
Stable Matchings with Additional Objectives

Craig T. Lennon
Department of Mathematical Sciences, West Point, Thayer Hall, West Point, NY 10996, USA

craigtlennon@gmail.com

In the stable matching problem, n men and n women each list all members of the opposite sex

in order of individual preference as a marriage partner. A complete matching is stable if no

man and woman mutually prefer each other to their partners in the matching. In the sailor

assignment problem, sailors and employers list one another in order of preference, but there

is a monetary cost associated with moving a given sailor to a given employer, and a training

value measuring a variety of factors relating to the Navy’s objective evaluation of how a sailor

might fit into a given position. In this paper, we consider a version of the stable matching

problem with multiple objectives, like in the sailor assignment problem. Given n applicants

and n employers, each with complete preference lists, we want to find matchings which are

stable, respect the aggregate preferences of the applicants and employers, and minimize /

maximize any additional objectives. We develop a genetic algorithm which searches among

the lattice of stable matchings, design and execute an experiment to improve it, and then

compare its performance to a single variable optimization algorithm which optimizes each

objective function independently.

Key words: stable matching; sailor assignment problem; genetic algorithm; design; program-

ming: assignment, programming: multiple criteria, optimization

History:

1. Introduction

In the stable matching problem, n men and n women each list all members of the opposite

sex in order of individual preference as a marriage partner. A complete matching is stable if

no man and woman mutually prefer each other to their partners in the matching, so stable

matchings are efficient in the sense that the matching cannot be rearranged without some

person being less happy. Because of this efficiency, and because of the ease of finding a

stable matching via the Gale-Shapley algorithm (Gale and Shapely 1962), stable matchings

have been used for such varied purposes as pairing medical interns with hospitals (Gusfield

1

and Irving 1989) and children with schools (Abdulkadiroglu et al. 2005). Stability is a local

measure of satisfaction, and does not take account of the aggregate preferences of either side

of the matching process. So, for example, while stability means that no man and woman

could switch to their mutual advantage, it is possible that an unstable matching might make

men and (or) women better off on average. By design, stability takes account only of the

preferences of the men and women, and ignores all additional factors associated with the

matching (e.g. relocation costs in the interns and hospitals matching).

Additional factors are taken into account in the sailor assignment problem. In this

problem, sailors and employers list one another in order of preference. Additionally, there is

a monetary cost associated with moving a given sailor to a given employer, and a training

value measuring a variety of factors relating to the Navy’s objective evaluation of how a

sailor might fit into a given position. There are four objective functions measuring how well

an assignment respects the aggregate preferences of sailors and employers, how high the cost

is, and how high the training value is. The assignments need not be stable, or even complete

matchings (even if the number of sailors is equal to the number of employers). Preference lists

are far from complete, with an individual sailor listing a few of the thousands of possible

employers. Multi-objective evolutionary algorithms have been applied to this problem as

part of the Navy’s genoSAP program. The sparsity of the preference lists leaves a relatively

small number of matchings to explore, and mutation and crossover operations are easier to

implement when matchings need not be complete. Thus a simple evolutionary algorithm has

been developed which can search throughout the solution space in reasonable time (Dasgupta

et al. 2008). If, by contrast, we assumed that preference lists were complete, we would have

to consider all possible matchings, and this is a vast space for an evolutionary algorithm to

search. If we also required that matchings be complete (assuming an equal number of sailors

and employers), the mutation and crossover operations of (Dasgupta et al. 2008) would not

work.

In this paper, we consider a version of the stable matching problem with multiple objec-

tives, like in the sailor assignment problem. Given n applicants and n employers, each with

complete preference lists, we want to find matchings which are stable, respect the aggre-

gate preferences of the applicants and employers, and minimize / maximize any additional

objectives. To be precise, let each applicant list his preferences for employers, and let the

employers do the same, so that we have two complete sets of preference lists. We represent

an assignment of applicants to employers by a permutation σ of 1, . . . , n. We say applicant

2

i gives ranking k to an assignment σ if σ(i) is applicant i’s kth choice of employer (and em-

ployers rank assignments in a similar fashion). We also have some finite number of matrices

of quantifiable but incomparable costs and benefits. In deference to the sailor assignment

problem, we will consider as an example the two objectives of low monetary cost and high

training value. Therefore, let C = {ci,j} and T = {ti,j} (1 ≤ i, j ≤ n) represent the cost and

training value of assigning applicant i to employer j.

