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Abstract. We describe a pair of genetic algorithms for solving two stable matching problems. Both stable matching
problems we will consider involve a set of applicants for positions and a set of employers. Each applicant and each
employer prepares a rank order list of a subset of the actors in the other set. The goal is to find an assignment of
applicants to employers in which if applicanta is not assigned to employerb then eithera prefers his assignment
to b or b prefers its assignment toa. In other words, no applicant/employer pair can both improve their situations
by dropping their current assignments in favor of each other. Our goal will be to enumerate the stable matchings.

One of the problems we will consider is the well-known stable marriage problem, in which neither applicant
nor employer preference lists are linked. In the other problem, we will allow pairs of applicants who form a couple
to submit joint rank order lists of ordered pairs of employers.
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1. Introduction

In this paper we describe our application of genetic algorithms to two distinct stable matching
problems, the “stable marriage” and “couples” problems. The stable marriage problem is
well-known and algorithms for finding stable matches are relatively easy to implement. The
couples problem is significantly more difficult although variants of proposal algorithms
used in the stable marriage case are often used to produce stable matches. The genetic
algorithms we propose are very general; they can be used, with minor modifications, to
solve many different stable matching problems. The genetic operators we introduce as well
as the linear-inequality based fitness function can be generalized in rather straightforward
ways to a wide range of matching problems including roommate problems, variable group
sizes including singles, couples, and larger groups, preference list ties, and others. Our
genetic approach to matching problems seems to be new and more general than any existing
matching techniques.

Sections 2–4 provide background information on the stable marriage problem, genetic
algorithms and the polyhedral characterization of the stable marriage problem. Sections 5–
9 provide a description of our genetic algorithm. Section 10 gives the results of applying
our genetic algorithm to several example problems.
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2. Stable Matching Problems

The best known stable matching problem is the stable marriage problem. The stable mar-
riage problem is the problem of pairingn women andn men in such a way that no participant
has an incentive to switch partners. The men and women each state preferences over the
individuals of the opposite sex. The goal is to find a matching with the property that ifa
andA are matched to each other, buta prefersB to A, thenB prefers its mate toa. In other
words,B would not be willing to dump its mate fora. If B prefersa to its mate, then(a, B)
form anunstable pair. Unstable pairs will play a significant role in our genetic algorithms.

Gale and Shapley (1962) provide an algorithm for finding a stable marriage given any set
of preferences. In Gale and Shapley’s algorithm each man proposes to his most preferred
mate that he has not already proposed to. Each woman considers all proposals she has
received and rejects all but her most preferred who she keeps on hold. Each man who has
been rejected proposes to the next woman on his list. This process continues until either
no men are rejected or all men who have been rejected have proposed to every woman on
their lists. All women are paired with the man they currently have on hold. A woman who
has not received a proposal or a man who has had all of his proposals rejected remains
single. Gale and Shapley’s article sparked a serious interest among mathematicians in the
stable marriage problem and its variants (Gusfield and Irving, 1989, Knuth, 1976, Roth and
Sotomayor, 1990).

Unbeknownst to Gale and Shapley, an algorithm equivalent to their algorithm had been
in use by the Association of American Medical Colleges to match graduating medical
students to hospital residency positions for 10 years (Roth, 1984). Today, the National
Resident Matching Program (NRMP) involves roughly 20,000 positions (Roth, 1990). In
Gale and Shapley’s algorithm, the men propose to the women, so the matching which results
is man-optimal in the sense that every man is matched with his highest rated achievable
woman (Gale and Shapley, 1962). If the women propose to the men, then the resulting
matching would be women-optimal in the same sense. The NRMP finds the hospital-
optimal matching.

Originally the NRMP’s problem was equivalent to the marriage problem, but overtime
real-world considerations have forced them to modify their service. The most significant
modification was allowing couples to express their preferences over ordered pairs of po-
sitions. We will call this problem the couples problem. This natural attempt to meet the
needs of the growing number of couples graduating from medical schools has significantly
complicated the NRMP’s task. Roth (1984) has shown that some instances of the couples
problem have no solutions. (There are no stable matchings.) Moreover, Ronn (1990) has
shown that determining whether or not an instance of the couples problem has a stable
matching isNP-complete.

