was held at 0.1, p2 was varied from 0.01 to 0.99 in steps of 0.01, 
and 100 problems were generated at each value of (n, 10,O. l,pz) (i.e. 49,500 problems 
were analysed). These results are shown in Figs. 9 and 10. 

Fig. 9 shows search effort (on a logarithmic scale) against constraint tightness for 
(n, 10,O. l), with n varying from 30 to 60 in steps of 10. In each sub-picture five contours 
are drawn, for the percentiles 50%, 75%, 90%, 95%, and lOO%, and are similar to the 
sub-pictures in Fig. 5 (and the graph for (20,10,0.1) is shown in Fig. 5(a)). We see 
that at low values of n the 100% contour is noisy, and hard problems tend to occur at 
relatively low values of ~2, away from the peak of the lower percentile curves. This 
behaviour tends to disappear when n increases, and the locations of the peaks tend to 
coincide. 

In Fig. 10(a) the maximum search effort (y-axis, a logarithmic scale) is plotted 
against the number of variables (x-axis). Six contours are plotted, for the range of 
percentiles and the mean. Fig. 10(a) should be interpreted as follows. Looking at the 
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Fig. 8. A map of search effort for (a) all (30.10) problems, and (b) all (20.20) problems. 

curve for the mean (the broken line), we see the maximum average search effort for a 

given value of n, and looking at the 100% contour we see the search effort associated 
with the very hardest problem at a given value of n. Fig. 10(b) shows the location of 

the complexity peaks plotted in Fig. 10(a) and the boundaries of the mushy region, 
and should be interpreted as follows. Selecting the contour for the hardest problem (for 
example), we pick off the value of p2 (y-axis) for a given value of IZ (x-axis) where 
the very hardest (n, 10,O.l) occurred, and taking the curve for the average search effort 
(for example) we pick off the pz value where the average search effort was a maximum 

for a given value of n. Fig. 10(a) shows that as n increases the search effort increases 
exponentially. This is what should be expected, since the worst case complexity of a 
CSP is of the order O(m”). That is, we can consider a CSP as an n-digit number to 
the base m, and we must find a number that satisfies some property. In the worst case 
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Fig. 9. The effect of increasing the number of variables, in (a) (30,10,0.1), (b) (40,10,0.1), (c) 
(SO,lO,O.l),andin (d) (60,lO.O.l). 

we might have to examine all possible m” numbers. We also see that as n increases, 
and all else remains constant, the absolute variance in search effort increases (i.e. the 

contours for the various percentiles are relatively straight and parallel, and the y-axis is 
a logarithmic scale). 

There are a number of notable features in Fig. IO(b). Firstly, as n increases, and the 
domain size and graph density remain constant, the complexity peaks occur at lower 
values of p2 (and this is also shown in Fig. 9). Secondly, as n increases (and all else 

remains the same) the width of the mushy region decreases. Finally, the location of the 
mean and the median nearly always coincide, and the very hardest problems generally 
occur before the peak in the mean, and within the mushy region (again, also shown 
in Fig. 9). It might be worth stating that these observations must be made with some 
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Fig. 9 -continued. 

caution. Although this set of experiments involved some tens of thousands of (n, 10,O. 1) 
problems and hundreds of hours of CPU time, in this view of the data the contours pass 
through only 5 values of II. 

4.3. tncreasing the domain size 

The domain size was increased from 10 to 20, and the same set of experiments was 
repeated (i.e. those depicted in Fig. 6 for (20,lO)) but for (20,20). Fig. 8(b) shows a 
three-dimensional view of all the (20,20) problems. Again we see a familiar landscape; 
a ridge that tracks right to left climbing as it goes. However the ridge is translated right 
relative to (20, IO) and is much steeper and higher. 

The domain size (m) was then increased from 10 to 50 in steps of 10, n was held at 
20, pt held at 0.5, p2 was varied from 0.01 to 0.99 in steps of 0.01, and 100 problems 
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Fig, 10. Search effort against number of variables, n, for (n, 10.0.1) and locations of complexity peaks and 
the boundaries of the mushy region. 

were generated at each value of (20, m, 0.5,~~) (i.e. 49,500 problems were analysed). 