We can measure the aggregate happiness of the applicants and employers by

Ra(σ) =
n∑
j=1

applicant j’s ranking of σ(j),

and

Re(σ) =
n∑
i=1

employer i’s ranking of σ−1(i).

We can measure the additional objectives with these objective functions:

C(σ) =
n∑
j=1

cj,σ(j) and T (σ) =
n∑
j=1

tj,σ(j).

We want the matching to be stable for efficiency purposes, and we want to minimize

Ra, Re, C,−T. It is unlikely that we would find a matching simultaneously minimizing all ob-

jective functions, so our goal is to find some number of stable matchings representing Pareto

optimal solutions (solutions so that no objective function may be improved without others

being worse). In section 2, we explain why the added restriction of stability simplifies this

problem, and present an evolutionary algorithm for its solution. In section 3 we refine the

algorithm through testing, and in section 4, we compare the results of this algorithm with

the results of single objective optimization on a simulated version of the problem. We also

consider how closely the Pareto front of a set of stable matchings approximates the Pareto

front we would find if we removed the stability restriction. In section 5, we discuss how the

problem changes under the assumptions of correlated or dependant preferences and costs.

2. Algorithm concept

The challenge of the sailor assignment problem with complete preference lists is the large

search space (n! possible matchings), but the set of stable matchings is a more limited space,

and the structure of this set suggests an algorithm for its exploration. Since we are dealing

with unknown preference lists, we will assume that applicant and employer preference lists

3

are chosen uniformly at random from among all n!2n possible preference lists. The random

variable Sn will represent the number of stable matchings in our randomly chosen instance.

Gale and Shapley (1962) showed that there is always at least one stable matching. Later,

Knuth (1976) discovered a 2n-dimensional integral formula for E[Sn], the expected value of

Sn, and conjectured that this formula could be used to find an asymptotic estimate for E[Sn].

Confirming Knuth’s conjecture, Pittel (1989) used the integral formula to show that

E[Sn] = (1 + o(1))e−1n lnn, n→∞. (1)

The second moment of Sn has also been sharply estimated (Lennon 2009), and found to be

E
[
S2
n

]
= (1 + o(1))

(
1

e2
+

1

2e3

)
n2 ln2 n. (2)

Combined with Cantelli’s inequality, relations (1), (2) imply that

P (Sn ≥ εE[Sn]) ≥ (1− ε)2

(1− ε)2 + (2e)−1
> .84

for ε sufficiently small. Hence the fraction of problem instances with roughly cn lnn solutions

is 0.84, at least. Further, it is known that with high probability, the number of stable

matchings is at least
√
n/ log n (Pittel 1992).

There are instances with much larger numbers of stable matchings (Benjamin et al 1995,

Gusfield and Irving 1989, Irving and Leather 1986, Knuth 1976), but from Chebychev’s

inequality we know that it is unlikely that the number of stable matchings is of an order

much larger than n log n. Thus we have evidence to suggest that a randomly chosen instance

should have on the order of n log n stable matchings when n is large. This is a reasonably

sized search space for a evolutionary algorithm. The specific design of such an algorithm is

suggested by the structure of the set of stable matchings.

We can define a partial order on the set of stable matchings which turns this set into a

distributive lattice (Gusfield and Irving 1989). In this partial order, we consider matching

M1 to be above matching M2 if every applicant prefers his partner in M1 to his partner in M2.

The Gale-Shapley algorithm finds the top matching in this lattice by requiring applicants

to propose to employers, proposing to their most preferred first, and moving down their

preference lists when rejected. The employers wait for proposals, holding a proposal from an

applicant until a more preferred applicant proposes, at which time they accept the preferred

applicant’s proposal and reject the applicant to whom they were engaged. The rounds of

4

proposals continue until a stable matching is found. In order to move down the lattice,

we simply break one marriage in the matching, forcing some applicant to propose to the

next employer on his list. This sets off a new round of proposals and rejections, which will

end in a different stable matching unless an applicant is rejected by every employer left on

his list, in which case it ends in failure (Knuth 1990). Since the stable matching lattice is

distributive, every pair of matchings has an infimum and supremum. The infimum of two

stable matchings M1,M2 is the stable matching in which every applicant is assigned the

employer he prefers least of his partners in M1 and M2. The supremum for M1,M2 is the

stable matching in which each applicant is assigned the employer he likes best out of M1,M2.