The NRMP uses a modified version of Gale and Shapley’s algorithm to find a matching
that guarantees that each student and hospital that is matched is matched with someone from
their preference list. (In most applications, preference lists do not include all possibilities.)
They then check whether the matching they have found is stable. According to Elliott
Peranson of National Matching Services, the NRMP algorithm has found a stable matching
every year since they began checking in the late 1970’s.
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To summarize the results described so far, the stable marriage problem always has a stable
matching and we can find a stable matching easily. An instance of the couples problem may
or may not have a stable matching, but it appears that the instances faced by the NRMP do
have a stable matching and that the NRMP regularly finds one.

At this point, one might ask whether there are other stable matchings and if so, what are
the consequences of choosing one stable matching over another. In the stable marriage
case, Benjamin, Converse, and Krieger (1995) provide a construction of preference lists
that results inO(22n

√
2n) stable matchings forn hospitals andn students thereby giving

an instance of a stable matching problem with an exponential number of stable matchings.
However, in the stable marriage problem, all stable matchings leave the same students and
hospitals unmatched (Roth, 1984). Thus when the NRMP was essentially solving a marriage
problem, choosing a particular stable matching did not entail choosing which students were
assigned residency positions and which were not. Unfortunately there are instances of the
couples problem in which different stable matchings match different numbers of students
(Aldershof and Carducci, 1996). In this case, choosing a particular stable matching may
mean choosing which students are assigned.

The genetic algorithms we describe here are designed to enumerate stable matchings.
Since our genetic algorithms are heuristic algorithms, we cannot guarantee that they find
all stable matchings in all examples. However a result of Roth and Vande Vate implies that,
at least in the marriage case, our genetic algorithm will eventually find at least one stable
matching (Roth and Vande Vate, 1990).

The problem of enumerating all stable matchings is #P-complete (Irving and Leather,
1986). (Recall, #P-complete problems are “at least as hard” asNP-complete problems.)
Nonpolynomial time solutions to the stable marriage enumeration problem are given in
(Irving and Leather, 1986, Gusfield, 1987) where they show how to construct a new stable
matching from an existing one. There are no such approaches that we are aware of for the
couples problem.

3. Genetic Algorithms

Genetic algorithms are stochastic optimization procedures that mimic natural genetic se-
lection. A genetic algorithm begins with a collection of solution strings, apopulation,
of possible solutions for a particular problem. These strings, analogous to chromosomes
in natural genetic selection, are randomly combined through a process calledmatingand
perturbed through a process calledmutation. The function to be optimized is called afitness
function. Just as in natural genetic selection, solution strings that do not have high fitness
values are eventually eliminated from the population through a process calleddeletion. So-
lution strings with high fitness values are replicated, propagate, and, if the algorithm works
well, have progeny with even higher fitness values.

Genetic algorithms were introduced by Holland, whose monograph Adaptation in Nat-
ural and Artificial Systems (Holland, 1975) is the seminal reference work. For a genetic
algorithm to be successful, possible solutions of the problem must be coded so that small
segments of the solution string contain useful information about the fitness of the string.
The power of genetic algorithms lies in propagating small segments of these representa-
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tions that lead to regions of high fitness. Holland named these segmentsschemata. For
example, if hospitals are represented with integers and their position in the string represents
the student assigned to them then a schema is given by ##2###4##. This schema represents
the subset of all orderings that have student 3 assigned to hospital 2 and student 7 assigned
to hospital 4. The number signs (#) are “don’t care” symbols but we require that each stu-
dent be assigned exactly once. These schemata are called ordering schemata (o-schemata)
(Goldberg and Lingle, 1987). The fundamental theorem of genetic algorithms, called the
“schema theorem,” says that if schema are replicated with probability proportional to their
average fitness then above-average schemata will increase exponentially in the population
and below-average schemata will be extinguished exponentially. If we think of a schema
as describing some region of a solution space, then a genetic algorithm works by taking
an exponentially increasing number of samples in regions of a solution space with high
average fitness values.

Genetic algorithms work by exploiting “implicit parallelism.” Each string in the popula-
tion is comprised of many schemata. Through mating and mutation, each string represents
a parallel processor of multiple schemata. It can be shown that the number of schemata
processed byn strings in a successful genetic algorithm is approximatelyO(n3) (Goldberg,
1989). This processing leverage is the heart of genetic algorithms. If enough information
about the solution space is encoded in schemata to find the maximum, then the information
content ofn function evaluations is proportional ton3.

