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a b s t r a c t

For integers n ≥ 4 and ν ≥ n+1, let ex(ν; {C3, C4, . . . , Cn}) denote themaximum number
of edges in a graph with ν vertices and girth at least n + 1. In this paper we have obtained
bounds on this function for n ∈ {5, 6, 7} and, in several cases, even the exact value.Wehave
also developed a greedy algorithm for generating graphswith large size for given order and
girth.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

For undefined terminology and notation we refer the reader to [8]. Let V (G) and E(G) denote respectively the set of
vertices and the set of edges of a graph G. The size and order of G are denoted by ν(G) and e(G) respectively and the number
of vertices of degree i in G is denoted by ni. For a vertex x ∈ V (G) and an integer i ≥ 0, the neighborhood of x at distance i is
denoted by Ni(x) = {w ∈ G; dG(x, w) = i}, where dG(x, w) is the length of the shortest (x, w)-path in G. Analogously, let
dG(x,H) = min{dG(x, u); u ∈ V (H)} be the distance between a given vertex x ∈ V (G) and a subgraph H in G. The longest
distance between any two vertices in G is the diameter D(G) = D of G. The degree of a vertex x is δ(x) = |N1(x)| and the
minimum and maximum degree over all vertices of G are denoted by δ(G) = δ and ∆(G) = ∆, respectively.

The cycle of length n, n ≥ 3, is referred to as Cn and the length of the shortest cycle in G as the girth of G or g(G). Any
graph without cycles is said to have an infinite girth. If g(G) = g is odd, it is clear that the sets Ni(x), 1 ≤ i ≤ (g − 3)/2,
are independent and two vertices in Ni(x) cannot have a common neighbor in Ni+1(x). To study a graph G with even girth
g , it is common to focus on an edge xy and consider the sets of vertices Xi = {u ∈ V (G); dG(u, x) = i, dG(u, y) = i + 1}
and Yi = {u ∈ V (G); dG(u, y) = i, dG(u, x) = i + 1}, for 1 ≤ i ≤ (g − 2)/2. Notice that these g − 2 sets are pairwise
disjoint and each of them is independent. Also, two vertices of Xi or Yi cannot have a common neighbor in Xi+1 or Yi+1 for
1 ≤ i ≤ (g − 4)/2.

This paper deals with ex(ν; {C3, C4, . . . , Cn}), which represents themaximumnumber of edges in a simple graph of order
ν and girth at least n + 1. We refer to it as the extremal function. By EX(ν; {C3, C4, . . . , Cn}) we denote the set of all simple
graphs of order ν, girth at least n + 1 and with ex(ν; {C3, C4, . . . , Cn}) edges. Elements in EX(ν; {C3, C4, . . . , Cn}) are called
extremal graphs.

It is well known (see [14]) that ex(ν; {C3}) = ⌊ν2/4⌋ and, therefore, we assume throughout this paper that n ≥ 4. The
values of ex(ν; {C3, C4}) for all ν ≤ 24 are given in [10] and proofs of some of them appear in [11]. The corresponding
ones for 25 ≤ ν ≤ 30 are determined in [12]. In the papers [10,17] the authors have implemented algorithms for
constructing {C3, C4}-free graphs with as many edges as possible. These graphs provide lower bounds on ex(ν; {C3, C4})
for orders 31 ≤ ν ≤ 200.
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Analogously, in [16], amore general algorithm is developed. Using this iterative process the authors provide lower bounds
on the function ex(ν; {C3, C4, . . . , Cn}) forn ∈ {5, 6, 7} and ν ≤ 39.We confirm in this paper thatmost of these lower bounds
are the exact values of the corresponding extremal function. Recently in [1], using an idea inspired by the excision method
used by Biggs in [6], the authors have improved some of the bounds on ex(ν; {C3, C4}) included in [10] and also have found
lower bounds on ex(ν; {C3, C4, C5, C6}) for every order 40 ≤ ν ≤ 300.

The aim of this paper is to determine better and new bounds on the extremal function ex(ν; {C3, C4, . . . , Cn}) for
n ∈ {5, 6, 7} and, in some cases, we will show that they are the exact values of the extremal function.

2. Known results

For every n ≥ 4 the extremal function ex(ν; {C3, C4, . . . , Cn}) is already determined when the order ν is not large.

Theorem 1. [3] Let n ≥ 4 and 0 ≤ k ≤ 4 be integers. Then

ex(ν; {C3, C4, . . . , Cn}) = ν + k for each ν ∈ [νk(n), νk+1(n)),

where

ν0(n) = n + 1;
ν1(n) = ⌊3n/2⌋ + 1;
ν2(n) = 2n;

ν3(n) =


⌈9n/4⌉ if n is even
⌊9n/4⌋ if n is odd;

ν4(n) =


⌈(8n − 2)/3⌉ if n is even
⌊(8n − 2)/3⌋ if n is odd;

ν5(n) =


3n − 2 if n ≠ 6
17 if n = 6.

The following result, demonstrated by Alon, Hoory and Linial, will allow us to obtain upper bounds on the extremal function
ex(ν; {C3, C4, . . . , Cn}).

Theorem 2 ([4]). For g ≥ 3 and d > 2, put

ν0(d, g) =


1 + d

g−3
2−

i=0

(d − 1)i if g is odd;

2

g−2
2−

i=0

(d − 1)i if g is even.

A graph G, with average degree d̄ and girth g, has at least ν0(d̄, g) vertices.

This result is well known for regular graphs (see [8], page 308). Among these kinds of graphs, we should remember that
an (r, g)-cage is an r-regular graph with girth g and minimum order. In particular, an (r, g)-cage is said to be minimal if its
order is exactly the previous lower bound ν0(r, g). Cages and certain graphs in the family EX(ν; {C3, C4, . . . , Cn}) are related.
A connection is provided next.