In the context of multi-objective optimization, a matching M1 is dominated by matching

M2 if M2 is at least as good as M1 in every objective function and strictly better in at least

one objective function. A typical multi-objective evolutionary algorithm develops an initial

population, and then evolves that population via mutation and crossover (mating) for some

number of generations, producing a set of mutually non-dominating solutions which are an

approximation for the Pareto front of the solution space (Kalyanmoy 2001). The structure of

the stable marriage lattice suggests breaking a marriage as a mutation operator, and taking

the infimum and supremum of two matchings as a mating operator. We might suppose that

to explore a large part of the stable matching lattice, the product of the population size and

number of generations should be somewhere between
√
n/ log n and n log n when n is large.

This number may be reduced to save time.

The complexity of the algorithm described above is on the order of the product of pop-

ulation size, number of generations, and the number of operations required to find a stable

matching. The latter time is of order at most n2 times the number of operations required for

an applicant to propose to an employer, since each applicant can be rejected at most once

by each employer in an attempt to find a stable matching. Thus this algorithm’s complexity

is

O
(
population size× number of generations× n2 ×# operations required for a proposal

)
.

The relevant factor in a proposal is the length of time for the employer to look up the position

of the proposing applicant on her preference list, which is O (n), making the complexity of

order n3 multiplied by the product of the number of generations and population size. Note

that algorithms already exist for finding various types of stable matchings, for example a

stable matching in which the average satisfaction of all persons is maximized (in O (n4) com-

5

plexity (Irving et al. 1987), but these algorithms do not take into account factors other than

applicant and employer satisfaction. With the general outline of our algorithm suggested

by the structure of the stable matching lattice, we now proceed to fill in the details of the

algorithm, and to refine the algorithm based on experimentation.

3. Design details and trail runs

From our knowledge of the structure of the stable matching set, we conclude that our al-

gorithm should have the general form shown in figure 1. Note that the initial population

1. Input applicant and employer preferences, cost and training matrices.

2. Develop an initial population of stable matchings

3. For a specified number of generations, evolve the population by:

(a) record non-dominated matchings, reducing this set to a specified size if required

(b) chose an even number of matchings to pair for mating, and replace each pair with
their inf and sup

(c) break a marriage in any remaining matchings, replacing the broken matching with
the new one (if one is found)

4. Output a list of non-dominated matchings of specified size.

Figure 1: stable matching evolutionary algorithm

could be developed by breadth or depth first search methods, or by some combination of

the two. In breadth first, we start at the top of the lattice with matching M0, the matching

found by Gale-Shapely with the applicants proposing. We then break a marriage to pro-

duce a matching M1, and then repeatedly return to M0, breaking different marriages to find

different stable matchings M2, M3, and so on, producing an initial population close to the

top of the lattice. Alternatively, we could break a marriage in M0 to get M1, then break a

marriage in M1 to get M2, and so on, marching down a chain towards the infimum of the

lattice. This would be a depth first search. We could also compromise by following a chain

in depth first fashion for a certain number of steps before returning to the top of the lattice

to start again.

6

We can also choose between randomly picking a marriage to break and choosing one

based on a deterministic criteria. For example, we could always break the marriage with the

highest cost or lowest training value. If choosing based on a deterministic criteria, like cost

for example, we need to worry about what will happen if the highest cost matching contains

an applicant with only one possible partner in a stable matching (the average number of

such applicants is asymptotic to log2 n (Pittel et al. 2007)). Therefore we will allow several

attempts to break a marriage should the first one result in no stable matching.

Considering step 3a of figure 1, we must decide how to reduce the size of the non domi-

nated set. This could be done by deleting matchings at random, or by a diversity preserving

method such as some type of clustering algorithm, for example by using k-means clustering

on objective function values to choose a diverse population of k non-dominated matchings.

We must also decide which proportion of the population should be mated as opposed to

mutated. To provide evidence for these decisions, we designed an experiment to test the

performance of the algorithm with different settings of these parameters.

