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Abstract

Let f(v) denote the maximum number of edges in a graph
of order v and of girth at least 5. In this paper, we discuss
algorithms for constructing such extremal graphs. This gives
constructive lower bounds of f(v) for v ≤ 200. We also provide
the exact values of f(v) for v ≤ 24, and enumerate the extremal
graphs for v ≤ 10.

1 Introduction

All graphs considered in this paper are simple graphs. By V (G) , E(G),
v and e, we mean the vertex-set, edge-set, order and size of a graph
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G, respectively. Other undefined terms can be found in any standard
textbook in graph theory.

Given graphs G1, . . . , Gk, ex(v;G1, . . . , Gk) denotes the maximum
size of a graph of order v containing no subgraph isomorphic to any
Gi, 1 ≤ i ≤ k. Consult [22] for a brief survey of the subject. It is well
known that ex(v; C3) = bv2/4c, and the extremal graph is Kbv/2c,dv/2e.
The exact value of ex(v; C4) is known for some specific v [3, 9, 10].
Also, see [2, 8], ex(v; C4) = (1/2 + o(1))v3/2.

The girth of a graph is the size of its smallest cycle. In this paper,
we study the value of f(v), the maximum size of a graph of order v
and girth at least 5; that is, f(v) = ex{v; C3, C4}. An old conjecture
of Erdős, see for instance [7], states that f(v) = (1/2 + o(1))3/2v3/2.
Attempts to construct extremal graphs by destroying all 4-cycles (resp.
3-cycles) in the extremal graphs for ex(v; C3) (resp. ex(v; C4)) fail. Us-
ing computer search techniques such as hill-climbing and hill-tracking
(see Section 4), we find graphs without C3 or C4, thus giving lower
bounds on f(v) for v ≤ 200. Together with theoretical bounds (see
Section 2) from [13], we obtain in Section 3 exact values of f(v) for
1 ≤ v ≤ 24. We also enumerate all extremal graphs of order at most
10 in Section 3.

2 Preliminaries and Notations

In this section we summarize the results we derived in [13]. A graph
G of order v is said to be extremal if its size is f(v) and has girth 5.

It is clear that the diameter of an extremal graph is at most 3.
In was shown in [1] that graphs of order v with no 4-cycles and of
diameter 2 are very rare. Among them, only Moore graphs contain no
C3. These Moore graphs are C5, Petersen graph, Hoffman-Singleton
graph [15], and a 57-regular graph of order 3250 and girth 5 if it exists
(its existence is still an open problem [15]).

Theorem 2.1 For v ≥ 1, f(v) ≤ v
√

v − 1/2. Equality holds if and
only if G = K1, or G is a Moore graph of diameter 2.

Theorem 2.2 Let G be an extremal graph of order v and size e, and
let q be the largest prime power such that 2(q2 + q + 1) ≤ v. Then
f(v) ≥ 2v + (q − 3)(q2 + q + 1).
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Corollary 2.3
1

2
√

2
≤ lim inf

v→∞
f(v)
v3/2

≤ lim sup
v→∞

f(v)
v3/2

≤ 1
2
.

Remarks. The inequality in Theorem 2.1 was also found indepen-
dently in [5, 6]. Murty [19] obtained the same asymptotic lower bound
in Corollary 2.3 by showing that f(2q2) ≥ q2(q + 2) for primes q ≥ 5.

Let G be a {C3, C4}-free graph, we next define a class of trees
to be used in Section 3. Given any vertex r in G, it is clear that
its neighborhood N(r) = {r1, r2, . . . } is an independent set. Define
Ri = N(ri)−{r}. Since G is {C3, C4}-free, rirj 6∈ E(G) and Ri∩Rj = ∅
for i 6= j. For any set A of vertices of G, let 〈A〉 denote the subgraph
of G induced by A. Then

⋃
i〈N(ri)〉 forms a tree, which we call a

(m, n)-star , denoted Sm,n, where m = d(r), the degree of r, and n =
min{|Ri| : 1 ≤ i ≤ m}. In other words, Sm,n is a tree in which the
root has m children, and every child has at least n children of its own.
Note, however, leaves from different branches of Sm,n may be adjacent
in G. Clearly, if G has at least 5 vertices, it contains S∆,δ−1, where ∆
and δ are the maximum and minimum degree of G, respectively. Proof
of the following proposition is immediate.