Theorem 3 ([2]). Let r ≥ 3 and g ≥ 5 be given integers. If there is an (r, g)-cage with order ν0(r, g), then

EX(ν0(r, g); {C3, . . . , Cg−1}) = {minimal (r, g)-cages}.

The following three inequalities are useful in proving the new results that we have obtained.
Since the maximum degree is greater than the average degree, we have

∆(G) ≥ ⌈2e(G)/ν(G)⌉. (1)

By removing one vertex of minimum degree from a given graph Gwith girth at least n + 1, we obtain

δ(G) ≥ e(G) − ex(ν(G) − 1; {C3, C4, . . . , Cn}). (2)

It is well known (see [9]) that every graph Gwith g(G) > n verifies
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ν(G) ≥


1 +

n
2−

i=1

∆(δ − 1)i−1 if n is even

1 +

n−1
2−

i=1

∆(δ − 1)i−1
+ (δ − 1)

n−1
2 if n is odd.

(3)

3. A summary of our main results

Now we present the main results of this paper. Although we include tables of exact values and bounds on ex(ν; {C3,
C4, . . . , Cn}) for n ∈ {5, 6, 7}, we would like to remark that this extremal function is already known (see [2,3]) for the
following cases:

n = 5, ν ∈ {1, 2, . . . , 12, 14, 26, 42, 62};
n = 6, ν ≤ 16;
n = 7, ν ∈ {1, 2, . . . , 18, 30, 80}.

Theorem 4. The extremal function ex(ν; {C3, C4, C5}) has the following values:

ν 0 1 2 3 4 5 6 7 8 9
0 0 0 1 2 3 4 6 7 9 10

10 12 14 16 18 21 22 24 26 29 31
20 34 36 39 42 45 48 52 53 56 58
30 61 64 67 70 74 77 81 84 88 92
40 96 100 105 106–108 108–112 110–116 114–119 118–123 122–127 125–131
50 130–135 134–139 138–143 142–147 147–151 151–155 156–160 160–164 165–168 170–172
60 175–177 180–181 186

Theorem 5. The extremal function ex(ν; {C3, C4, C5, C6}) has the following values:

ν 0 1 2 3 4 5 6 7 8 9
0 0 0 1 2 3 4 5 7 8 9

10 11 12 14 15 17 18 20 22 23 25
20 27 29 31 33 36 37 39 41 43 44–47
30 47–49 48–52 50–54 52–56 55–58 57–61 59–63 61–65 62–68 64–70
40 67–73 69–75 71–77 73–80 75–82 77–85 80–87 82–90 84–92 87–95

Corollary 6.

EX(24; {C3, C4, C5, C6}) = {(3, 7)-McGee graph}

Theorem 7. The extremal function ex(ν; {C3, C4, . . . , C7}) has the following values:

ν 0 1 2 3 4 5 6 7 8 9
0 0 0 1 2 3 4 5 6 8 9

10 10 12 13 14 16 18 19 20 22 24
20 25 27 29 30 32 34 36 38 40 42
30 45 46 47 49 51 53 55 56–59 58–61 60–63
40 62–65 64–67 65–69 67–71 69–73 71–76 73–78 75–80 77–82 79–84
50 81–87 84–89 86–91 88–93 90–96 93–98 96–100 98–103 100–105 102–107
60 105–110 108–112 110–115 112–117 114–119 117–122 120–124 122–127 125–129 128–132
70 130–134 133–137 136–139 138–142 141–144 144–147 147–149 150–152 153–154 156–157
80 160
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Theorem 3 [2] connects two different extremal problems in graphs, establishing that the elements of the family EX(ν0
(r, g); {C3, C4, . . . , Cg−1}) are exactly the minimal (r, g)-cages whenever these graphs exist. This result, together with the
uniqueness of the (3, 6)-, (4, 6)-, (5, 6)-, (6, 6)-, (3, 8)-, (4, 8)-cages, guarantees that these graphs are the single elements
of the corresponding extremal sets. Similarly, Corollary 6 asserts that the (3, 7)-McGee graph is the unique element in
EX(24; {C3, C4, C5, C6}) although it is not a minimal cage.

4. Searching for lower and upper bounds

In our proof, to show that ex(ν; {C3, C4, . . . , Cn}) = m we need the construction of at least one graph of order ν, size m
and girth at least n + 1. We have developed an iterative greedy process that constructs graphs with large size and given
girth:

Algorithm 1. LSG(G0, ν∗)
Input: A {C3, C4, . . . , Cn}-free graph G0 with diameter D(G0) = D0 < n and a positive integer ν∗ > ν(G0).
Output: A graph G∗ such that ν(G∗) = ν∗, g(G∗) > n, D(G∗) < n and e(G∗) ≥ e(G0) + ν∗

− ν(G0).
Step 0: Make G = G0 and D = D0.
Step 1: If ν∗

−ν(G) < n−D, then G∗ is the graph obtained by subdividing, ν∗
−ν(G) times, an arbitrary edge of G. Otherwise,

we consider all the graphs obtained by adding to G a path of length n − D + 1 between two vertices in V (G) at distance D.
We choose G′ as one of them with the longest diameter.
Step 2: While D(G′) ≥ n, we insert in G′ an edge between two vertices at maximum distance in G′. Again, these two
vertices must be always chosen such that the resulting graph, also denoted by G′, has the longest diameter. We make
G = G′, D = D(G′) and go to Step 1.

Notice that the input of the previous algorithm can be an extremal {C3, C4, . . . , Cn}-free graph, since it is proved in [5]
that all of these graphs have diameter at most n − 1. Most of the extremal graphs and the ones which achieve the lower
bounds in Theorems 4, 5 and 7 can be obtained by using Algorithm 1. We would like to remark that this iterative process
sometimes provides better results than the one developed in [16].

In our attempt to construct graphs with maximum size for given order and girth, we see that extremal graphs of orders
ν and ν − 1 are sometimes related.