3.1. Test case generation

We generated ten test cases, each consisting of an instance of preferences, costs and training

values for 200 applicants and 200 employers. The preference lists of applicants and employers

are independent and uniformly random. In deference to the sailor assignment research of

(Dasgupta 2008), we generated training and cost data by the methods used in that research.

The training values of assigning applicant i to employer j (1 ≤ i, j ≤ n) are uniform (0.7,1.02)

random variables, and the costs of assigning applicant i to employer j were determined by

a random variable with the cumulative distribution shown in the appendix in figure A-1

(Garrett 2009).

For each test case, we collected every non-dominated matching found by every run of

the algorithm and deleted those matchings which were now dominated. Our first response

variable was what percentage of this list was discovered by a run with a given combination

of factors, and our second response variable was the lowest cost matching discovered during

a run. We consider our first response (non-dom %) as our measure of how well the algorithm

covers the Pareto front for a given combination of factors. The second response (minimum

cost) measures how effective it is to break a matching based on cost as opposed to breaking

it at random. After repeating the experiment on ten test cases for every factor combination,

7

we averaged the response variables (for each combination of factors) across the ten test cases.

These are the results which we will now analyze.

3.2. Experiment results

The left two columns of the table 1 are the non-dominated % and minimum cost averaged over

10 runs, while the next seven columns are the levels of the factors: development type (dev),

population size (pop), number of generations (num), percentage mated (mate), number of

attempts to break (att), break marriages based on cost (bc), and the list reduction method

(shrink). Since our focus is on the main effects of the parameters, we began by inspecting

plots of each of the variables against our two response variables.

Table 1: Experiment Results
% non-dom min cost dev pop num mate att bc shrink

48% 1286783 depth 20 12 40% 2 true k-means
24% 1306695 depth 9 13 60% 1 false k-means
29% 1311912 depth 12 2 30% 4 true k-means
27% 1301222 depth 14 5 90% 3 false k-means
47% 1293966 breadth 19 7 20% 2 false k-means
19% 1310939 breadth 10 6 80% 1 true k-means
20% 1309570 breadth 8 15 40% 5 false k-means
36% 1297550 breadth 18 12 90% 4 true k-means
34% 1305374 breadth 13 8 50% 3 true k-means
16% 1313552 breadth 5 4 60% 4 false UAR
35% 1296049 breadth 16 3 50% 5 true UAR
36% 1298096 breadth 13 14 70% 3 false UAR
34% 1296587 breadth 11 11 10% 3 true UAR
19% 1303906 depth 6 9 80% 4 true UAR
44% 1287593 depth 15 10 30% 5 false UAR
32% 1299354 depth 17 1 70% 2 true UAR
22% 1305470 depth 7 5 20% 2 false UAR

In these plots, there was no clearly discernable relationship between the responses and any

variable other than population size, which showed a clear linear relation. The correlation

between the non-dom % and population size (r = 0.89) much outweighs the correlation

between non-dom % and the number of generations (r = 0.17). This size of this difference

is somewhat surprising, as we expected the number of generations to have an important

influence on the diversity of the non-dominated set. One possibility is that the typical stable

matching lattice is short and wide, with relatively few steps in a chain between the applicant

8

and employer optimal matchings. In previous tests with numbers of generations above 20,

we found that a large proportion of the last generation was the employer optimal matching.

In one trial, every member of the 21st generation was the employer optimal matching. Upon

reaching such a stage, further evolution brings no benefit, and the number of generations

would not matter. It could be that depth first search tends to find the employer optimal

matching and other matchings close to it from which initial population exploration is limited.

Regardless of the reason, it appears that there is more benefit in a large population than in

a large number of generations.

We also observe that there was no improvement in the minimum cost variable when we

break marriages based on cost. In earlier trials we did with 50 applicants, we did see a small

improvement, but it seems to vanish with 200 applicants. This seems reasonable, since one

would expect that as the number of applicants increases, the rounds of proposals resulting

from breaking a marriage will involve greater numbers of people changing partners, and

breaking marriages based on cost only helps for the first marriage broken. Thus breaking

marriages based on cost will only be valuable when the population size is small, or when there

are some extremely high cost values. In fact, there is a nearly linear relationship between

minimum cost and non-dom % (r = −.80), suggesting that the best way to get low cost is

by finding a large non-dominated set, which one does by choosing a large population size.