The results of those experiments are shown in Figs. 11 and 12. 
Fig. I1 is of the same format as Figs. 5 and 9, and shows search effort against 

constraint tightness for (20,20, OS), (20,30,0.5), (20,40,0.5), and (20,50,0.5). These 
problems tends to be quite well behaved, with the location of the peaks (of the per- 
centiles) being relatively close together. 

Fig. 12 is of the same format as Fig. 10 except the x-axis is now m, the domain size. 
In Fig. 12(a) we see that as m increases the search effort increases at a rate that is less 
than exponential, and this is what should be expected. Essentially the contours have the 
same shape as the function y = m*'. 

In Fig. 12(b) we see clearly that as domain size increases the corresponding value 
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Fig. I 1. The effect of increasing domain size, in (a) (20,20,0.5), (b) (20,30, OS), (c) (20,40, OS), and in 
(d) (20,5O,O.S). 

of p2 for the complexity peaks also increases. This is rather intuitive, as we should 
expect that as the number of values available to variables increases, the tightness of 

the constraints has to increase in order to make the problems more difficult to satisfy. 
Furthermore, it appears that the width of the mushy region does not change significantly 
as domain size varies. There is insufficient data to determine unequivocally if the hardest 
problems tend to coincide with the maximum average search effort, and if the variation 
in search effort diminishes as domain size increases. Fig. 12(b) shows one data point 
where the hardest problem coincides with the peak in the average (also shown in Fig. 
11 (c) > , and one data point where the hardest problem actually occurs after the peak in 
the average (and this point actually corresponds to the hardest problem encountered in 
all of the experiments, see Figs. 11 (c) and 12(a)). These two data points could just 
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Fig. 1 I - continued. 

be noise, and one initially suspects so. In order to resolve this we would require either 
larger sample sizes at each data point or more data points. Unfortunately, that would be 
extremely expensive to do. 8 

4.4. Computational experience 

A limited amount of experiments were performed using a range of algorithms, in 
particular the CBJ-based algorithms, and chronological backtrackers. There were cases 

s The (20,50,0.5) experiments were the most expensive experiments performed, taking in excess of 359 
hours, about 15 days. The 100 problems at (20,50,0.5,0.56) alone took in excess of 79 hours. The algorithms 
were re-coded in C for these experiments, and up to 150 workstations were used at any one time. Mom 
information on computational effort is given in Appendix A. 
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where CBJ-MC found hard problems at values well below Pzc,.tt, but the default algorithm 
found the exact same problems easy. For example, 1,000 problems were examined 
at (20,10,0..5,0.27). One problem was discovered where CBJ-MC took in excess of 
640,000 checks, whereas the default algorithm solved the same problem in less than 
3,000 checks. This problem was considered easy, as Bcrit occurred at about 0.37 (see 
Fig. 1) and on average CBJ-MC solved the problems in thousands of consistency checks. 
This suggests that the phenomenon of exceptionally hard problems [ 12,14,21,39] is to 
a significant extent algorithm-dependent. 

Forward checking was used, with the fail-first heuristic (FC-IF), for a limited amount 
of experiments. It was observed that FC-FF performed worse than CBJ-MC at low 
values of p2 for all problems. This was due to the relative abundance of solutions and 
the ineffectiveness of domain filtering in FC at low ~2. In very sparse constraint graphs 



102 P Prosser/Artijicial Intelligence 81 (1996) 81-109 

(pt = 0.1) CBJ-MC was much better than FC-FF, and this was due to the difference 
between backjumping and chronological backtracking. It is a conjecture, that in order 
for an algorithm to perform well in sparse constraint graphs, it must be able to jump 
about the search space freely. When pt increased (beyond pt = 0.3) the difference 
in performance between FC-FF and the default algorithm became insignificant. It is a 
conjecture that this is due to the fail-first heuristic exposing dependencies; i.e. given a 
uniform domain size, when choosing the current variable fail-first will select a variable 
that has been filtered by some past variable, consequently when backtracking on failure 
the algorithm tends to fall back on a dependent variable. 