Remark 8. If G is any {C3, C4, . . . , Cn}-free graph with order ν, the graph obtained by removing one vertex in G is a
{C3, C4, . . . , Cn}-free graph with order ν − 1.

Applying Remark 8wehave succeeded in constructing some extremal graphs, since it appears that the removal of vertices
in extremal graphs produces new extremal graphs in most of the cases. In particular, we have applied this idea to the (3,
6)-, (3, 8)-, (4, 6)-, (4, 8)-, (5, 6)-, (6, 6)-cages to find most of the extremal graphs and the graphs which provide the lower
bounds in the constructive proofs of Theorems 4, 5 and 7.

The given upper bounds in Theorems 4, 5 and 7 are obtained from Theorem 2 [4]. If there exists a graph G with given
order and girth, but its size is larger than the one established in Theorems 4, 5 and 7, then G will have an average degree
greater than the one stated in Theorem 2 [4].

5. Proofs

In analogy to paper [10], for convenience, we define ex(ν; {C3, C4, . . . , Cn}) by fn(ν) and the family of the {C3, C4, . . . , Cn}-
free graphs with order ν by F n

ν . Given n ≥ 4 and ν ≥ n + 1, to show that fn(ν) = m, we first prove that fn(ν) ≥ m and
generate, with the help of Algorithm 1 and Remark 8, a graph G ∈ F n

ν with m edges. Next, we assume that there exists a
graph G ∈ F n

ν with size m + 1. Making use of the inequalities (1)–(3), we obtain the possible values of δ(G) and ∆(G), and
considering the known previous values of fn(ν) we reach a contradiction. To prove that fn(ν) ≤ m, we must notice that it
is not necessary to consider the existence of a graph G with m + k edges for k > 1, because by removing edges from G, it
would also be possible to construct a graph with the same order, exactlym + 1 edges and at least the same girth.

We consider a special edge in a graph free from triangles and quadrilaterals.

Definition 9. Let G be a {C3, C4}-free graph and x a vertex in V (G) such that δ(x) = ∆ and |N2(x)| is as large as possible. An
edge xy in E(G) is said to be a distinguished edge of G if y is a vertex of maximum degree in N1(x) such that

∑
u∈N1(y)

δ(u) is
maximum.

We illustrate this special edge in Fig. 1.

Proof of Theorem 4. Notice that Theorem 1 [3] provides the value of f5(ν) = ex(ν; {C3, C4, C5}) for orders ν ≤ 12 and that
Theorem 3 [2] establishes f5(14) = 21, f5(26) = 52, f5(42) = 105 and f5(62) = 186.
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Fig. 1. Illustration of a distinguished edge of a graph.

Fig. 2. The removal of vertices from the (5, 6)-cage provides graphs in EX(ν; {C3, C4, C5}) for 28 ≤ ν ≤ 41.

Table 1
Adjacency list of the (6, 6)-cage.

1 → {26, 31, 36, 41, 46, 51} 2 → {27, 35, 37, 42, 47, 51} 3 → {28, 34, 38, 43, 48, 51}
4 → {29, 33, 39, 44, 49, 51} 5 → {30, 32, 40, 45, 50, 51} 6 → {26, 32, 38, 44, 47, 52}
7 → {27, 31, 39, 45, 48, 52} 8 → {28, 35, 40, 41, 49, 52} 9 → {29, 34, 36, 42, 50, 52}
10 → {30, 33, 37, 43, 46, 52} 11 → {26, 33, 40, 42, 48, 53} 12 → {27, 32, 36, 43, 49, 53}
13 → {28, 31, 37, 44, 50, 53} 14 → {29, 35, 38, 45, 46, 53} 15 → {30, 34, 39, 41, 47, 53}
16 → {26, 34, 37, 45, 49, 54} 17 → {27, 33, 38, 41, 50, 54} 18 → {28, 32, 39, 42, 46, 54}
19 → {29, 31, 40, 43, 47, 54} 20 → {30, 35, 36, 44, 48, 54} 21 → {26, 35, 39, 43, 50, 55}
22 → {27, 34, 40, 44, 46, 55} 23 → {28, 33, 36, 45, 47, 55} 24 → {29, 32, 37, 41, 48, 55}
25 → {30, 31, 38, 42, 49, 55} 26 → {1, 6, 11, 16, 21, 56} 27 → {2, 7, 12, 17, 22, 56}
28 → {3, 8, 13, 18, 23, 56} 29 → {4, 9, 14, 19, 24, 56} 30 → {5, 10, 15, 20, 25, 56}
31 → {1, 7, 13, 19, 25, 57} 32 → {5, 6, 12, 18, 24, 57} 33 → {4, 10, 11, 17, 23, 57}
34 → {3, 9, 15, 16, 22, 57} 35 → {2, 8, 14, 20, 21, 57} 36 → {1, 9, 12, 20, 23, 58}
37 → {2, 10, 13, 16, 24, 58} 38 → {3, 6, 14, 17, 25, 58} 39 → {4, 7, 15, 18, 21, 58}
40 → {5, 8, 11, 19, 22, 58} 41 → {1, 8, 15, 17, 24, 59} 42 → {2, 9, 11, 18, 25, 59}
43 → {3, 10, 12, 19, 21, 59} 44 → {4, 6, 13, 20, 22, 59} 45 → {5, 7, 14, 16, 23, 59}
46 → {1, 10, 14, 18, 22, 60} 47 → {2, 6, 15, 19, 23, 60} 48 → {3, 7, 11, 20, 24, 60}
49 → {4, 8, 12, 16, 25, 60} 50 → {5, 9, 13, 17, 21, 60} 51 → {1, 2, 3, 4, 5, 61}
52 → {6, 7, 8, 9, 10, 61} 53 → {11, 12, 13, 14, 15, 61} 54 → {16, 17, 18, 19, 20, 61}
55 → {21, 22, 23, 24, 25, 61} 56 → {26, 27, 28, 29, 30, 62} 57 → {31, 32, 33, 34, 35, 62}
58 → {36, 37, 38, 39, 40, 62} 59 → {41, 42, 43, 44, 45, 62} 60 → {46, 47, 48, 49, 50, 62}
61 → {51, 52, 53, 54, 55, 62} 62 → {56, 57, 58, 59, 60, 61}