Our recommendation based on the tests conducted above would be to use a population

size as large as possible given running time considerations, with some low number of gener-

ations and depth first search, deleting matchings from the non-dominated list uniformly at

random. Use a local improvement operator for breaking matchings only when the distribu-

tion of the variable being improved has some extremely high values. After such a run, one

can see if the last generation is largely composed of the employer optimal matching, or is

still diverse, and use this as a criteria upon which to decide if more generations of evolution

are desirable.

4. Comparison with single variable optimization

We chose to use 200 applicants and employers, and to generate one test case by the same

method used in the previous section. We picked a population size of 20, a non-dominated

set size of 40, and evolved the population for 5 generations, developing the initial population

via depth first search. We chose to break marriages randomly during mutation, and allowed

9

3 attempts to break a marriage. We mated 50% of the population.

The matchings found by our algorithm appear to good compromises between applicant

and employer preferences, as one might expect from the stability requirement. As one might

also expect, the single variable optimization program can significantly outperform us with

regard either to minimizing cost or to maximizing training value. It can also achieve better

results with regard either to minimizing applicant rank or employer rank, but here it’s myopic

focus does not bring as much of an advantage.

Optimization factors

Training value Cost Applicant Rank Employer Rank

169

203

 199

1602440

 384

20862

 361

20100

Figure 2: Single and multi-objective optimization

As another method of comparison, we might consider what the values of the rankings,

the cost and training value “should ” be for some randomly chosen matching. The expected

value of the applicant ranking of this matching is the number of applicants multiplied by the

average applicant ranking: 200 ∗ 100.5 = 20, 100. Likewise, the expected value is 20, 100 for

the employer ranking, 200 ∗ .86 = 172 for the training value, and 200 ∗ 6, 833 = 1, 366, 600

for the cost (the average cost is $6, 833 (Garrett 2009)). Indeed, the values of those variables

not optimized by optmatch are close to these values, as are the cost and training values for

the stable matchings. This occurs because preference lists, costs, and training values were

10

generated independently, with all cost and training variables independent and identically

distributed (i.i.d), so whenever a matching is chosen without regard to an objective, we

expect the other objectives to be close to their mean. The advantage of using the stable

matching evolutionary algorithm is that many different matchings are found, so one can hope

to choose one with a particularly low cost and (or) high training value. As a note of caution,

the stable matchings may have substantial overlap, so the spread of the cost and training

values will probably not be as large as if we were to choose an equal number of matchings

uniformly at random.

The assumption that preference lists, cost, and training value are all independent, with

preferences chosen uniformly randomly and cost and training value i.i.d., is unlikely to hold

true. The difficulty with performing tests without these assumptions is that there are many

ways in which the variables in question could be related. Any size subset of applicants could

have any degree of correlation between their preferences, and the same is true for employers.

Costs and training values could be correlated among themselves, could be dependent on

one another, or could be correlated with preferences. In the sailor assignment problem, for

example, one might expect that employers are likely to want a sailor when training value is

high, as the high training value could indicate that the sailor is appropriate for the position

in question. We would expect sailors to be broken down into subsets depending on their

career path, with similarity between the preferences of sailors in each set, and a similar

situation might exist for employers. With such vague knowledge of the exact structure

of the dependencies, we are best served by testing the algorithm under the assumptions of

independence, and then providing intuition as to how dependency or similarity of preferences

might change the performance of the algorithm, as we will do in the next section.

5. Performance under differing assumptions

The strength of the stable matching evolutionary algorithm is in finding a population of

matchings which are good compromises between applicant and employer preferences. To

the extent that other variables are correlated with or dependent on these preferences, the

stability restriction will be a proxy for these other variables. If, in the sailor assignment

problem, good employer rankings imply high training value, for example, our algorithm will

be selecting for high training value. If sailors want jobs where there is a high cost to the

assignment, we will also be selecting for high cost. The more interesting question is how

11

the stable matching algorithm performs when we change the assumption that applicant and

employer preferences are independent and uniformly random.

If the applicant and employer preferences are independent (or nearly so) of the other

objectives, then we expect that a large number of stable matchings will provide more possible

solutions, and thus better opportunity to find good values for the other objectives. So we turn

to the question of how changing our assumptions changes the number of stable matchings.

