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Abstract. We derive bounds for f(v), the maximum number of edges in a graph on v vertices that contains
neither three-cycles nor four-cycles. Also, we give the exact value of f(v) for all v up to 24 and constructive
lower bounds for all v up to 200.

1 Introduction

This paper investigates the values of f(v), the maximum number of edges in a graph of order v and girth
at least 5. For small values of v we also enumerate the set of extremal graphs. This problem has been
mentioned several times by P. Erdős (for instance, in [6]) who conjectured that f(v) = (1/2 + o(1))3/2v3/2.

We begin with some basic definitions. Let G be a simple graph with order v = |V (G)| and size e =
|E(G)|. Let d(x) = dG(x) denote the degree of a vertex x of G, and let δ(G) and ∆(G) be the minimum and
maximum degrees of vertices of G. Given x ∈ V , N(x) = NG(x) and N [x] = NG[x] = N(x)∪{x} denote the
(open) neighborhood and closed neighborhood, respectively, of x. For V ′ ⊂ V , define N(V ′) =

⋃
x∈V ′ N(x)

and 〈V ′〉 as the subgraph induced by V ′. By Cn, n ≥ 3, we denote an n-cycle, i.e. a cycle with n vertices.
We will also refer to a 3-cycle as a triangle and to a 4-cycle as a quadrilateral. Pn denotes a path on n
vertices. The girth of graph G, g(G), is the length of the shortest cycle in G. The argument G will be left
off when the intended graph is clear.

Given graphs G1, G2, . . . , Gk, let ex(v; G1, G2, . . . , Gk) denote the greatest size of a graph of order v
that contains no subgraph isomorphic to some Gi, 1 ≤ i ≤ k. One of the main classes of problems in
extremal graph theory, known as Turán-type problems, is for given v, G1, G2, . . . , Gk to determine explicitly
the function ex(v; G1, G2, . . . , Gk), or to find its asymptotic behavior. Thus, the problem we consider in this
paper, that of finding the maximum size of a graph of girth at least 5, can be stated as finding the value of
ex(v;C3, C4).

Exact results for all values of v are known for only a few instances of Turán-type problems. Asymptotic
results are quite satisfactory if each graph Gi, 1 ≤ i ≤ k, has chromatic number χ(Gi) at least 3. Let this
be the case, and let χ = min{χ(Gi) : 1 ≤ i ≤ k}. Then

ex(v; G1, G2, . . . , Gk) ∼
(

1− 1
χ− 1

)(
v

2

)
, v →∞. (1.1)

If at least one of the Gi’s is bipartite, then χ = 2, and there is no general result similar to (1.1). Excellent
references on the subject are [1] and [19] (pp. 161–200).

It is well known that ex(v; C3) = bv2/4c, and the extremal graph is the complete bipartite graph
Kbv/2c,dv/2e. The exact value of ex(v; C4) is known for all values of v of the form v = q2 + q + 1, where q is
a power of 2 [8], or a prime power exceeding 13 [9], and it is equal to q(q + 1)2/2. The extremal graphs for
these values of v are known, and were constructed in [3, 7]. For 1 ≤ v ≤ 21, the values of ex(v;C4) and the
corresponding extremal graphs can be found in [4]. It is well known that ex(v;C4) = (1/2 + o(1))v3/2 (see
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[1, 7]). It is important to note that attempts to construct extremal graphs for ex(v;C3, C4) by destroying
all 4-cycles in the extremal graphs for ex(v; C3), or by destroying all 3-cycles in the extremal graphs for
ex(v;C4), fail; neither method yields graphs of order v with f(v) edges.

In Section 2 we derive upper and lower bounds on the value of f(v), and provide some remarks on the
structure of extremal graphs. In Section 3 we present the exact values of f(v) for all v up to 24; we also
enumerate all of the extremal graphs of order less than 11. In Section 4 we provide a table of constructive
lower bounds for f(v), 25 ≤ v ≤ 200, that are better than the theoretical lower bounds.