Genetic algorithms have been successfully used to find solutions to the traveling salesman
problem (TSP) and otherNP-hard problems (e.g., Grefenstette, et al., 1985). Our genetic
algorithm shares many features with genetic solutions to the TSP. A genetic solution to
the TSP involves combining partial routes into a full route. A genetic approach to stable
matching combines partial assignments into a complete matching. As will be discussed
below, there are several complications inherent in stable matching that are not present in
genetic solutions to the TSP. In particular, the objective (“fitness”) function in the TSP is
simply the route length; a fitness function for the stable matching problem is not nearly
as obvious. The mating operator described below is new, although it is based on a mating
operator that was invented for the TSP, called “cyclic crossover.” Interestingly, cyclic
crossover is not a very good operator for the TSP, but the stable matching problem is
sufficiently different that our adaptation works quite well. A schema in the TSP is a partial
route, but genetic solutions to the TSP always involve mating and mutating complete routes.
This seems unavoidable because there is no natural way of leaving a city off the route and
penalizing the fitness function appropriately. In the stable matching problem, we can
leave any number of firms and workers unassigned and our fitness function is naturally
penalized. By deliberately combining these partial assignments, we dramatically increase
our probability of finding stable matches and decrease our computation time.

4. Modeling Stability

To implement a genetic algorithm we need an alphabet to encode the partial solutions
(chromosomes), a fitness function, a mating scheme, and a mutation scheme. Our choice
for the chromosomes and the fitness function can be best understood by expressing the
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stable matching problem as the problem of finding a 0-1 matrix that satisfies a set of linear
inequalities. LetH be the set of hospital positions to be matched andP the set of students
to be matched. If a hospital, say Philadelphia General—General Surgery, has more than
one identical position available,H containsh1, h2, . . . , hi corresponding to thei general
surgery positions at Philadelphia General. Forh ∈ H and p ∈ P, let

xhp =
{

1, if p is assigned toh
0, otherwise

Let j >h p indicate that hospitalh prefers personj to personp. In other words,j is higher
than p on h’s preference list. The notationi >p h is defined analogously. Ifh is on p’s
preference list andp is onh’s preference list, then the pair(h, p) is acceptable. Let A be
the set of acceptable pairs. LetX = {xhp}, h ∈ H , p ∈ P be a matrix whose elements
are all integer and satisfy inequalities (1)–(5) below. ThenX represents a stable marriage
(Rothblum, 1992, Vande Vate, 1989).∑

p∈P

xhp ≤ 1 for all h ∈ H (1)∑
h∈H

xhp ≤ 1 for all p ∈ P (2)

xhp ≥ 0 for all h ∈ H and p ∈ P (3)

xhp = 0, for all (h, p) ∈ (H × P)\A (4)∑
j>h p

xhj +
∑
i>ph

xip + xhp ≥ 1, for all (h, p) ∈ A (5)

(The notationj >h p is an abbreviation for{ j ∈ P : j >h p}. Other notations are analo-
gous.) It is well-known that inequalities (1)–(3) describe a matching. The inequalities (4)
ensure that if a student and hospital are matched, then they are an acceptable pair. The
inequalities (5) ensure that the solution represents a stable matching. We will generate our
chromosomes so that they represent acceptable matchings, that is so they satisfy inequal-
ities (1)–(4). Each remaining constraint that is violated represents an unstable pair; the
pair that was used to generate the violated constraint is unstable. Our fitness function is
the number of constraints that are satisfied. There are several advantages to this choice of
fitness function. First, matchings with high fitness that are not stable have a small number
of unstable pairs. This is not critical for the stable marriage problem since we know that a
stable matching exists, but is extremely important in variations, like the couples problem,
where there may be no stable matching. Finding “nearly stable” matchings may be all
that is possible. Second, we know the value of the fitness function at optimality. For a
stable matching the value of the fitness function is the number of acceptable pairs. Third,
in evaluating the fitness function we identify unstable pairs. We use this information in the
adaptive mutations described below.

A similar approach can be used for the couples problem. LetH be the set of hospitals
to be matched andP = S∪ M ∪ W the set of people to be matched. Note,S, M , and
W are disjoint; S represents the set of individual applicants,M and W are individual
members of couples with each couple consisting of a person fromM and a person from
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W. Let C = {(m, w) ∈ M × W : (m, w) is a couple} be the set of couples among the
people to be matched. Fors ∈ S andh ∈ H if h is ons’s preference list ands is onh’s
preference list, then(h, s) is an acceptable assignment. Similarly, for(h, k) ∈ H × H
andc = (m, w) ∈ C if (h, k) is onc’s preference list,m is onh’s preference list, andw
is onk’s preference list, then((h, k), (m, w)) is an acceptable assignment. LetA1 be the
set of acceptable assignments not involving a couple and letA2 be the set of acceptable
assignments involving a couple. LetX = {xhp}, h ∈ H , p ∈ P be a matrix whose elements
are all integer and satisfy inequalities (6)–(12) below. ThenX represents a stable matching
(Carducci, 1997, Rothblum, 1992, Vande Vate, 1989).∑