As we have pointed out, this proof is constructive and for each order ν the construction of at least one {C3, C4, C5}-free
graph with ν vertices is required. The size of this graph provides a lower bound on the extremal function ex(ν; {C3, C4, C5}).
For orders ν ≤ 27 we consider the graph included in [16]. For 28 ≤ ν ≤ 41 we construct the desired graphs by removing
from the (5, 6)-cage (see Fig. 2) one by one and in the specified order the vertices of the set {29, 30, 31, 32, 39, 40, 2, 33, 37,
6, 5, 4, 3, 38}. Analogously, the removal of the vertices {61, 51, 1, 26, 56, 62, 27, 2, 60, 47, 46, 22, 44, 6, 55, 21, 59} from the
(6, 6)-cage (see Table 1) provides the given lower bounds for 45 ≤ ν ≤ 61. For ν ∈ {43, 44}, the graphs are obtained by
applying Algorithm 1 to the (5, 6)-cage.

Next we prove that, for every order ν ∈ {13, 15, 16, . . . , 25, 27, 28, . . . , 41}, the corresponding graph belongs to
EX(ν; {C3, C4, C5}) and hence its size provides the exact value of f5(ν).
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Fig. 3. Illustration of the non-existence in F 5
15 of a graph with 23 edges.

f5(13) = 18. If we assume that there exists a graph with 13 vertices, 19 edges and girth at least 6, it will contradict the
inequality (3) for the values of δ and ∆ provided by (1) and (2).

The proof is similar if ν ∈ {16, 18, 20, 22, 23, 24, 25, 28, 34, 36, 38, 39, 40, 41}.
f5(15) = 22. Every graph G in the set F 5

15 with 23 edges has average degree strictly greater than 3 and hence ∆(G) ≥ 4.
Since f5(13) = 18, the removal of two vertices from G must imply the removal of at least five edges. Therefore, G contains
at most one vertex of degree 2, which cannot be adjacent to a vertex of degree 3. Considering a distinguished edge xy, it is
straightforward to see that ν(G) ≥ 2+ |X1| + |X2| + |Y1| + |Y2| ≥ 16, a contradiction to the fact that the order of G is 15, as
is shown in Fig. 3.
f5(17) = 26.We assume that there exists a graph G ∈ F 5

17 with 27 edges. In this case, δ = 3,∆ = 4 and n4 = 3.We consider
an arbitrary distinguished edge xy. Since ν(G) = 17, the vertex y and every vertex in X1 ∪ Y1 must have degree 3. Then,
e(G) = 16 +

∑
u∈Y2

(δ(u) − 1) ≤ 26.
The same line of reasoning can be applied when ν = 30.

f5(19) = 31. Every graph G ∈ F 5
19 with size 32 satisfies the conditions δ = 3, ∆ = 4 and n3 = 12. Two vertices of degree

3 in V (G) cannot be adjacent, because otherwise, removing these two vertices would produce a graph which contradicts
the assertion that f5(17) = 26. Hence, the three edges incident in each of the twelve vertices of degree 3 in G are different,
implying that e(G) ≥ 36.
f5(21) = 36. We assume that there exists a graph G ∈ F 5

21 with 37 edges. Then, δ = 3 and 4 ≤ ∆ ≤ 5. Since
f5(19) = 31, two vertices of degree 3 in V (G) cannot be adjacent. By xy we denote a distinguished edge in E(G). If
∆ = 5, then ν(G) ≥ 2 + |X1| + |X2| + |Y1| + |Y2| ≥ 22 and the order of G is contradicted. Therefore, ∆ = 4 and
G has eleven vertices of degree 4. Each of them cannot be adjacent to three vertices of degree 3, because otherwise the
removal of these four vertices contradicts the assertion that f5(17) = 26. In this case, for the distinguished edge xy, we have
ν(G) ≥ 2 + |X1| + |X2| + |Y1| + |Y2| ≥ 22.
f5(27) = 53. Every graphG ∈ F 5

27 with 54 verifies that 2 ≤ δ ≤ 4. If δ = 4, thenG is regular. In this case, for an arbitrary edge
xy ∈ E(G), there exists one vertex swhich is located at distance 3 from it. Since G contains no quadrilateral, the vertex smust
be adjacent both to X2 and to Y2. Then, it can be assumed that E(G) contains edges su1, su2, sv such that u1, u2 belongs to X2
and v to Y2. Since δ(v) = 4, the vertex v must be adjacent to a vertex r ∈ X2, such that either dG(r, u1) = 2 or dG(r, u2) = 2.
However, this implies that G contains a cycle of length 5.

If δ = 3, then 5 ≤ ∆ ≤ 7. From the assertions that f5(25) = 48, f5(24) = 45, f5(23) = 42, f5(22) = 39 and f5(21) = 36,
it follows that every vertex x in V (G) is adjacent at most to δ(x) − 3 vertices of degree 3. We consider a distinguished edge
xy. With 27 vertices, there is a single configuration with girth at least 6 that has the previously mentioned property. This
means that δ(x) = 5, as x is adjacent to two vertices of degree 3 and to three vertices of degree 4 (y one of them), and
the vertex y is adjacent to two vertices of degree 4, one vertex of degree 3 and one of degree 5 (the vertex x). Therefore,
∆ = 5 and every vertex of V (G) with maximum degree is adjacent to two vertices of degree 3. From e(G) = 54, we obtain
that