Forward checking without the fail-first heuristic was almost always hopelessly ineffi- 
cient. For example, the (20,10,0.1) experiments were re-run with 50 problems at each 
point (i.e. 4,950 problems), using the algorithms fc, FC-FF, FC-CBJ, and FC-CBJ-FF. 
Without the FF heuristic FC took 574 hours and FC-CBJ took 14 minutes. With the 
FF heuristic FC-FF took 6 minutes and FC-CBJ-FF took 2 minutes. The algorithms 
were encoded in C for these experiments [ 251. However, there were particular cases 
where using the fail-first heuristic degraded performance. When constraints are loose 
(low values of ~2) it is in fact beneficial to choose as the current variable the one 
with most values remaining in its domain. Consequently when instantiating the current 
variable there are fewer variable/value pairs to check against in the future. Admittedly 
this may sound a bit artificial, but it suggests that when a problem is loosely constrained, 
constraint propagation may be wasteful (just check backwards), but if propagation is 
used then propagate from variables with large domains to variables with small domains. 
More information on the run time of the experiments is given in Appendix A. 

5. Comparison with the theory 

Williams and Hogg derived a theory that predicts that the phase transition occurs 
when there is a critical number of local nogoods per variable within a problem [44]. 
In the binary CSP a local nogood corresponds to a conflict between a pair of variables. 
The number of nogoods per variable is referred to as p and is calculated via Eq. ( 1 ), 
where n is the number of variables, m is the uniform domain size, pt is the density 
of the constraint graph, and p2 is the tightness of the constraints. The critical number 
of nogoods per variable, flcrtr, is given by Eq. (2) (and it should be noted that these 
equations result from applying the translations in Table 1 to the equations in [ 441). 

P= $pl(n- l)p2m2, (1) 

pcrit = _ mm2 In m 
Ml -p2)’ 

(2) 

Consequently, the phase transition should occur when p = Pcrtr, and an estimated value 
of /V_crit, namely @?crtt (i.e. the expected value of constraint tightness where problems 
are on average most difficult), can then be derived: 
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P = &it, 

1 
ZPl (n - 1 )&itm2 = - 

.&ritm* In 112 

ln( 1 - B~~ri0 ’ 
P^2crit = 1 _ m-*/Pl(n-l) (3) 

It should be noted that &it has been derived by different means. Smith [37,38] 
conjectures that the phase transition occurs when problems have, on average, just one 
solution. Given a binary CSP (n, m, ~1, ~2) an arbitrary instantiation of the variables 
will be a solution if all $ptn(n - 1) constraints are satisfied. There are m” possi- 
ble instantiations of the variable. Therefore, the expected number of solutions, E(N), 
is: 

E(N) = m”( ] _ p2)Pln(n-1)/2 (4) 

and the most difficult problems might occur when E(N) = 1, such that there is a 
mixture of insoluble problems and problems which have very few solutions, there- 
fore 

1 = m”( 1 - fi2crit)Pln(n-1)/2, (5) 

and this reduces to Eq. (3) above. 

Theory and observation are presented in Fig. 13 for the (20, lo), (30, lo), and (20,20) 
experiments. The x-axis is pi and the y-axis is p2, and the curves show where the 
observed and expected values of pzctit occur. There is a close match between the observed 
and expected values of pzcet at moderate and high values of pr, but at low values of p1 
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The effect of being connected 

Problem PZcrit hit hnnected 

(20,10,0.2) 0.66 0.70 0.74 
0.67 1.00 

(20, IO, 0.3) 0.54 0.55 0.97 
0.52 1 .oo 

(30,10,0.1) 0.72 0.80 0.25 
0.72 1.00 

(30, 10,0.2) 0.51 0.55 0.95 
0.52 1 .oo 

(40, 10,O.l) 0.63 0.69 0.49 
0.63 1.00 

(50,10,0.1) 0.56 0.61 0.75 
(60,10,0.1) 0.50 0.54 0.87 

there is a significant difference. 9 At low values of pt the hard problems occur earlier 
than expected. Experiments were performed to determine if this discrepancy might be 
due to the constraint graphs being disconnected. That is, if the graphs were disconnected 
they might appear to be made up of a smaller number of variables, and the actual density 
of the largest component may be greater than pt. This would then require a smaller 
value of p2 to become hard. The (20,10,0.2), (20,10,0.3), (30, lO,O.l), (30,10,0.2), 
and (40,10,0.1) experiments were then repeated but any disconnected constraint graphs 
were discarded. lo The results of those experiments are summarised in Table 3. 