2 Theoretical Results

In this section we present some theoretical results about f(v) and the structure of the extremal graphs.
Many of them will be used in the subsequent sections. We call a graph G of order v extremal if g(G) ≥ 5
and e = e(G) = f(v).

Proposition 2.1 Let G be an extremal graph of order v. Then

1. The diameter of G is at most 3.
2. If d(x) = δ(G) = 1, then the graph G− {x} has diameter at most 2.

Proof: Let x, y be two vertices of G of distance at least 4. Since xy is not an edge of G we can add this edge
to E(G). The obtained graph G′ = G + xy has girth g(G′) ≥ 5 and one more edge than G. This contradicts
the assumption that G is extremal and proves part 1. Let a, b be two vertices of G−{x} of distance at least
3. By deleting the only edge of G incident to x and introducing two new edges xa and xb, we obtain a graph
G′′ of order v having one more edge than G and girth at least 5. This contradicts the assumption that G is
extremal and proves part 2.

It turns out that the extremal graphs of diameter 2 are very rare. In fact, it was claimed in [2] that the
only graphs of order v with no 4-cycles and of diameter 2 are:

1. The star K1,v−1;
2. Moore graphs: C5, Petersen graph (the only 3-regular graph of order 10, diameter 2 and girth 5, see

G10 in Figure 1), Hoffman-Singleton graph [14] (the only 7-regular graph of order 50, diameter 2 and
girth 5), and a 57-regular graph of order 3250, diameter 2 and girth 5 if such exists (its existence is
still an open problem [14]);

3. Polarity graphs (see [3, 7]).

Remark: The only graphs from the list above that in addition contain no triangles and are regular are the
Moore graphs. It is also known that a graph of diameter k ≥ 1 and girth 2k + 1 must be regular [20].

We now derive an upper bound on f(v). Let d̄ = d̄G = 1
v

∑
x∈V (G) d(x) be the average degree of G, and

let σ2 =
∑

x∈V (G)[d̄ − d(x)]2. By Di = Di(G) we denote the number of unordered pairs of vertices of G of
distance i apart.

Theorem 2.2 Let G be an extremal graph of order v and size e. Then

f(v) = e =
1
2

√
v2(v − 1)− vσ2 − 2vD3 ≤ 1

2
v
√

v − 1 (2.1)

The inequality in (2.1) becomes an equality if and only if G is an isolated vertex or G is regular and of
diameter 2, i.e., G is a Moore graph.

Proof: According to Proposition 2.1 G is connected and of diameter at most 3. Since G is {C3, C4}-free, we
have D2 =

∑
x∈V (G)

(
d(x)

2

)
. Therefore

(
v

2

)
= D1 + D2 + D3 = e +

∑

x∈V (G)

(
d(x)

2

)
+ D3. (2.2)
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Since d̄ = 2e/v and
∑

x∈V (G) d(x)2 = σ2 + 4e2/v, we can rewrite (2.2) as

(
v

2

)
= σ2/2 + 2e2/v + D3. (2.3)

Solving (2.3) with respect to e we obtain (2.1). The statement about the equality sign in the inequality (2.1)
follows immediately from the proof above and the Remark following Proposition 2.1.

The inequality (2.1) was found independently by Dutton and Brigham [5].
The following result can be obtained via more accurate estimates of σ2 and D3 in some particular cases.

The proof appears in [12].

Corollary 2.3 Let G be an extremal graph of order v, size e, diameter 3, and not regular; then

f(v) = e ≤ 1
2

√
v2(v − 1)− 5

2
v.

If, in addition, the average degree of G is an integer, then

f(v) = e ≤ 1
2

√
v2(v − 1)− 4v.