∑
u∈X2

(δ(u) − 1) = 28 and, since X2 contains no vertex of degree 5, there are exactly two vertices of degree 3 in X2.
From the assertion that n5 = n3, it follows that there are at least four vertices of degree 5 in Y2. Each of them must be
adjacent to the two vertices of degree 3 in X2 and consequently G contains a quadrilateral. If δ = 2, then ∆ ≥ 5. Taking into
account that f5(25) = 48, the removal of two vertices in V (G) implies the removal of at least six edges in E(G). Therefore,
in V (G) there is only one vertex of degree 2 and no vertex of degree 3. In this case, for a distinguished edge xy we have
ν(G) ≥ 2 + |X1| + |X2| + |Y1| + |Y2| ≥ 28, a contradiction.
f5(29) = 58. We assume that there is a graph G ∈ F 5

29 with 59 edges. In this case, δ = 3 and 5 ≤ ∆ ≤ 8. We denote
by xy a distinguished edge in E(G) and deal with several cases depending on the maximum degree of G. If ∆ ≥ 6, then
δ(x) ≥ 6 and all the vertices adjacent to x cannot have degree 3, because that would contradict one of the above proved
assertions that f5(22) = 39, f5(21) = 36, f5(20) = 34. Consequently, δ(y) = 5 or δ(y) = 4. Since G has 29 vertices,
δ(y) = 5 implies that all the vertices in X1 ∪ Y1 have degree 3, and δ(y) = 4 that at least four vertices in X1 ∪ Y1 have
minimum degree. In both cases, the removal of the vertices x, y and that of the ones in X1 ∪ Y1 contradict that f5(18) = 29
and f5(22) = 39, respectively. Therefore, ∆ = 5 and n5 = n3 + 2. As ν(G) = 29, the vertices x, y cannot have degree 5,
because that implies that there are at least five vertices of degree 3 located at distance 1 from the edge xy, contradicting
that f5(22) = 39. Analogously, if we assume that x is only adjacent to vertices of degree 4, each of them must be adjacent
to at least one vertex of degree 3 and, from f5(21) = 36, they cannot be adjacent to two vertices of degree 3. However this
implies that e(G) = 28 +

∑
u∈X2

(δ(u) − 1) = 60, because there is no vertex of maximum degree in X2. Therefore, every
vertex of degree 5 must be adjacent to at least α ≥ 1 vertices of degree 3. We distinguish several cases according to α.
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When we consider that α ≥ 3, the equality n5 = n3 + 2 is incompatible with 3n5 ≤ |{uv ∈ E(G); δ(u) = 3, δ(v) =

5}| ≤ |{uv ∈ E(G); δ(u) = 3}| ≤ 3n3. Let us study the case α = 2. First, we assume that there is one vertex of degree
5 in Y1 and consequently at least two vertices of degree 3 in Y2. Since f5(21) = 36, the set Y1 contains no vertex of degree
3. Therefore, 2 + |X1| + |Y1| + |X2| + |Y2| = 29 and e(G) = 28 +

∑
u∈X2

(δ(u) − 1) ≤ 58 due to X2 containing no vertex
of degree 5. Hence, if α = 2 there exists no vertex of degree 5 in Y1. As f5(23) = 42, f5(22) = 39 and X1 has exactly two
vertices of degree 3, the set N2(x) has at most one vertex of degree 3. Therefore, by definition of the distinguished edge, the
vertices in Y1 have degree 4. From f5(22) = 39 and f5(21) = 36, it follows that there is at most one vertex of degree 3 in
X2 ∪ Y2, and consequently there are at most two vertices of degree 3 which are located at distance at least 2 from the edge
xy. From n3 ≥ α = 2, we obtain that n5 = n3 + 2 ≥ 4 and hence there are at least three vertices of degree 5 located at
distance at least 2 from the edge xy. But these vertices cannot be adjacent to at least α = 2 vertices of degree 3 without
forming quadrilaterals.

Finally, we assume that α = 1. As f5(21) = 36 and f5(22) = 39, and there are at most two vertices of degree 3 in N2(x),
and consequently we can assume that Y1 contains no vertex of degree 3. Taking into account that ν(G) = 29, we obtain that
Y1 contains no vertex of degree 5 and that 2 + |X1| + |Y1| + |X2| + |Y2| = 29. This implies that there is no vertex of degree
5 in X2. Since

∑
u∈X2

(δ(u) − 1) = 31, exactly two vertices of degree 3 belong to X2. Notice that we have just seen that every
vertex in V (G) of degree 5 with exactly one vertex of degree 3 in its neighborhood has no vertex of degree 5 at distance 2.
From n3 ≥ 3, it follows that n5 ≥ 5, and consequently the set Y2 contains two vertices of degree 5 located at distance 2.
Both of them must be adjacent to the two vertices of degree 3 in X2 and, therefore, the graph G contains a quadrilateral.
f5(31) = 64. Every graph G ∈ F 5

31 with 65 edges has δ = 4, ∆ = 5 and n5 = 6. Let xy denote an arbitrary
distinguished edge of G. From ν(G) = 31, we obtain that δ(y) = 4 and that every vertex of degree 4 is adjacent to at
most two vertices of maximum degree. Therefore, Y1 contains at most one vertex of degree 5. But its existence implies
e(G) = 30 +

∑
u∈Y2

(δ(u) − 1) ≤ 64. Hence, two vertices of degree 5 must be at least at distance 3 apart. This implies that
there is no vertex of degree 5 in X2 ∪ Y1 and also that there are two vertices of degree 5 at distance 2 in Y2, contradicting the
previous assertion.
f5(32) = 67. Let us assume that there is a graph G ∈ F 5

32 with size 68. Clearly, δ = 4, ∆ = 5 and n5 = 8. Two vertices
of degree 5 in V (G) cannot be adjacent, because for a distinguished edge we would have ν(G) ≥ 34. We denote by α the
maximum number of vertices of degree 5 adjacent to every vertex of degree 4. On considering xy a distinguished edge in
V (G), the case α = 4 implies that ν(G) ≥ 33. Also, as a consequence of the non-existence of vertices with maximum degree
in X2, when α = 3, we have e(G) = 31 +