First we consider the extreme case of similar preference lists.

Lemma 5.1 When every applicant has an identical preference list and every employer has

an identical preference list, there is exactly one stable matching.

Proof. Let the applicants propose to their partners in the order in which they are preferred

by the employers, so that the applicant listed kth by all employers chooses his partner kth.

Since each applicant has the same preference list, he will be rejected by his first k − 1

choices, who all hold better proposals, and accepted by his kth choice, who has no partner.

The applicant who is listed kth on every employer’s preference list will be married to the

employer who is listed kth on every applicant’s preference list. But this is the same result

we would get if employers proposed, meaning the applicant and employer optimal matchings

are the same, and there is only one stable matching.

Identical preference lists are the extreme of similarity, but it is less certain what the

extreme of different preference lists is. A Latin square is one candidate. A Latin square is

a n × n matrix where every number 1 . . . n appears exactly once in every row and exactly

once in every column. When a certain Latin square construction is used to create preference

lists, there are exponentially large numbers of stable matchings (Benjamin 1995). We hoped

that there might be a simple relationship between the number of stable matchings and the

similarity of the preference lists, with greater similarity implying fewer stable matchings,

and greater difference corresponding to more stable matchings. No simple relationship of

this kind holds, however, as we now show.

Lemma 5.2 Suppose for 1 ≤ i ≤ n, applicant i ranks employer i within his first i choices,

and only prefers some subset of employers 1, . . . , i − 1 to employer i. Suppose also that

employer i ranks applicant i within her first i choices, and only prefers some subset of

applicants 1, . . . , i− 1 to applicant i. Then there is exactly one stable matching.

12

The proof is similar to that of lemma 5.1.

Evidently we can decrease the similarity of the preference lists quite a bit without increas-

ing the number of stable matchings, at least under some conditions. But while we we can

significantly alter the similarity of applicant and employer preferences without increasing the

number of stable matchings, we do not believe that we can change the dependance between

sailor and employer preferences without changing the number of stable matchings. We think

it reasonable to suppose that the expected number of stable matchings will generally increase

as the difference in ranking between the applicant and employer optimal stable matchings

increases. In other words, greater mutual attraction between applicants and employers might

mean fewer stable matchings. If true, then one could, for a given preference list, find the

applicant and employer optimal matchings by having applicants and employers propose, and

then judge how many stable matchings one might expect to find based on the difference in

the ranks between these two matchings.

The effect of similarity of preferences on the Pareto front is even less certain. We can

say something about its shape when preference lists are identical, but not when they differ.

Proposition 5.3 When every applicant has an identical preference list and every employer

has an identical preference list, every matching is Pareto optimal with respect to applicant

and employer ranks, and has the exact same ranks.

This proposition, in combination with lemma 5.1, suggests that a stable matching evo-

lutionary algorithm may produce poor results when preferences are extremely similar.

6. Conclusions

To closely approximate the Pareto front of a multi-objective optimization problem, we search

for a set of non-dominated matchings which is large, diverse, and close to the Pareto front.

The last of these three criteria is hard to measure, since we cannot find the actual Pareto

front, but based on our comparison with single objective optimization, we have reason to

suspect that stable matchings are often close to Pareto optimal with respect to applicant

and employer preference (not considering other objectives). The stability criteria may limit

the diversity of the population, and likely misses matchings which are extreme with respect

to cost or training value, suggesting that this optimization method is of best use when ap-

plicant and employer preference are the primary considerations, and the other objectives are

13

regarded as desirable, but secondary. In this case, this algorithm can produce good results,

but they will vary with the preference lists. Specifically, we expect a larger and more diverse

non-dominated set when there are more stable matchings to choose from, a situation which

seems more likely to occur when there is not strong mutual attraction between subsets of

applicants and employers.