Now we derive a lower bound for f(v). Let q be a prime power, and let vq = q2+q+1, and eq = (q+1)vq.
By Bq we denote the point-line incidence bipartite graph of the projective plane PGL(2, q). More precisely,
the partite sets of Bq represent the set of points and the set of lines of PGL(2, q), and the edges of Bq

correspond to the pairs of incident points and lines. Then Bq is a (q +1)-regular bipartite graph of order 2vq

and size eq. It is easy to show that g(Bq) = 6. By adding vertices and edges to Bq, one can easily derive
the following proposition; the proof is given in [12].

Proposition 2.4 Let G be an extremal graph of order v and size e. Let q be the largest prime power such
that 2vq ≤ v. Then f(v) = e ≥ eq + 2(v − 2vq) = 2v + (q − 3)vq.

Combining the results of Theorem 2.2 and Proposition 2.4, we obtain the well known

Corollary 2.5
1

2
√

2
≤ lim inf

v→∞
f(v)
v3/2

≤ lim sup
v→∞

f(v)
v3/2

≤ 1
2
.

We next define a restricted type of tree; many of the proofs in Section 3 rely on the presence of these
trees in the extremal graphs. Consider a vertex x of maximum degree ∆ in a {C3, C4}-free graph G. Let the
neighborhood of x be N(x) = {x1, x2, . . . , x∆}. Clearly, N(x) is an independent set of vertices. Furthermore,
the sets of vertices N(xi)−{x}, 1 ≤ i ≤ ∆, are pairwise disjoint; otherwise there would be a quadrilateral in
G. This motivates the notion of an (m, n)-star Sm,n, that is defined to be the tree in which the root has m
children, and each of the root’s children has n ≥ 1 children, all of which are leaves. The subtree containing
a child of the root and all its n children is called a branch of Sm,n. We adopt the following notation. Given
a rooted tree T of height 2, denote its root by r, the children of r by r1, r2, . . . , and the children of ri (that
is, the leaves of T in the i-th branch) by ri,1, ri,2, . . . . Denote by Ri the set of leaves in the i-th branch, that
is, Ri = N(ri)−{r}. Define R =

⋃
i Ri as the set of leaves in T . We will use the following easily established

facts:

1. |V (Sm,n)| = 1 + m + mn and |E(Sm,n)| = m + mn.
2. Every {C3, C4}-free graph G with at least 5 vertices contains S∆,δ−1.
3. For any nonadjacent vertices t and u in Sm,n that are not both leaves, Sm,n + tu contains a C3 or C4.
4. Suppose a {C3, C4}-free graph G contains an (m,n)-star S and a vertex z 6∈ V (S). Then either (i) z

is adjacent to only one vertex in S, or (ii) z is adjacent to two leaves from different branches in S. If
riz ∈ E(G), then we will also consider z as a vertex in S; that is, z is regarded as a leaf in Ri. Under
this convention, every child of the root in any Sm,n has at least n children of its own.
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As an immediate consequence we have the following propositions. As simple as they are, we use them
extensively to determine precise values of f(v).

Proposition 2.6 For all {C3, C4}-free graphs G, v ≥ 1 + ∆δ ≥ 1 + δ2.

Proposition 2.7 For all {C3, C4}-free graphs G on v ≥ 1 vertices and e edges,
δ ≥ e− f(v − 1) and ∆ ≥ d2e/ve.

Proposition 2.8 For any {C3, C4}-free graph G of order v ≥ 1, we have
v ≥ 1 + d2f(v)/ve(f(v)− f(v − 1)).

3 Values of f(v) for v ≤ 24 and v = 50

Let Fv denote the set of {C3, C4}-free graphs of order v, and let F∗v denote the set of extremal graphs of
order v. Define F (v) = |F∗v |. We now determine the values of f(v) for 1 ≤ v ≤ 24. We also determine the
values of F (v) for 1 ≤ v ≤ 10 and v = 19, 20, 50. The authors of [13] determined the remaining values of
f(v) for v ≤ 30 and F (v) for v ≤ 21; for the sake of completeness we include those values as well in the
following theorem.