p∈P

xhp ≤ 1 for all h ∈ H (6)∑
h∈H

xhp ≤ 1 for all p ∈ P (7)

xhp ≥ 0 for all h ∈ H and p ∈ P (8)

xhs = 0, for all (h, s) ∈ (H × S)\A1 (9)

min{xkm, xlw} = 0, for all (k, l ,m, w) ∈ (H × H × C)\A2 (10)∑
j>hs

xhj +
∑
i>sh

xis+ xhs ≥ 1, for all (h, s) ∈ A1 (11)

∑
p>h1m

xh1 p +
∑

p>h2w

xh2 p +
∑

(kl)>c(h1h2)

min{xkm, xlw} +min{xh1m, xh2w} ≥ 1,

for all (k, l ,m, w) ∈ A2 (12)

(The notation j >h s is an abbreviation for{ j ∈ S : j >h s}. Other notations are
analogous.) It is well-known that inequalities (6)–(8) describe a matching. Inequalities (9)
and (10) ensure that only acceptable assignments are made. Inequalities (11) and (12) ensure
that the matching is stable. Again, we will generate our chromosomes so that they satisfy
inequalities (6)–(10). Each remaining inequality that is violated represents an unstable pair
and our fitness function is the number of inequalities that are satisfied.

5. Alphabet

The alphabet we use is similar to the one used in genetic solutions to the TSP. In the marriage
problem we represent an assignment as a list of hospitals with no hospitals repeated. Thekth
hospital on the list is assigned studentk. Our initial population consists of only acceptable
matchings and our mating and mutation operators are designed so that all solution strings
we generate represent acceptable matchings.

6. Generating the Initial Population

To avoid complications, we assume that all preferences listed are acceptable pairs. For
example, if hospital 5 ranks student 6 then student 6 also ranks hospital 5. This is a simple
matter of deleting unattainable hospitals from students’ lists and vice versa.
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We generate our initial population for the marriage problem by beginning with a random
hospital and assigning it a student from its list at random. We then select another hospital
at random and assign it a random student from its list. We proceed through all the hospitals
this way, except that if all the students on a hospital’s list are assigned, we simply leave the
hospital unmatched. Of course, this procedure is linear and requires very little computer
time even for problems of the size faced by the NRMP.

For the couples problem, we choose students to assign in a random order. We then select
hospitals from their lists in a random order, including “unassigned” in the random ordering.
We assign the student the first available hospital or unassigned from this random ordering.
Of course, the complexity here is linear and thus requires very little computation time.

7. Mating

7.1. Mating Operator

The traditional crossover operator is not useful in solving the stable matching problem. A
traditional crossover operator would combine two strings, e.g., ABCDEFG and BCDFGAE,
by choosing a cleaving point at random and switching the chromosomes after the cleaving
point. Usually, this will not give a legal assignment. For example, it is easy to see that for
these two strings any cleaving point gives children with at least one hospital repeated. The
problem is to find a mating operator that combines two legal assignments to provide two
different and distinct legal assignments.

A similar problem has been studied extensively in finding mating operators for a genetic
solution to the TSP. A solution string for the TSP is a list of cities constituting a tour in which
no city is visited more than once. A mating operator must combine these lists to produce one
or two different lists each giving legal tours. In the traditional TSP, all orderings in which
no city is repeated are legal assignments. In the stable matching problem, however, we are
concerned not with order but with position. A legal matching must not only assign at most
one student to at most one hospital, but also requires that each assignment be acceptable to
both the student and the hospital. Most of the mating operators that have been used in the
TSP do not fulfill this requirement.