Proposition 2.4 For all {C3, C4}-free graphs G, we have

1. v ≥ 1 + ∆δ ≥ 1 + δ2.

2. δ ≥ e− f(v − 1) and ∆ ≥ d2e/ve.
3. v ≥ 1 + d2f(v)/ve(f(v)− f(v − 1)).

Several more notations. Denote the set of {C3, C4}-free graphs of
order v and the corresponding set of extremal graphs by Fv and F∗v ,
respectively. Let F (v) = |F∗v |. For any graph G, define Qi = Qi(G) =
{x ∈ V (G) : d(x) = i}.

3 Values of f(v) for v ≤ 24

For 1 ≤ v ≤ 10, we have f(v) = bv√v − 1/2c.

Theorem 3.1 For 1 ≤ v ≤ 10, the values of f(v) and F (v) are:
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v 1 2 3 4 5 6 7 8 9 10
f(v) 0 1 2 3 5 6 8 10 12 15
F (v) 1 1 1 2 1 2 1 1 1 1

Proof: Figure 1 shows F∗v for 1 ≤ v ≤ 10. Thus f(v) ≥ bv√v − 1/2c
for v ≤ 10, and the equality follows from Theorem 2.1.
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Figure 1: Extremal graphs with v ≤ 10

The value of F (v) is trivial when v ≤ 5. For v ≥ 6, Proposition 2.4
leads to the following possible values of δ and ∆:

v 6 7 8 9 10
(δ,∆) (1,2), (1,3), (1,4) (2,3) (2,3) (2,3) (3,3)

(1,5), (2,2) (2,4)

Let G ∈ F∗6 . If G is 2-regular, then it must be C6. Otherwise, let
x be a pendant vertex of G. Since f(5) = 5 and F (5) = 1, we have
G − x ∼= C5, so G ∼= G6a in Figure 1. For the rest of the proof, the
graphs Gi would be those depicted in Figure 1.

Every G ∈ F∗7 contains S3,1, which has 7 vertices and 6 edges.
The remaining two edges must connect the leaves, thus yielding G7.
Assume r2,1 is adjacent to r1,1 and r3,1.

Let z1 ∈ Q2(G), where G ∈ F∗8 . Then G− z1
∼= G7 since |E(G)| =

10, f(7) = 8 and F (7) = 1. So N(z1) = {r3, r1,1}; thus G ∼= G8.
Let z2 ∈ Q2(G), where G ∈ F∗9 ; then G− z2

∼= G8. If z1z2 6∈ E(G),
then N(z2) = {r1, r3,1}, yielding G9. If z1z2 ∈ E(G), then N(z2) =
{z1, r2}, yielding G′

9. It is easily seen that G9
∼= G′

9, so F (9) = 1.
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Finally, every G ∈ F∗10 is 3-regular, and G−x ∼= G9 for every vertex
x ∈ V (G). Since |Q2(G9)| = 3, we have N(x) = Q2(G9). Thus G is
the Petersen graph G10.

Theorem 3.2 The values of f(v) for 11 ≤ v ≤ 24 are as follows:

v 11 12 13 14 15 16 17 18 19 20 21 22 23 24

f(v) 16 18 21 23 26 28 31 34 38 41 44 47 50 54

The strategy we use to prove f(v) = N is similar to that typically
used in Ramsey theory. First, we generate (with computer search, see
Section 4) a graph Gv ∈ Fv with N edges, this shows that f(v) ≥ N .
Figure 2 displays G18, G19 and G24. Note that G17, G16, . . . , G11
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Figure 2: Extremal graphs with 18, 19 and 24 vertices
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can be obtained from G18 by deleting vertices labeled 18, 17, . . . , 12 in
succession; G21, G22 and G23 can be similarly constructed from G24.
G19 is the Robertson graph [21], which is the unique 4-regular graph of
girth 5, which in turn implies that F (19) = 1. G20 can be formed from
G19 by adding a vertex that is adjacent to the three outer vertices.

Next, we prove that f(v) < N + 1. Suppose there exists G ∈ Fv

with more than N edges. Deduce possible values of δ and ∆ from
Proposition 2.4. Complete the proof by showing that G−N [r] always
contains C3 or C4 for any r ∈ Q∆.

Typical examples can be found in [13]. The proofs of f(16) = 28
and f(23) = 50 are the most complicated. We only show the proof of
f(23) = 50 here.