Theorem 3.1 f(v) and F (v) have the following values:

v 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
f(v) 0 1 2 3 5 6 8 10 12 15 16 18 21 23 26 28 31
F (v) 1 1 1 2 1 2 1 1 1 1 3 7 1 4 1 22 14
v 18 19 20 21 22 23 24 25 26 27 28 29 30 50
f(v) 34 38 41 44 47 50 54 57 61 65 68 72 76 175
F (v) 15 1 1 3 1

Proof: For 1 ≤ v ≤ 10, we have constructed {C3, C4}-free graphs with bv√v − 1/2c edges, which is the
upper bound on f(v) from Theorem 2.2. These graphs are shown in Figure 1. It is not difficult to verify
that Figure 1 provides a complete enumeration of the extremal graphs up to order 10.

G
8

G
10

G
9

G
6b

G
7

G
1

G
2

G
3

G
6a

G
5

G
4a

G
4b

Figure 1: All extremal graphs for the orders up to 10

We now provide the exact value of f(v), 11 ≤ v ≤ 24, with a case-by-case proof based on the values
of v. To show that f(v) = m, we use the following strategy. First, with the aid of computer programs (as
described in [11]), we generate a graph Gv ∈ Fv with m edges to show that f(v) ≥ m. Next, assume that
there is a graph G ∈ Fv with more than m edges. Using Propositions 2.6–2.8, we compute the possible
values of δ and ∆. Finally, assuming that G contains S∆,δ−1, we obtain a contradiction. Below we prove
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the theorem for several values of v. The cases chosen are representative of the techniques and the ideas we
used, as well as the difficulties we encountered. Proofs for the omitted cases appear in [12].

f(12) = 18. Since G12 ∈ F12 (see Figure 2), f(12) ≥ 18. Since f(12) ≥ 19 would contradict Proposition 2.8,
we must have f(12) = 18. The proof is similar when v ∈ {11, 13, 15, 17, 18, 19, 20, 24}.

f(14) = 23. G14 in Figure 2 gives f(14) ≥ 23. Assume there exists G ∈ F14 with 24 edges. Propositions 2.6
and 2.7 imply that δ = 3 and ∆ = 4. Thus G has 8 vertices of degree 3 and 6 vertices of degree 4. Further,
G cannot contain a pair of adjacent vertices x and y each having degree 3, since G − {x, y} would have 19
edges, contradicting f(12) = 18. Since the sum of the degrees of the degree 3 vertices equals the sum of the
degrees of the degree 4 vertices, we conclude that every edge of G connects a degree 3 vertex to a degree 4
vertex. If for each degree 3 vertex we represent its neighborhood as a triple, then the existence of G implies
the existence of a design of 8 triples on 6 elements (the six vertices of degree 4), where each element occurs
in 4 triples and each distinct pair of elements occurs in at most 1 triple. But since 6 elements constitute
15 distinct pairs, and each triple specifies 3 pairs, such 8 triples will specify 8× 3 = 24 pairs, and therefore
cannot exist. Thus f(14) < 24.

f(16) = 28. G16 is displayed in Figure 2. The upper bound f(16) ≤ 29 follows from Proposition 2.8.
Suppose there exists G ∈ F∗16 with 29 edges, then (δ,∆) = (3, 4), (3, 5). Note that any two vertices x and y
of degree 3 cannot be adjacent, otherwise G− {x, y} would contain 24 edges, which contradicts f(14) = 23.

If ∆ = 5, then G contains S5,2 and d(ri) = 3 for each 1 ≤ i ≤ 5. Then d(x) ≥ 4 for all x ∈ R, so that G
has a minimum degree sum of 60, which contradicts |E| = 29. Therefore ∆ = 4 and G has 6 vertices of degree
3 and 10 vertices of degree 4. Consider any (4,2)-star S, at least one of the ri’s has degree 3. Suppose N(r)
contains 3 vertices of degree 3, then the removal of these vertices and r yields a graph with 19 edges, which
contradicts f(12) = 18. Thus we may assume d(r1) = 3 and d(r3) = d(r4) = 4; then d(r1,1) = d(r1,2) = 4.