A mating operator that does fulfill the requirement is calledcyclic crossover(Oliver,
Smith, and Holland, 1986). Cyclic crossover produces two children for each set of parents
(Parent 1 and Parent 2). In order to guarantee that the children represent acceptable assign-
ments, each hospital will appear in either the position it held in Parent 1 or the position it
held in Parent 2. To mate two chromosomes a random starting point on Parent 1 is selected.
The starting geneh1 is copied into Child 1 in the same position as in Parent 1. The gene in
the same position in Parent 2 is called theopposing gene, h2. Hospitalh2 cannot appear in
Child 1 in the position it held in Parent 2 (h1 is there), soh2 is copied into Child 1 in the
same position it is found in Parent 1. This yields a new opposing geneh3 which is in the
same position in Parent 2 ash2 is in Parent 1. We copyh3 into Child 1 in the positionh3

holds in Parent 1. We continue copying opposing genes into Child 1 until we complete a
cycle by finding that an opposing gene has already been copied into Child 1. The remaining
genes are copied into Child 2 in the same positions in which they occur in Parent 1. The
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remaining positions in both children are filled using the chromosomes in the same positions
as they occur in Parent 2. In our implementation, we avoid immediately reproducing the
parents by requiring that strings differ at the starting point. An example is given below:

Starting point Step 1: Step 2:
|

Parent 1: ABCDEFG Child 1: ABCD*F* Child 1: ABCDGFE
Parent 2: BCDFGAE Child 2: ****E*G Child 2: BCDFEAG

In the example above,B is the starting gene andC is the first opposing gene. Thus
position two in Child 1 is filled withB and sinceC appears in position three in Parent 1,
position three in Child 1 is filled withC. The next opposing gene isD (position three,
Parent 1);D is placed in position four in Child 1 (D’s position in Parent 1). The next
opposing gene,F , is placed in position six in Child 1; thenA is placed in position one in
Child 1. The next opposing gene,B, already appears in Child 1 and the cycle is complete.
We copy the genes not involved in the cycle (E andG) into Child 2 in the positions they
held in Parent 1. The remaining positions are filled with the genes from the corresponding
positions in Parent 2.

Cyclic crossover guarantees that legal parents produce legal offspring. A difficulty with
this mating operator is that the number of offspring of a set of parents is limited by the number
of cycles created by the parents. Hence, mating schemes which entail multiple copies of
parents mating produce many duplicate offspring. Even without allowing multiple copies
of parents, we found that cyclic crossover generates many duplicates. Prior to the start of
the deletion procedure, we eliminate all duplicate chromosomes.

Cyclic crossover works unmodified only with complete matchings. To accomodate un-
matched students and hospitals, we introduce an inversion and restart operator. Many of
the problems caused by unassignment can be dealt with by simply switching the two par-
ents and restarting the mating process with the last gene encountered. Examples of our
inversion/restart cyclic crossover mating operator are given below for unassigned students
and unassigned hospitals.

7.1.1. Unassigned Students

If we start with an unassigned student in Parent 1, a cycle ends with either an unassigned
student in Parent 2 or a hospital assigned in Parent 2 that is unassigned in Parent 1. For
example: (Student 2 is unassigned in Parent 1.)

Starting point Step 1: Step 2:
|

Parent 1: AUCDEFG Child 1: AUCD*F* Child 1: AUCDGFE
Parent 2: BCDFGAE Child 2: ****E*G Child 2: BCDFEAG

An unassigned student in Parent 2 is somewhat more difficult. If the mating operator
encounters an unassigned student in Parent 2 but started with a hospital that is assigned in
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both parents it is unclear how to complete the cycle to ensure that a hospital is not assigned
twice in an offspring. We solve this problem by using the inversion and restart operator.
For example, the following cycle is interrupted when the third opposing gene is unassigned:

Starting point
|

Parent 1: ABCDEFG
Parent 2: BCDUGAE

Step 1: Inversion and Restart

Starting point Step 2: Step 3:
|

Parent 1: BCDUGAE Child 1: BCDU*A* Child 1: BCDUEAG
Parent 2: ABCDEFG Child 2: ****G*E Child 2: ABCDGFE

7.1.2. Unassigned Hospitals

An unassigned hospital in Parent 1 is similar to an unassigned student in Parent 2. We use
the inversion and restart operator except that after restart we end the cycle as if we had
started with an unassigned student. For example: (HospitalF is unassigned in Parent 1.)

Starting point
|

Parent 1: ABCDEUG
Parent 2: BCDFGAE

Step 1: Inversion and Restart

Starting point Step 2: Step 3:
|

Parent 1: BCDFGAE Child 1: BCDF*A* Child 1: BCDFEAG
Parent 2: ABCDEUG Child 2: ****G*E Child 2: ABCDGUE

7.1.3. Couples

Even if there were not unassigned students or hospitals, cyclic crossover could easily
separate a couple. Each time we assign a member of a couple to an offspring, which may
happen multiple times in a cycle, we must make sure that this student’s partner is also
assigned to this offspring. Sometimes this happens simply through completing the cycle.
Other times we need to explicitly assign the partner to the same offspring and start a new
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cycle. Of course, this new cycle may encounter other couples and require more new cycles
and so on. We used recursion to perform this bookkeeping, but other strategies would also
work.