Proof of f(23) = 50. By construction, f(23) ≥ 50. Suppose there
exists G ∈ F23 with 51 edges, then δ = 4, ∆ = 5, |Q4| = 13 and |Q5| =
10. First note that G does not contain a subgraph G′ ∈ {P4,K1,3}
with V (G′) ⊂ Q4. For if it does, then G − V (G′) ∼= G19 (because
f(19) = 38 and F (19) = 1), G′ has at least two pendant vertices, each
has 3 neighbors in G− V (G′) that are mutually distance 3 apart, but
G19 has only one such set of 3 vertices.

Consider the (5,3)-star S rooted at any r ∈ Q5. Let W = V −N [r]
and H = 〈W 〉. There are at most 2 vertices not in S, so |Q5∩N(r)| ≤ 2.
We may assume d(ri) = 4 for 1 ≤ i ≤ 3. Note that if d(ri) = 4 then
|Q5 ∩ Ri| ≥ 1, since otherwise Ri ⊆ Q4 implies that K1,3 ⊆ Q4, a
contradiction.

Suppose |Q5 ∩ N(r)| = 2 for some r ∈ Q5. Then for i = 4, 5,
d(ri) = 5 and |Q4 ∩ Ri| ≥ 3; also, |Q4 ∩ (R1 ∪ R2 ∪ R3)| ≥ 2. Since∑

x∈Ri
dH(x) ≥ 12 for i = 4, 5, there exists a path P4 of the form

r5,ar4,brc,drc or r4,ar5,brc,drc for some 1 ≤ c ≤ 3 such that V (P4) ⊂ Q4.
But such path cannot exist, so |Q5 ∩N(r)| ≤ 1 for all r ∈ Q5.

If 〈Q5〉, the graph induced by Q5, has t edges, then counting degrees
shows that Q5 is joined by 5 · 10 − 2t edges, and consequently 〈Q4〉
must have t + 1 edges. Now if t ≥ 6, it forces some r ∈ Q5 to have
|N(r)∩Q5| ≥ 2, which we have just shown to be impossible. Therefore,
t ≤ 5. But now consider the 45 pairs of vertices in Q5. Each of the
t edges covers one of these pairs. But we shall also consider a pair
covered if both of its vertices have a common neighbor in Q4. Now the
13 vertices of Q4 have 50 − 2t edges joining them to Q5. These cover
the minimum number of pairs when they are distributed evenly, that is,
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2t+2 vertices joined to 3 vertices and 11−2t joined to 4. Since 3 and 4
vertices comprise 3 and 6 pairs, respectively, we may total the number
of pairs covered to obtain t+3(2t+2)+6(11−2t) = 72−5t ≥ 47. But
since Q5 only has 45 pairs, the pigeonhole principle forces some pair to
be covered twice, contradicting the girth being 5. This contradiction
shows that t connot be less than 6. Since we have considered every
possible value for t, it must be that f(23) < 51.

Values of F (v), for 11 ≤ v ≤ 28, can be found in [14].

4 Algorithmic lower bound construction for f(v)

By combining hill-climbing and backtracking techniques, we have de-
veloped and implemented algorithms that attempt to find maximal
graphs without C3 or C4. We have succeeded in generating graphs,
for 25 ≤ v ≤ 200, with sizes exceeding the lower bounds given in Sec-
tion 2. Adjacency lists for the graphs appear in [12]. The constructive
lower bounds thus obtained are listed in Table 1; the value of f(v) for
0 ≤ v ≤ 30, and v = 50, are exact. Values of f(v) for 25 ≤ v ≤ 30
are determined in [14]; f(50) = 175 because the size of the Hoffman-
Singleton graph attains the upper bound in Theorem 2.1.

The algorithmic techniques we used to generate the graphs are
based on heuristic local search algorithms. These are algorithms that
propose random changes to partial solutions, and then accept those
changes which do not move the solution further away from the goal. We
also used standard backtracking techniques for parts of the solutions.
Before describing the techniques, and how they were combined, we first
present some terminology.

In general, the class of techniques that we employ is known as
hill-climbing. One climbs a hill by looking for a step that increases
the climber’s altitude. When it is not possible to efficiently identify
a nearby point with a greater altitude, then it is acceptable to take
a sideways step which maintains the current altitude, but with luck
brings the climber nearer to a point with a higher altitude. At times it
is prudent to even step downhill to get away from a local peak which
does not have satisfactory altitude.