Suppose d(r2) = 4. For each 2 ≤ i ≤ 4, since ri can be regarded as the root of a (4,2)-star, it follows
that there is at least one degree 4 vertex in Ri. We may assume d(ri,3) = d(r4,2) = 4 for 2 ≤ i ≤ 4, and
d(r2,j) = d(r3,j) = d(r4,1) = 3 for j = 1, 2. There exists a matching between R4 and each of Ri, 1 ≤ i ≤ 3.
So we may assume these edges are r4,1r2,3, r4,1r3,3, r4,2ri,2, r4,3ri,1 for 1 ≤ i ≤ 3. The vertices r2,1 and r2,2

can only connect to R1 ∪ {r3,3}. Suppose r2,1r1,2, r2,2r1,1 ∈ E. One of r3,1 and r3,2 must also be incident
to R1. To avoid a triangle, r3,1r1,1 and r3,2r1,2 cannot be in E; thus r3,1r1,2 ∈ E or r3,2r1,1 ∈ E, which
will complete the 4-cycle r3,1r1,2r2,1r4,3r3,1 or r3,2r1,1r2,2r4,2r3,2, respectively. Therefore we may assume
r2,1r3,3, r2,2r1,1 ∈ E. Similarly, one of r3,1 and r3,2 must be adjacent to r2,3, and the other adjacent to r1,1

or r1,2. Since T = {r2,3, r3,3} ⊂ N(r4,1), the remaining two edges incident to T form a matching between T
and R1. Thus r3,2r1,1 6∈ E. But r3,2 cannot be adjacent to r1,2 either, because such an edge will complete a
triangle. So we must have r3,2r2,3, r3,1r1,2 ∈ E. Finally, r3,3 is adjacent to r1,1 or r1,2, which will create the
4-cycle r3,3r1,1r4,3r2,1r3,3 or r3,3r1,2r3,1r3r2,3, respectively.

We have succeeded in showing that d(r2) = 3. In other words, every degree 4 vertex must be adjacent to
two degree 3 vertices and two degree 4 vertices. It follows that the ten degree 4 vertices must have 20 edges
to degree 3 vertices, but these latter vertices have only 18 edges to them; thus, by contradiction, f(16) 6= 29.

f(21) = 44. See G21 in Figure 2 for f(21) ≥ 44. Assume there exists G ∈ F21 with 45 edges. Proposi-
tions 2.6 and 2.7 imply that δ = 4 and ∆ = 5. Thus there are 6 vertices of degree 5 and 15 vertices of degree
4 in G. The (5,3)-star S it contains will have 5 leaves of degree 5 and 10 leaves of degree 4; therefore, there
must be at least 3 branches in S with at least 2 leaves of degree 4. On any such branch, the two degree
4 leaves, together with their parent, form a P3 of degree 4 vertices. The existence of such a P3 of degree
4 vertices implies that the subgraph induced by the remaining 18 vertices will have 35 edges, contradicting
f(18) = 34. Therefore, f(21) < 45. The proof for f(22) is similar.