7.2. Mating Strategy

We have experimented with several different mating strategies. The natural genetic selection
analogy suggests that selective mating can further evolution. Hence, we have implemented
stochastic, polygamous mating strategies in which chromosomes have a probability of
replicating proportional to some monotonic function of their fitness. In particular, if our
initial population containsN (N even) chromosomes, in each generation we conductN/2
rounds of mating. In each round, a chromosome with fitnessf has a probability of mating
proportional to exp[−α BestFit−f

BestFit−LeastFit] whereBestFitis the fitness of the most fit chromosome
in that generation andLeastFitis the least fit chromosome in that generation. Hence,α is the
premium on fitness for mating. Note that ifα = 0 this mating strategy is simply sampling
with replacement andα large implies that more fit chromosomes mate more frequently
than less fit chromosomes. Our empirical results suggest thatα near 1 provides the highest
probability of finding stable matches.

8. Mutations

In keeping with the natural genetic selection analog, mutations should be random pertur-
bations in solution strings. There do not seem to be any compelling reasons, however, not
to enhance at least some part of the population by perturbing strings in a direction that is
likely to improve their fitness. Suh and Van Gucht have used a local improvement operator
to improve the performance of genetic algorithms on the traveling salesman problem (Suh
and Van Gucht, 1989).

In the stable matching problem, a violated inequality implies that the hospital-student
pair that generated the inequality is an unstable pair. A mutation designed to fix an unstable
pair seems likely to result in improved fitness or a useful schema. We call mutations aimed
at eliminating unstable pairsadaptive mutations.

For the marriage problem, we used both adaptive and random mutations in our algorithm.
If we ignore the possibility of unmatched students and hospitals, mutations are fairly simple.
For a random mutation, a student is selected at random. Suppose this is studentk and he
is currently assigned hospitals. The student is assigned a different hospital selected at
random from his list, say hospitalt . But hospitalt may now be assigned to two students,
and hospitals is unassigned. We find the student to whom hospitalt was assigned and see
if he finds hospitals acceptable. If he does, then he is assigned hospitals and the mutation
terminates. If not, he is assigned a different hospital selected at random from his list. The
process repeats until hospitals is assigned to a student. For an adaptive mutation, we begin
by selecting a random unstable pair. Thus we have selected a studentk and a hospitalt who
prefer each other to their current assignments. We assignk to t . As in the random mutation,
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t may now be assigned two students and the hospitalk was assigned to is unassigned. We
resolve this as we did for the random mutations.

The process is slightly complicated by allowing unmatched assignments. First, when a
hospital is selected from a student’s list, we treat unmatched as if it were another hospital.
If at any time in the mutation a student is assigned unmatched, the mutation terminates.
Further, if a hospital which was previously unassigned is assigned to a student, the mutation
terminates. There are two advantages to using unassignment in mutations. First, the
computation time for a mutation is decreased significantly because mutations end whenever
unassigned is selected. Second, our empirical results show dramatic improvements in our
probability of finding stable matches by introducing unmatcheds in any generation. This
seems to be due to the increased ease of developing new schema.

For the couples problem, we used variations of these two mutation operators and added a
third. Since we allow the possibility that some students and hospitals will be unmatched in
any assignment, there are sometimes available hospitals that acceptable students would pre-
fer to their assignments. Our new mutation simply assigns these hospitals to these students.
In the early generations, this has a dramatic effect on the fitness of a few chromosomes but
becomes less important in later generations.

Our random and adaptive mutations were performed somewhat differently than in the mar-
riage problem. Because of the couples and the unassigneds, the mutation strategies given
in our discussion of the marriage problem were not very practical. For either mutation, we
selected a random number of students from a matching. For the examples given below, we
selected between 2 and 16 students from the group of 50. We then made all the hospitals
these students were assigned available. We then simply reassigned all the students, of course
allowing them to become unmatched. The difference between the random mutations and the
adaptive mutations was that the adaptive mutations began by reassigning so as to fix an un-
stable pair. The random mutations just reassigned students and hospitals in a random order.