Thus, we have the notion of an algorithm which wanders from one
partial solution to another; in our problem, a partial solution on v ver-
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f(v) 0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 5 6 8 10 12
10 15 16 18 21 23 26 28 31 34 38
20 41 44 47 50 54 57 61 65 68 72
30 76 80 85 87 90 94 99 104 109 114
40 120 124 129 134 139 144 150 156 162 168
50 175 176 178 181 185 188 192 195 199 203
60 207 212 216 221 226 231 235 240 245 250
70 255 260 265 270 275 280 285 291 296 301
80 306 311 317 323 329 334 340 346 352 357
90 363 368 374 379 385 391 398 404 410 416

100 422 428 434 440 446 452 458 464 470 476
110 483 489 495 501 508 514 520 526 532 538
120 544 551 558 565 571 578 584 590 596 603
130 610 617 623 630 637 644 651 658 665 672
140 679 686 693 700 707 714 721 728 735 742
150 749 756 763 770 777 784 791 798 805 812
160 819 826 834 841 849 856 863 871 878 886
170 893 901 909 917 925 933 941 948 956 963
180 971 979 986 994 1001 1009 1017 1025 1033 1041
190 1049 1057 1065 1073 1081 1089 1097 1105 1113 1121
200 1129

Table 1: Constructive lower bounds on f(v)

tices is any graph with v vertices. We distinguish between valid partial
solutions which, in our case, are graphs on v vertices that contain nei-
ther a C3 nor a C4, and partial solutions in general. The search space
for a problem is the set of all partial solutions. A neighbor of a valid
partial solution, G, is any point adjacent to G as defined by some
perturbation function. (Since, in practice, a good perturbation func-
tion does not always return the same value when given the same valid
partial solution, strictly speaking these are perturbation relations.)

The cost of a valid partial solution, G, is the distance from G to an
optimal (or acceptable) solution. Thus, we define the cost of a valid
partial solution, G, in the problem of finding an extremal graph on v
vertices, to be f(v)−|E(G)|. When we are attempting to find a lowest
cost valid partial solution on v vertices when f(v) is not known, then
we can think of the cost as being 1/|E(G)|.

Given a point G in the search space, a hill-climbing heuristic, h(G),
attempts to return a neighbor of G that has lesser or equal cost. A hill-
climbing algorithm begins with an initial valid partial solution (which
is either a graph with no edges, or one where some edges have been ran-
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domly included, but such that validity is maintained), and repeatedly
applies hill-climbing heuristics to locate a point in the search space
with sufficiently low cost. Hill-climbing algorithms have been used
successfully in a number of combinatorial problems to quickly find ap-
proximate solutions (i.e. [17]). More recently, such algorithms have
proven effective in finding optimal solutions to a variety of combinato-
rial problems ([4, 11, 23]). Classic references on this type of algorithm
are [16] and [20] (pp. 454–481).

To see how hill-climbing can be applied to the problem of finding
extremal graphs, we first define the notion of a k-candidate. A k-
candidate, x, is a non-edge in a valid partial solution G where E(G) ∪
{x} contains at most k triangles and quadrilaterals combined. We now
define a hill-climbing heuristic, Climb, which receives a valid partial
solution, G, and a list of all 1-candidates (denoted Candidates).

procedure Climb (G, Candidates)
remove a randomly chosen edge x from Candidates
(a) if 〈E(G) ∪ {x}〉 contains neither C3 nor C4 then

add x to E(G)
(b) else if 〈E(G) ∪ {x}〉 contains a single cycle C ∈ {C3, C4}, then

add x to E(G)
move from E(G) to Candidates a random edge y in E(C)− {x}
add to Candidates non-edges that would complete C3 or C4 with y

(c) else if x completes more than one cycle isomorphic to C3 or C4 then
do nothing

When the condition in clause (a) is true, the algorithm takes an up-
hill step. When the condition in clause (b) is met, the resulting graph
represents a sideways step; though the procedure returns a different
point in the search space, the cost is unchanged. When condition (c)
is met, acceptance of the candidate would require a downhill step by
removing several edges in order to maintain the validity of the partial
solution; therefore the proposed candidate is rejected.

The efficiency of the procedure is not difficult to implement with
a time complexity of O(v2). However, from invocation to invocation,
Climb would redundantly check the candidacy of non-edges that are
not 1-candidates. Thus, whenever an edge st is removed from the
graph during a sideways step, all non-edges uv are added to Candidates
whenever u or v is at most distance 2 from s or t. Step (c) in the
procedure effectively removes any k-candidates (where k > 1) from
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the list of candidates. This amounts to a lazy evaluation of the line
under clause (b) that adds 1-candidates to Candidates.