Appendix: Cost CDF and Optimization Results

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of cost data

cost in dollars

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

Figure A-1: cost variable CDF

Table A-1: Single variable optimization results
training value cost applicant ranking employer ranking

171 1602440 384 19762
173 1457100 20862 361
172 199 20624 19669
203 1325842 18698 19724

14

Table A-2: Stable matching GA results
training value cost sailor ranking employer ranking

169.3 1234875 7486 1090
170.0 1315137 3529 2234
169.9 1312559 3487 2286
173.7 1323901 2033 4127
173.8 1312141 2059 4106
173.8 1321340 2078 4092
172.9 1370741 1962 4362
169.1 1213448 7496 1079
169.1 1232020 7286 1120
169.9 1301991 4096 2017
172.2 1402837 1311 6253
171.2 1316561 6010 1433
171.0 1293581 6353 1357
170.1 1342196 4071 1883
169.1 1214059 7551 1073
170.4 1255709 6305 1341
173.3 1406388 1726 4777
170.3 1287351 6589 1229
168.9 1211204 7351 1103
170.3 1286740 6534 1235
169.6 1323159 3671 2173
169.3 1234264 7431 1096
170.2 1336309 3073 2646
172.3 1376202 1543 5595
170.2 1258080 6775 1175
170.0 1323587 4080 1879
170.2 1273841 6745 1222
170.5 1289595 6734 1205
173.4 1394628 1752 4756
169.2 1232631 7341 1114
170.6 1310866 3334 2429
172.1 1336209 2677 3182
169.9 1299974 4360 1798
170.3 1245628 6437 1278
170.6 1349021 5968 1393
173.5 1360748 1845 4519
170.2 1309935 6664 1233
170.2 1331548 5388 1605
170.5 1348410 5913 1399
170.6 1358491 5781 1462

Acknowledgments

Thanks to Janet Spoonamore, Dipankar Dasgupta, Deon Garrett, James Simien, Bill Pully-

blank, Darryl Ahner and Richard Deckro for their suggestions and support. This project

was funded in part by the Army Research Office.

15

References

Abdulkadiroglu, A., P. Parag, A. Roth. 2005. The New York City High School Match,

American Economic Review, Papers and Proceedings 95 364–367.

Benjamin A., C. Converse, H. Krieger. 1995 How do I marry thee? Let me count the ways.

Discrete Applied Mathematics, 59 285–292.

Cioppa T., T. Lucas. 2007 Efficient Nearly Orthogonal and Space-Filling Latin Hypercubes.

Technometrics, 40 45–55.

Dasgupta D., G. Hernandez, D. Garrett, P. Vejandla, A. Kaushal, R. Yerneni, J. Simien.

2008. A comparison of multiobjective evolutionary algorithms with informed initial-

ization and kuhn-munkres algorithm for the sailor assignment problem. GECCO ’08:

Proceedings of the 2008 GECCO conference companion on Genetic and evolutionary com-

putation 2129–2134.

Gale D., L. Shapley. 1962. College admissions and the stability of marriage. Amer. Math.

Monthly 69 9–15.

Garrett D. 2009 personal communication.

Gusfield D., R. Irving. 1989. The Stable Marriage Problem: Structure and Algorithms. MIT

Press, Cambridge, MA.

Hansen B., M. Fredrickson. 2011. http://cran.r-project.org/web/packages/optmatch/index.html

Irving R., P. Leather. 1986. The Complexity of Counting Stable Marriages. SIAM J.

Computing 15 655–667.

Irving R., P. Leather, D. Gusfield. 1987. An efficient algorithm for the ”optimal” stable

marriage Journal of the Association for Computing Machinery 34 532–543.

Kalyanmoy D. 2001. Multi-Objective Optimization using Evolutionary Algorithms. John

Wiley & Sons, New York, NY.

Knuth D. 1976. Stable marriage and its relation to other combinatorial problems: an in-

troduction to the mathematical analysis of algorithms. American Mathematical Society,

Providence R.I.

Knuth D., R. Motwani, B. Pittel. 1990. Stable Husbands. Random Structures and Algo-

rithms 1 1–14.

16

Lennon C.,B. Pittel. 2009. On the Likely Number of Solutions for the Stable Marriage

Problem, Combinatorics, Probability, and Computing, 18 371–421.

Pittel B. 1989. The average number of stable matchings. SIAM J. Disc. Math 2 520–549.

Pittel B. 1992. On likely solutions of a stable marriage problem. Annals of Applied Proba-

bility 2 358–401.

Pittel B., L. Shepp, and E. Veklerov. 2007. On the number of fixed pairs in a random

instance of the stable marriage problem SIAM Journal of Discrete Math 21 947–958.

17