∑
u∈X2

(δ(u) − 1) = 67.
On the other hand, if α = 1, all the vertices adjacent to vertices of degree 5 are different, and therefore, there must be at

least forty vertices of degree 4 in V (G). Hence α = 2. By using a distinguished edge xy we confirm that X1 has only vertices
of degree 4, that there is a single vertex of maximum degree in Y1 and also that there is a vertex s located at distance 3 from
the edge xy. Since α = 2, there are at most four vertices of degree 5 in the set Y2. Considering that every vertex of maximum
degree in X2 must be adjacent to s, together with the equalities α = 2 and n5 = 8, we obtain that δ(s) = 4 and that there
are exactly two vertices with degree 5 in X2. Both of them must be adjacent to s and to a vertex v in Y2 with degree 4 and
located at distance 2 from two vertices in Y2 with degree 5. However this means that G contains a quadrilateral.
f5(33) = 70. The proof is similar to the previous one. We assume that there is a graph G ∈ F 5

33 with 71 edges. Clearly,
δ = 4, ∆ = 5 and n5 = 10. Let xy denote a distinguished edge in E(G). Two vertices of degree 5 cannot be adjacent, because
otherwise the order of G should be at least 34. It makes sense to denote by α the maximum number of vertices of degree 5
adjacent to any vertex of degree 4. If α = 4, then 2 + |X1| + |X2| + |Y1| + |Y2| = ν(G) and taking into account that there is
no vertex of degree 5 in X2, we obtain that e(G) = 32 +

∑
u∈X2

(δ(u) − 1) = 68.
On the other hand, if α = 1, all the vertices of degree 4 adjacent to vertices of degree 5 are different, and hence there

must be 50 vertices in Gwith minimum degree.
We consider that α = 3. In this case, the set X1 has only vertices of degree 4, there are two vertices of degree 5 in Y1 and

there exists one vertex s located at distance 3 from the edge xy. Taking into account that in Y2 there are atmost three vertices
of degree 5 and that every vertex of maximum degree in X2 is adjacent to s, we conclude that the vertex s has degree 4 and
that there are at most α = 3 vertices of degree 5 in X2. This contradicts that n5 = 10. Therefore, α = 2. In this case, the set
X1 has only vertices of minimum degree, there is one vertex of degree 5 in Y1 and there are two vertices s, t at distance 3
from the edge xy. Since in the set Y2 there are at most four vertices of degree 5 and every vertex of maximum degree in X2
is adjacent either to s or to t , it follows, from α = 2, that δ(s) = δ(t) = 4 and that there are in X2 four vertices of degree 5,
two of them adjacent to s and the other ones to t . These two vertices are also adjacent to a vertex v in Y2 with degree 4 and
located at distance 2 from two vertices in Y2 with degree 5. This implies that G contains a quadrilateral.
f5(35) = 77. Every graph G ∈ F 5

35 with size 78 satisfies the conditions δ = 4 and 5 ≤ ∆ ≤ 6. From f5(33) = 70, it follows
that two vertices of degree 4 in V (G) cannot be adjacent. Moreover, ∆ must be 5, because considering a distinguished edge,
when ∆ = 6, we have ν(G) ≥ 37. Consequently, V (G) contains 19 vertices of degree 4, each of them adjacent to vertices of
degree 5. Therefore |{uv ∈ E(G); δ(u) = 4, δ(v) = 5}| = 4n4 = 76 and there are in E(G) only two edges joining vertices of
degree 5. Let us denote one of them by xy. The set X1 ∪ Y1 contains at least seven vertices of degree 4 and hence there are in
X2 ∪ Y2 at least 21 vertices of maximum degree, contradicting that n5 = 16 in G.
f5(37) = 84. Every graph G ∈ F 5

37 with size 85 satisfies δ = 4 and 5 ≤ ∆ ≤ 6. From f5(35) = 77 and f5(33) = 70, it follows
that two vertices of degree 4 in G cannot be adjacent and that every vertex of degree 5 is adjacent to at most two vertices
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Fig. 4. The subgraph H mentioned in the proof of the equality f6(18) = 23. Let us note that vertices of degree 2 are highlighted.

of degree 4. Let xy be a distinguished edge of G. First we assume that ∆ = 6. As ν(G) = 37, every vertex in the set {y} ∪ X1
has degree 4 and the ones in X2 ∪ Y1 have degree 5. That is the only possible configuration of G, but it contains at most nine
vertices of degree 4, contradicting that n4 = n6 + 15. Hence, ∆ = 5 and considering a distinguished edge we obtain that
ν(G) ≥ 38. �

Theorem 4 confirms that the lower bounds on ex(ν; {C3, C4, C5}) provided in [16] are optimal for orders ν ≤ 27 and
ν = 30, 32.

Proof of Theorem 5. All the graphs that achieve the exact values and the lower bounds on ex(ν; {C3, C4, C5, C6}) for ν ≠ 30
are constructed using Algorithm 1 beginning with the cycle C7. We would like to acknowledge that for ν = 30 this iterative
process produces a graph with size 46, while in [16] another one is constructed with one more edge.

Next, we confirm the extremality of these graphs for 17 ≤ ν ≤ 28. Notice that Theorem 1 [3] provides the value of f6(ν)
for ν ≤ 16.
f6(17) = 22. Every graph with 17 vertices, 23 edges and girth at least 7 contradicts the inequality (3) for the values of δ and
∆ provided by (1) and (2).