See [11] for a proof of f(23) = 50 and the derivation of F (v) for 1 ≤ v ≤ 10. Computation of F (v) is
more involved when v > 10. Values of F (v) for 11 ≤ v ≤ 21 can be found in [13]. However, it is easy to show
that F (19) = F (20) = 1 based on the order of the (4, 5)-cage. An (r, g)-cage is defined as a graph of the
smallest order that is r-regular and has girth g. See [22] for more about cages. The (4, 5)-cage was discovered
by Robertson [17]; it has 19 vertices and 38 edges and is known to be unique. By Propositions 2.6 and 2.7,
all elements of F∗19 are 4-regular. Thus, the Robertson graph (G19 in Figure 2) is the unique element of F∗19.
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G19 has a unique set of three vertices that are mutually distance 3 apart (the shaded vertices outside the
dodecagon in G19 in Figure 2). By Propositions 2.6 and 2.7, δ = 3 for any extremal graph G of order 20.
So G has a degree 3 vertex x such that G− x is isomorphic to G19. In addition, N(x) consists of the three
vertices in G19 that are pairwise distance 3 apart. Hence F (20) = 1.

f(50) = 175 and F (50) = 1. The Hoffman-Singleton graph is {C3, C4}-free and attains the upper bound
on f(50) from Theorem 2.2. The uniqueness of the graph was shown in [14], [15], and by Cong and Schwenk
in [18].

We note that some recent results of Professor McKay [16], who used an exhaustive computer search in
several related problems, confirm our values of f(v).

4 Constructive lower bounds on f(v) for v ≤ 200

We have developed and implemented algorithms, combining hill-climbing [21] and backtracking techniques,
that attempt to find maximal graphs without triangles or quadrilaterals; the algorithms are described in
[11]. We have succeeded in generating graphs, with sizes greater than the lower bound presented in Section
2, for all orders from 25 to 200. We present these results in Table 1. Adjacency lists for the graphs appear

f(v) 0 1 2 3 4 5 6 7 8 9
0 0 0 1 2 3 5 6 8 10 12

10 15 16 18 21 23 26 28 31 34 38
20 41 44 47 50 54 57 61 65 68 72
30 76 80 85 87 90 94 99 104 109 114
40 120 124 129 134 139 144 150 156 162 168
50 175 176 178 181 185 188 192 195 199 203
60 207 212 216 221 226 231 235 240 245 250
70 255 260 265 270 275 280 285 291 296 301
80 306 311 317 323 329 334 340 346 352 357
90 363 368 374 379 385 391 398 404 410 416

100 422 428 434 440 446 452 458 464 470 476
110 483 489 495 501 508 514 520 526 532 538
120 544 551 558 565 571 578 584 590 596 603
130 610 617 623 630 637 644 651 658 665 672
140 679 686 693 700 707 714 721 728 735 742
150 749 756 763 770 777 784 791 798 805 812
160 819 826 834 841 849 856 863 871 878 886
170 893 901 909 917 925 933 941 948 956 963
180 971 979 986 994 1001 1009 1017 1025 1033 1041
190 1049 1057 1065 1073 1081 1089 1097 1105 1113 1121
200 1129

Table 1: Constructive lower bounds on f(v)

in [10]. We include in Table 1 the exact values of f(v) where they are known; those values are in bold face.
The values of f(v) for 25 ≤ v ≤ 30 are determined in [13]. The fact that our algorithm repeatedly finds the
unique extremal graph of order 50 in several seconds on a DECstation 5000 rated at 24 mips leads us to
believe that these computed lower bounds are good.

Figure 3 compares the computational and theoretical bounds. The upper bound is attained for v = 50,
but after that point our computational results fall away. It is not clear whether the upper or lower bound
seems to be closer to the asymptotic value of f(v); the upper bound might be attained on 3250 vertices.
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Figure 2: Extremal graphs of orders 11 to 24
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Figure 3: Computational and theoretical bounds on f(v)

Erdős’ conjecture that f(v) = (1/2 + o(1))3/2v3/2 remains unsolved. We hope this paper sheds some light
on the problem.

To improve the theoretical bounds of f(v), more properties of the extremal graphs need to be recognized.
The extremal graphs seem to have a highly symmetric structure; it may be worthwhile to study the groups
associated with them. Another interesting topic concerns the values of F (v). In particular, what are the
necessary and/or sufficient conditions for F (v) = 1?
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