9. Deletion

The natural genetic selection analog suggests that deletion, at least in the short term, should
be stochastic. In nature, fit chromosomes do not eliminate unfit chromosomes immediately
but only through long-term enhanced survival. Many different deletion procedures have
been proposed and used successfully to mimic this process including tournament selection,
roulette wheel selection, probabilistic competition, and others (Goldberg, 1989, pages 121–
122). These procedures maintain some diversity in the population by guarding against
premature extinction of useful schemata.

After each generation we reduce the population back to its original size. To do this we
repeatedly randomly select pairs of chromosomes, with replacement, from the population
and have them compete. The loser is removed from the population. If we select two
chromosomes with fitnessesf1 and f2 then the probability of the chromosome with fitness
f1 remaining in the population is

φ

(
f1− f2√

2sh

)
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whereφ is the standard Normal cumulative probability distribution function,s is the standard
deviation of fitnesses in the population andh is our “heat” function. Hence, ifh is small
there is a premium on fitness during deletion. Our empirical results suggest thath near
0.125 is optimal.

10. Examples

10.1. Example 1

Example 1: 50/50 marriage
We created an example marriage problem containing 50 hospitals and 50 students. Each

student chose between 8 and 14 hospitals at random. Each student then ranked its preference
list randomly. Each hospital then ranked the students that had chosen them randomly. This
resulted in 863 acceptable pairs, and thus 863 inequalities to be satisfied for a stable match.

We experimented with a wide range of population sizes (ranging from 20 to 450) and
mutation rates (from 0% to 100% ). We did not always get stable matchings. Since the
algorithm is stochastic, results varied from trial to trial even when we retained the same
parameters. We observed three stable matchings, the hospital-optimal, the student-optimal,
and one in between. To verify that we had found all possible stable matchings, we applied
the rotation algorithm described in Irving and Leather (1986). In fact the genetic algorithm
did find all possible stable matchings in this instance.

Figure 1 shows the results of one run of the genetic algorithm with a population size of
300, an adaptive mutation rate of 20%, and a random mutation rate of 50%. The first stable
match occurs at generation 72 and all 3 stable matches appear at generation 81. The average
population fitness seems to asymptote at a fitness of 860.

10.2. Example 2

For a somewhat different kind of problem, we used the Benjamin et al. (1995) Latin marriage
construction to form preference lists for 8 students and 8 hospitals that have 222 stable
matches. More specifically, we used the preference lists given by theDS4 latin square.
The latin square is given in Figure 2. For the given latin square, entryaij is hospitali ’s
ranking of studentj and 7− aij is studentj ’s ranking of hospitali . Following Benjamin’s
notation, 0 indicates the best rank and 7 the worst. To find all the stable matchings, we used
populations that were significantly larger than the number of stable matchings. A graph of
the number of stable matches by generation using a population of size 500 and a mutation
rate of 50% is given in Figure 3.

We find it reassuring that the genetic algorithm recovers all of the stable matchings in
this problem. Notice that the number of stable matches found grows rapidly in the first few
generations reaching, 200 after only 10 generations. The growth rate then becomes much
slower as 28 more generations are required to find the remaining stable matches. This is
because the necessary schemata for these stable matches are not present in the population
and must be created.
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Figure 1. Evolution of fitness.

Figure 2. Latin square preference matrix DS4.
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Figure 3. Number of stable matches for latin marriages by generation.Genepool size= 500, Mutation rate=
50%.

10.3. Example 3

We developed and tuned our couples algorithm using a modified form of example 1 in
which we made the first 10 pairs of students couples. After preprocessing, all the single
students had between 11 and 20 hospitals on their lists. In general, the couples had fewer
hospitals but between 14 and 22 choices because hospitals were repeated with other choices
for their spouse. The hospitals had between 7 and 19 choices on their lists. We have run the
genetic algorithm multiple times on these preference lists with many different parameters
and populations. We have identified four stable matchings. Without generating all possible
legal matchings and checking them (a computationally infeasible task) there is no way to
be certain that there are no others. However, if there are other stable matchings they are
quite different from the ones we found and very difficult to get to genetically. Since we do
not know how to make preference lists with GA-hard stable matchings, we do not think it
likely that we could have made one randomly when we generated these.

We have found these stable matchings using populations containing between 150 and
500 matchings. There seems to be some positive correlation between population size and
probability of finding stable matchings but it is not as strong as might be supposed. Further,
we usually find the first stable match after 60 generations or so. We run the algorithm
for 400 generations. It seems, however, that if we have not found all stable matches by
200 generations then they are not found. With populations of size 500, we find stable
matches nearly every time and all four stable matches about 75% of the time.
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Table 1.