The proof is similar when ν ∈ {19, 20, 21, 24, 26, 27, 28}.
f6(18) = 23. We assume that there exists a graph G ∈ F 6

18 with size 24. Then, δ = 2 and 3 ≤ ∆ ≤ 5. Taking into account
that f6(16) = 20, f6(15) = 18 and f6(13) = 15, we verify that the graph G does not contain two consecutive vertices
of minimum degree, that every vertex of degree 3 is adjacent to at most one vertex of degree 2 and that every vertex of
degree 4 is adjacent to at most three vertices of degree 2. Then, if ∆ ≥ 4, for every vertex x such that δ(x) = ∆, we have
ν(G) ≥ 1+|N1(x)|+ |N2(x)|+ |N3(x)| ≥ 19. Hence∆ = 3, n2 = 6, n3 = 12 and every vertex of degree 3 in V (G) is adjacent
to exactly one vertex of degree 2. Therefore, for every vertex x of degree 3 it is clear that

3
i=0 |Ni(x)| = 17 and so there is

a vertex s in V (G) such that dG(x, s) = 4. Hence, G contains the subgraph H included in Fig. 4, in which the vertices in N3(x)
are denoted by u1, . . . , u8. We assume that u2, u7 have degree 2. Clearly, δ(s) = 2. The vertex u6 has degree 3 and without
loss of generality we consider that u6u5 ∈ E(G). If u6 is adjacent to u3, then δ(u3) = 3 and g(G) ≥ 7 are incompatible.
Consequently, the edge u6u1 ∈ E(G) and this implies that the edge u1s also belongs to E(G). In this case, the vertex u5 cannot
be adjacent to any vertex of degree 2 without avoiding the forbidden cycles C4, C5 and C6.
f6(22) = 31. It is not possible to construct a graph G ∈ F 6

22 with 32 edges, since its minimum degree δ(G) ≤ d̄(G) =

64/22 < 3 contradicts the inequality (2).
The same line of reasoning can be applied when ν = 23.

f6(25) = 37. Every graph in the set F 6
25 with 38 edges satisfies the conditions δ ≥ 2 and ∆ ≥ 4. From f6(23) = 33, it follows

that n2 ≤ 1. Considering the neighborhoods of a vertex x of maximum degree we obtain that ν(G) ≥ 1+|N1(x)|+ |N2(x)|+
|N3(x)| ≥ 26. �

Theorem 5 confirms that the lower bounds on f6(ν) provided in the paper [16] are optimal for every ν ≤ 28 except for
ν = 26.

Proof of Corollary 6. In Theorem 5 we have obtained that ex(24; {C3, C4, C5, C6}) = 36. This implies that every graph
G in EX(24; {C3, C4, C5, C6}) has average degree 3. Considering also the inequality (2) we have δ(G) ≥ e(G) −

ex(23; {C3, C4, C5, C6}) = 3 and, therefore, the graph G is 3-regular. McGee constructed such (3, 7)-cage for the first time
in [13] and Tutte proved its uniqueness in [15]. �

Proof of Theorem 7. Notice that Theorem 1 [3] provides the value of f7(ν) for orders ν ≤ 18 and that Theorem 3 [2]
establishes f7(30) = 45 and f7(80) = 160. All the given exact values and the lower bounds on ex(ν; {C3, C4, . . . , C7})
for ν ≤ 46 are obtained by Algorithm 1 beginning with the cycle C8. By removing one by one and in the specified order the
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Table 2
Adjacency list of the (4, 8)-cage.

1 → {28, 55, 71, 72} 2 → {28, 58, 68, 75} 3 → {28, 61, 65, 78} 4 → {29, 62, 66, 73}
5 → {29, 56, 63, 76} 6 → {29, 59, 69, 79} 7 → {30, 57, 64, 74} 8 → {30, 60, 70, 77}
9 → {30, 54, 67, 80} 10 → {31, 59, 67, 72} 11 → {31, 62, 64, 75} 12 → {31, 56, 70, 78}
13 → {32, 54, 65, 73} 14 → {32, 57, 71, 76} 15 → {32, 60, 68, 79} 16 → {33, 61, 69, 74}
17 → {33, 55, 66, 77} 18 → {33, 58, 63, 80} 19 → {34, 60, 63, 72} 20 → {34, 54, 69, 75}
21 → {34, 57, 66, 78} 22 → {35, 58, 70, 73} 23 → {35, 61, 67, 76} 24 → {35, 55, 64, 79}
25 → {36, 56, 68, 74} 26 → {36, 59, 65, 77} 27 → {36, 62, 71, 80} 28 → {1, 2, 3, 37}
29 → {4, 5, 6, 37} 30 → {7, 8, 9, 37} 31 → {10, 11, 12, 38} 32 → {13, 14, 15, 38}
33 → {16, 17, 18, 38} 34 → {19, 20, 21, 39} 35 → {22, 23, 24, 39} 36 → {25, 26, 27, 39}
37 → {28, 29, 30, 40} 38 → {31, 32, 33, 40} 39 → {34, 35, 36, 40} 40 → {37, 38, 39, 41}
41 → {40, 42, 43, 44} 42 → {41, 45, 46, 47} 43 → {41, 48, 49, 50} 44 → {41, 51, 52, 53}
45 → {42, 54, 55, 56} 46 → {42, 57, 58, 59} 47 → {42, 60, 61, 62} 48 → {43, 63, 64, 65}
49 → {43, 66, 67, 68} 50 → {43, 69, 70, 71} 51 → {44, 72, 73, 74} 52 → {44, 75, 76, 77}
53 → {44, 78, 79, 80} 54 → {9, 13, 20, 45} 55 → {1, 17, 24, 45} 56 → {5, 12, 25, 45}
57 → {7, 14, 21, 46} 58 → {2, 18, 22, 46} 59 → {6, 10, 26, 46} 60 → {8, 15, 19, 47}
61 → {3, 16, 23, 47} 62 → {4, 11, 27, 47} 63 → {5, 18, 19, 48} 64 → {7, 11, 24, 48}
65 → {3, 13, 26, 48} 66 → {4, 17, 21, 49} 67 → {9, 10, 23, 49} 68 → {2, 15, 25, 49}
69 → {6, 16, 20, 50} 70 → {8, 12, 22, 50} 71 → {1, 14, 27, 50} 72 → {1, 10, 19, 51}
73 → {4, 13, 22, 51} 74 → {7, 16, 25, 51} 75 → {2, 11, 20, 52} 76 → {5, 14, 23, 52}
77 → {8, 17, 26, 52} 78 → {3, 12, 21, 53} 79 → {6, 15, 24, 53} 80 → {9, 18, 27, 53}