In addition to hill-climbing, we make judicious use of exhaustive
search. We use backtracking when the number of 0-candidates is not
large, and we are trying to add few edges. This situation occurs when
the cost of a valid partial solution is fairly low. The time complexity of
backtracking for x edges from amongst c 0-candidates is O(v

(c
x

)
) It is

possible to search for 12 edges from amongst 75 0-candidates in about
one minute on a machine rated at 24 mips. Sometimes it is possible to
explore a much larger set of 0- candidates depending on the structure
of the graph.

Multiple attempts at maximal solutions based solely on hill-climbing
is analogous to making many narrow but deep probes for the ceiling
of the search space. The use of backtracking near the end of a hill-
climbing probe broadens the search in the neighborhood of a low cost
valid partial solution. Since this second approach follows hill-climbing
with backtracking, we call the technique hill-tracking.

We have been able to achieve better results with hill-tracking than
with hill-climbing alone. (Our searches are of a magnitude that rule
out backtracking alone.) As an example of the techniques, we describe
now how we obtained a graph with v = 97, e = 404, and free of any
C3 or C4.

1. We began with G, a C3 and C4 free graph with v = 96 and
e = 397 which was obtained through hill-tracking;

2. Adding an isolated vertex to G created 96 0-candidates;

3. Backtracking on the 0-candidates added 6 edges;

4. Hill-climbing from that point added one more edge to G, thus
yielding the graph with v = 97 and e = 404;

5. Further hill-climbing re-arranged the edges in G such that a ver-
tex, x, had degree 6. By removing x from G we improved our
result on 96 vertices to 398 edges.

To illustrate the effectiveness of this technique we repeatedly ap-
plied hill-climbing to maximize the number of edges on 160 vertices;
we never succeeded in placing more than 786 edges on the vertices.
However, by hill-tracking from smaller graphs, we were able to place
819 edges on 160 vertices.
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Without further theoretical insights on the values of f(v) we can-
not fully evaluate the effectiveness of our algorithm. However, it is
worth noting that the algorithm repeatedly finds the unique extremal
graph on 50 vertices (Hoffman-Singleton graph) in several seconds on
a DECstation 5000 rated at 24 mips.

5 Closing Remarks

Figure 3 compares the computational and theoretical bounds. It is

50
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Theoretical lower bound

v

f(v)

Figure 3: Computational and theoretical bounds on f(v)

not clear which theoretical bound seems to be closer to the asymptotic
value of f(v). The upper bound might be attained on 3250 vertices.
To improve the theoretical bounds of f(v), we need to derive more
properties of the extremal graphs. The extremal graphs we obtained
seem to have a highly symmetric structure, which suggests that it may
be worthwhile to study the groups associated with them. Another
interesting question: what are the necessary and sufficient conditions
for F (v) = 1?

During the Kalamazoo conference in which this paper was pre-
sented, Professor McKay informed us via email (thanks to the confer-
ence organizers for providing a NeXT workstation for the conference
attendants!) that he had computed f(v) for 1 ≤ v ≤ 28. His results
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[18] agree with ours.
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[1] J.A. Bondy, P. Erdős and S. Fajtlowicz, Graphs of diam-
eter two with no 4-cycles, Research Report CORR 79/11, Dept.
of Combinatorics & Optimization, Univ. of Waterloo, Waterloo,
Ontario, Canada, March 29, 1979.

[2] W.G. Brown, On graphs that do not contain a Thomsen graph,
Canad. Math. Bull. 9 (1966), 281–285.

[3] C.R.J. Clapham, A. Flockhart and J. Sheehan, Graphs
without four-cycles, J. Graph Theory 13 (1989), 29–47.

[4] J. Dinitz and D. Stinson, A hill-climbing algorithm for the
construction of one-factorizations and Room squares, SIAM J.
Algebraic Discrete Methods 8 (1987), 430–438.

[5] R.D. Dutton and R.C. Brigham, Bounds on some graph in-
variants as a function of girth, Congr. Numer. 59 (1987), 13–22.

[6] R.D. Dutton and R.C. Brigham, Edges in graphs with large
girth, Graphs Combin. 7 (1991), 315–321.
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