The column &onnecte,j is the ratio of connected constraint graphs over the number of 
constraint graphs examined. Where there are two row entries for a problem (n, m,pl), 
the first row corresponds to the experiments where constraint graphs were allowed 
to be disconnected, and the second row corresponds to experiments where discon- 
nected graphs were discarded (consequently p connected will be 1.0). As II increases (and 
as pl increases) the probability that the constraint graph is connected increases, and 
this is expected [ 1,291. Being connected does not appear to influence the outcome 
of the experiments; pzcrit and the location of the mushy region is generally unaf- 
fected. Although not shown, it did not significantly affect the average search effort 
either. 

Fig. 14 shows the location of the theoretical and empirical results (peak in mean 
search effort) with respect to the mushy region for the (n, 10,O.l) experiments (i.e. 
n varying in sparse constraint graphs) and (20, m, 0.5) experiments (i.e. m varying in 
moderately dense constraint graphs). 

In the sparse graphs, Fig. 14(a), we see that the theory consistently places $2 beyond 
the upper boundary of the mushy region, i.e. in the region where all problems are 

‘) It is interesting to note that the theory agrees with Gaschnig’s observations on randomly generated n-queens 
problems [ 1 I]. Gaschnig’s problems corresponded to (10, 10, 1.0,~~) and it was observed that there was a 
complexity peak at L x 0.6, where L = 1 - pa. Theory predicts that p&d, will be 0.40. 
‘” The (20.10.0.1) experiments were not repeated, because all the connected (20, *,O.l) problems are the 
path graphs Pn. 
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Fig. 14. Comparison of empirical and theoretical results, for (a) (n, 10,O.l) and (b) (20,m,0.5). 

insoluble. Conversely, in Fig. 14(b), theory matches the empirical results remarkably 
well; in fact, they are indistinguishable. One possible explanation for the discrepancy 
in Fig. 14(a) and the accuracy in Fig. 14(b) is as follows. The theory is based on the 
conjecture that on average the hardest problems will occur when on average there is 
a single solution. It may be the case that in sparse constraint graphs, at the crossover 
point problems either have very many solutions or none at all. Consequently, the average 
number of solutions is large at crossover, and it is only when constraints are tighter that 
problems have on average a single (or very few) solutions, and this will occur at 
the upper boundary of the mushy region. Conversely, in relatively dense constraint 
graphs, at the crossover point problems have either no solution or very few solutions. 
Consequently, theory becomes more accurate as density increases, and this agrees with 
Smith’s observations on the variance in the number of solutions [ 381. 
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6. Conclusion 

The study shows that for binary CSPs with n variables, uniform domain size m, and 
graph density pt , there is a critical value of constraint tightness ~2, namely pxcrtt, where 

the average search effort is maximal, and this correspond closely to the crossover point 

where 50% of the problems are soluble. The region where the phase transition takes 
place has been referred to as the mushy region, i.e. the region where problems change 
from being soluble to insoluble. As the density of the constraint graph increases the 

width of the mushy region decreases and the maximal average search effort increases. 

The hardest problem was generally encountered on first entering the mushy region, and 
that problem was generally insoluble. Within the mushy region the insoluble problems 

were on average harder than the soluble problem. As p2 increased the soluble problems 
became scarce and more difficult, and insoluble problems became plentiful and less 
difficult. These phenomena appear to be characteristics of the problem i.e. they are 

algorithm-independent. The landscape of the difficulty of some (n,m) problems have 
been mapped out and the topography is a ridge that curves from right to left, climbing 

as it goes. 
It has been observed that in sparse constraint graphs (low values of PI) there is great 

variability in search effort well before the phase transition. However, this variability was 

not enough to inlluence the location of the peak in the mean search effort, the mean 

occurring close to the peak in the median search effort. However, this might not be the 

case if larger samples of problems were examined, or less informed algorithms were 
used. As the density of the constraint graph increases this variability diminishes. 

The location of the greatest average difficulty, pzc,3, was predicted to occur when 
an ensemble of problems have on average one solution. The theory was accurate for 

moderate to high values of pi, but in sparse graphs theory predicted that pzcrit would 
occur beyond the upper boundary of the mushy region, where all problems are insoluble. 