Fig. 5. Illustration of the non-existence in F 7
20 of a graph with size 26 and ∆ ≥ 4.

vertices of the set {1, 28, 37, 40, 41, 44, 51, 72, 2, 75, 52, 3, 78, 53, 10, 11, 31, 12, 38, 19, 20, 34, 21, 39, 29, 4, 62, 66, 73, 5,
56, 63, 76} from the (4, 8)-cage (see Table 2) we have constructed the graphs which provide the given lower bounds when
47 ≤ ν ≤ 79.

Next we prove that these lower bounds really represent the exact value of f7(ν) for 19 ≤ ν ≤ 36, ν ≠ 30.
f7(19) = 24. An immediate consequence of the inequalities (1)–(3).

The proof is similar when ν ∈ {21, 22, 24, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36}.
f7(20) = 25. We assume that there is a graph G ∈ F 7

20 with 26 edges. Then, δ = 2 and ∆ ≥ 3. Since f7(18) = 22 and
f7(17) = 20, two vertices of degree 2 cannot be adjacent and every vertex of degree 3 is adjacent to at most a single vertex
of degree 2. If ∆ ≥ 4, with a distinguished edge xy, we obtain that ν(G) ≥ 2+|X1|+ |X2|+ |X3|+ |Y1|+ |Y2|+ |Y3| ≥ 21, as
is illustrated in Fig. 5. Therefore, ∆ = 3 and n2 = 8. Taking into account that each of the eight vertices of minimum degree
must be adjacent to two different vertices of degree 3, we obtain that there are sixteen vertices of degree 3 in V (G). This
contradicts the order of G.

f7(23) = 30. We assume that there exists a graph G ∈ F 7
23 with 31 edges. It has δ = 2 and ∆ ≥ 3. Taking into

account the known results f7(21) = 27, f7(20) = 25 and f7(18) = 22, we obtain that two vertices of minimum
degree cannot be adjacent, that every vertex of degree 3 is adjacent to at most a single vertex of degree 2 and that every
vertex of degree 4 is adjacent to at most three vertices of degree 2. If ∆ ≥ 4, with a distinguished edge xy, we obtain
ν(G) ≥ 2+|X1|+ |X2|+ |X3|+ |Y1|+ |Y2|+ |Y3| ≥ 24. Similarly, since ν(G) = 23, no vertex of degree 3 can be only adjacent
to other vertices of degree 3. Therefore, we have that ∆ = 3 and that every vertex of degree 3 is adjacent to exactly one
vertex of degree 2. From this assertion and the equality n2 = 7, it follows that G can only have fourteen vertices of degree
3, contradicting that n3 = 16.
f7(31) = 46. A graph G ∈ F 7

31 with size 47 has average degree d̄(G) = 94/31 and, from Theorem 2 [4], it follows that
ν(G) ≥ 32.
f7(32) = 47. We assume that there is a graph G ∈ F 7

32 with size 48. Then, 2 ≤ δ ≤ 3. First we notice that δ ≠ 3, because
otherwise the graph G is 3-regular and, according to [7], for r ≥ 3 there exists no r-regular graph with even girth g ≥ 8 and
order ν0(r, g) + 2. Hence, δ = 2. Since f7(29) = 42, if there are in G two consecutive vertices of degree 2, then there is no
other vertex of minimum degree in V (G). Moreover, as f7(28) = 40, f7(27) = 38, f7(26) = 36, f7(25) = 34, f7(24) = 32
and f7(23) = 30 the removal of p vertices, with 3 ≤ p ≤ 9, implies the removal of at least 2p edges. This means that G
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has few vertices of degree 2. Under this condition and taking into account the order and the girth of G, we get that ∆ = 4
and that every vertex of degree 4 must be adjacent to exactly two vertices of degree 2 and to two vertices of degree 3.
Considering also that n2 = n4, we obtain that every vertex of degree 2 has two vertices of degree 4 in its neighborhood.
Taking into account the above described properties of the graph G and using a distinguished edge xy in E(G), we obtain that
ν(G) ≥ 2 + |X1| + |X2| + |X3| + |Y1| + |Y2| + |Y3| ≥ 33. �

Theorem 7 asserts that the lower bounds on ex(ν; {C3, C4, . . . , C7}) provided in [16] are the best possible for every order
ν ≤ 34.

6. Conclusions

The aim of this paper is the determination of ex(ν; {C3, C4, . . . , Cn})which represents themaximumnumber of edges in a
{C3, C4, . . . , Cn}-free graph with given order ν. We have provided the exact value of this extremal function for the following
cases:

n = 5, ν ∈ {13, 15, 16, . . . , 25, 27, 28, . . . , 41};
n = 6, ν ∈ {17, 18, . . . , 28};
n = 7, ν ∈ {19, 20, . . . , 29, 31, 32, . . . , 36}.

We also give lower and upper bounds when

n = 5, ν ∈ {43, 44, . . . , 61};
n = 6, ν ∈ {29, 30, . . . , 49};
n = 7, ν ∈ {37, 38, . . . , 79}.

We would like to remark that, for each specific order ν for which the extremal function has been determined, the upper
bound given by Theorem 2 [4] is, in general, strictly greater than the exact value of the extremal function. Therefore, we
think that, for the other orders ν, the exact value of the corresponding extremal function is closer to the given lower bounds
than to the upper ones.
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