10.4. Example 4

It is rather difficult to present the fifty/fifty example given above, so we also tested our
algorithm on several examples containing twenty students and twenty hospitals. One set
of preference lists are given in Table 1. These lists apparently have four stable matchings.
The stable matchings are given in Table 2. Pairings that form the stable matchings are also
boxed in Table 1. If a pairing does not occur in all stable matchings it is given a superscript
to indicate the matching in which it occurs.

There are several interesting features to this example. First, it is clear that singles are
much more likely to get a choice high on their lists than couples are. Further, couples are far
more likely to have one spouse unmatched than a single is to be unmatched. This is quite
typical in the examples we generated simply because it is more difficult to accomodate a
couple than a single. This represents quite a hardship for couples. They must interview
at more hospitals, make strategic decisions with incomplete information, make trade-offs
between the goals of either partner, and probably still end up with a choice far down their
list.

Two of the stable matchings had three students and hospitals unmatched and two stable
matchings had four unmatched. For most students and hospitals the stable matchings were
the same, however five students (couple 1 consisting of students 1 and 2, couple 2 consisting
of students 3 and 4, and student 15) and five hospitals(6, 7, 10, 12, and 14) received different
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Table 1.Continued.

Table 2.

assignments in different stable matchings. The students agree that stable #3 is best, but there
is no matching that all the hospitals agree is best. Thus this example has a student-optimal
match, but no hospital-optimal match. These differences again underline the need for
an algorithm that generates multiple stable matchings and some fixed criteria for deciding
among them. We like stable #3 the best because all five students and two of the five hospitals
receiving different assignments receive their best achievable assignment in stable #3.

11. Directions for Future Work

We have also programmed and experimented with steady-state GA’s. A steady-state GA
involves simultaneous matings, mutations, and deletions. A steady-state GA is certainly
faster (particularly with twenty computers on a network working simultaneously on the
problem) than the generational GA’s discussed here, although we have not made direct
comparisons (our code has evolved in other ways as well).
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It is difficult to gauge the success of our algorithm for the couples problem because we
do not have a technique for enumerating stable matchings for the couples problem, short
of generating all stable matchings and testing them. We are interested in knowing how to
construct examples of couples problems which have known numbers of stable matchings
to serve as test problems.

We plan to apply the genetic algorithm approach to the roommate problem with ties.
Modifying this genetic algorithm to solve the roommate problem with ties will require a
new way of constructing genes which will also mean modifying the other aspects of the
algorithm. We should be able to base our fitness function on a set of linear inequalities,
however.

12. Conclusion

In this paper we provide a genetic algorithm approach to the stable marriage problem and
to the couples problem. An interesting facet of these algorithms is the application of the
polyhedral characterization of stable matching problems to our fitness function. The genetic
algorithm is expected to generate many (most?) stable matchings. The implicit parallelism
of the genetic algorithm makes this possible. We feel that genetic algorithms will prove
useful in solving related matching problems.

The examples above are obviously much smaller than most real-world problems. Further,
most real-world problems involve preference lists that are very short relative to the number
of available choices (e.g., a medical student might rank only a dozen hospital positions from
20,000 possibilities). We have simulated some real-world problems involving as many as
2000 students and hospital positions. To solve these problems we first pre-process the
preference lists using an algorithm described in (Aldershof, Carducci, Lorenc, 1998). The
pre-processing simplifies the preference lists and usually results in many forced pairings.
After the pre-processing, we continue with the genetic algorithm as described above. A
genetic enumeration of matchings in a problem of size 2000 can be accomplished in a
couple of hours. There is no reason we could not use the same approach to solve problems
of the size of the NRMP matching except for some memory limitations of the programming
language we used.

In 1996, the NRMP commissioned a study comparing the algorithm they used at the time
(an algorithm believed to favor the hospital-optimal match) and a similar algorithm that
would favor the student-optimal match. They found that in the majority of the matches
studied both algorithms yielded the same stable match. When differences occurred, they
involved fewer than 5% of the participants. (This appears to be common in matches in
which participants rank only a small fraction of the participants available to them (Lorenc,
1997).) Thus, the NRMP does not feel that is is important to enumerate stable matches
in their case. Interestingly, they did decide to change the algorithm believed to favor the
student-optimal match (Roth and Peranson, 1997).
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