One possible explanation for this is that in the mushy region sparse problems have either 
no solution or very many solutions. Consequently, in sparse graphs at the crossover point 

the average number of solutions could be large, and it is only when nearly all problems 

are insoluble that the average number of solutions is low. Conversely, in moderate to 
high densities it appears that at the crossover point problems either have no solutions or 

very few solutions, and the theory is accurate. 
The theory may be used in a number of ways. The most obvious role is within an 

empirical science of algorithms [ 221. As a starting point, p2crit may be considered as 

a point of reference on the landscape, and algorithms may be positioned with respect 
to this. This might lead us to making informed choices as to what algorithm and 
heuristic to use for a given instance of a problem. Work in this area has already started 
[ 4 1 ] . Furthermore, by discovering under what circumstances one algorithm outperforms 
another we might gain a better understanding of the behaviour of algorithms, and this 
in turn should lead us to designs for even better algorithms and heuristics. Finally, this 

might lead us to a better understanding of the structure of hard problems. 
Looking further ahead, if it is discovered that real world problems behave in a manner 

predicted by the theory then it might allow us to move intelligent decision making 
into the realms of real time. For example, if we have a resource allocation problem 
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Table A.1 

Computational cost of the experiments 

Experiment 

(20,lO) 

(20, 10.0.5) 

(20, 10.0.5) 

(20, 10,0.5,0.35) 

(20, 10,0.5,0.36) 

(20, 10,0.5,0.37) 

(20, 10,0.5,0.38) 

(20, IO, 1 .O) 
(20,10,1.0,0.21) 

(30, IO) 

(30,10,0.1) 

(40,10,0.1) 

(50,10,0.1) 

(60, 10,O.l) 

(20,20) 

(20.20,0.5) 

(20,20,0.5) 

(20,30,0.5) 

(20.40.0.5) 

(20,50,0.5) 

#problems Implementation CPU time (hours) 

99,000 SCLisp 4.0 38 

9,900 SCLisp 4.0 1.4 

9,900 SCLisp 4.0 CBJ-MC 18 

1,000 SCLisp 4.0 1.2 
1,000 SCLisp 4.0 2.4 

1,000 SCLisp 4.0 3.5 

1,000 SCLisp 4.0 3.4 

9,900 SCLisp 4.0 8 

1,000 SCLisp 4.0 13 

99,000 ANSI C 115 

9,900 ANSI C 0.6 

9,900 ANSI C 2 

9,900 ANSI C 13 

9,900 ANSI C 86 

99,000 ANSI C 188 

9,900 SCLisp 4.0 90 

9,900 ANSI C II 

9,900 ANSI C 55 

9,900 ANSI C 135 

9,900 ANSI C 359 

characterised as (n, m, pt , pz), in the event that p2 > &.tt we might know (with some 
confidence) that the problem is over-constrained. What is more relevant is that we might 
know how far the problem should be relaxed such that it becomes soluble, and possibly 
easy. 

Appendix A. Computational effort 

Table A.1 summarises the computational effort associated with the experiments. The 
first column describes the experiment, the second gives the number of problems exam- 
ined, and the third column gives the implementation of the algorithm. If the implemen- 
tation is SCLisp 4.0 then the default algorithm (FC-CBJ-DKC-FF) was encoded and 
run as compiled SUN Common Lisp version 4.0 on a SPARCstation IPC with 16MB of 
RAM. Up to three such workstations were used. If the implementation is ANSI C then 
the algorithms were encoded in ANSI C, compiled using act, and the experiments were 
dispatched across 150 workstations. The majority of those workstations (110) were 
SPARCstation 1 and l+ with 16MB of RAM, and 40 were SPARCstation ELCs with 
16MB of RAM. The fourth column of Table A. 1 gives the amount of hours of CPU 
time that was spent searching over the problems. That is, the amount of time to create 
the problems is not included in these figures. 

Examining the (20,10,0.5) experiments it can be seen that the default algorithm is 
about an order of magnitude better than CBJ-MC ( 1.4 hours versus 18 hours). Looking 
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at the (20,20,0.5) experiments it can be seen that the ANSI C encoding was about 
an order of magnitude faster than the SCLisp encoding ( 11 hours against 90 hours). 

Furthermore, only three workstations were available with SCLisp compared to 150 

with ANSI C. Consequently the C encoding allowed us to do about 500 times more 

experiments. In total, more than 1,100 hours of CPU time was used, and more than 400 

thousand problems were examined. Table A. 1 might serve two purposes. Firstly, if these 
experiments are repeated one will have an idea of the computational effort required. 
Secondly, as better algorithms and more computational resource becomes available we 

can look back and see how far we have progressed. 
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