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ABSTRACT
The stable marriage problem is prototypical of two-sided
matching problems, widely encountered in practice, in which
agents having preferences, interests and capacities for action
of their own are paired up or matched. Standardly, variants
of the well-known Gale-Shapley deferred acceptance algo-
rithm (GS/DAA) are used to find stable matches. Using
evolutionary computation and an agent-based model heuris-
tics, this paper investigates the stable marriage problem as a
multiobjective problem, looking at social welfare and equity
or fairness, in addition to stability as important aspects of
any proposed match. The paper finds that these heuristics
are reliably able to discover matches that are Pareto superior
to those found by the GS/DAA procedure. Ramifications of
this finding are briefly explored, including the question of
whether stability in a matching is often strictly required.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms

Keywords
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1. INTRODUCTION
In the usual case, markets are distributed, with buyers and

sellers mostly on their own in finding each other and in ne-
gotiating terms of trade. Distributed markets may fail in
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one way or another, however. A common response is to cre-
ate a centralized market organized by a third party whose
responsibility is to set the conditions of trade, for example
the price, based on the bids and asks from the buyers and
sellers. Many electricity markets are organized in this way.
Deregulated electricity producers, for example, offer supply
schedules to a third party, often called the independent sys-
tems operator or ISO, who aggregates the supply schedules,
observes the market demand, and sets the price of electricity
(for a given period of time).1

Quite a number of labor markets are similarly centralized,
most famously, markets in which physicians are matched to
hospitals for internships [18]. Roughly speaking, the individ-
ual doctors submit their rankings of hospitals, the hospitals
submit their rankings of doctors, and a third party organiza-
tion undertakes to match doctors with hospitals. This is an
example of a two-sided matching problem, which problems
are the subject of this paper.

In a two-sided matching problem, we are given two sets
(‘sides’) of individuals and asked to form pairs consisting of
one member from each set. Standard examples dealt with
widely in practice include pairing men with women, workers
with employers, students with schools and so on.

A presumption in matching problems (as distinguished
from assignment problems, which are treated in operations
research and employ non-strategic decision making) is that
both sides consist of agents who have interests of their own
and capacities to act on them. Consequently, matches are
ordinarily evaluated in terms of stability. Matching prob-
lems are inherently strategic, or game-theoretic, and stabil-
ity is the accepted equilibrium concept. A match is said to
be stable if there is no pair of matched couples in it con-
taining individuals who would prefer to be matched to each
other but are not. (See below for details.) The thought is
that if the couple here is unstable with regard to the cou-
ple next door, divorce and remarriage will (or at least may)
ensue. Requiring matches to be stable in the first place will
prevent breakup and reformation among pairs and its atten-
dant costs.

The point of departure for this paper is the observation
that two-sided matches can be evaluated—and for many ap-
plications should be evaluated—according to several objec-
tives, particularly stability, equity, and social welfare. For
present purposes, by stability we mean the count of unstable
pairs of matched couples in a match. This should be mini-
mized and at 0 the match is stable.2 By equity we mean the

1There’s more to it, but the basic point is correct.
2If the count of unstable pairs is 1, there is no guarantee that
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sum of the absolute differences in the preference scores of
each matched pair. We will be scoring preference on a rank-
ing 1 to n scale (1 = most preferred, n = least preferred),
so this too should be minimized. Finally, by social welfare
we mean the sum of the agent scores in the match. Again,
since scoring is from low to high, this quantity should also
be minimized. (To illustrate, if agents i and j are paired in
a match, and i’s preference score for j is 5 and j’s preference
score for i is 3, then the matched pair’s contribution to social
welfare is the sum, 8, and their contribution to equity is the
absolute value of the difference of the scores, |5− 3| = 2.)

Given that we would consider designing or even central-
izing a matching market (as is widely done in practice), the
question arises of how best to provide the market operators
and users with match options that map the Pareto frontier
(as well as possible) in these three objectives. In what fol-
lows we explore two rather different algorithmic approaches
to this: an agent-based model that simulates a distributed
market and an evolutionary computation approach. We
compare them with each other and with what can be pro-
duced by the standard approach, the deferred acceptance
algorithm of Gale and Shapley [8].

2. RELATED WORK
Two-sided matching problems, and the stable marriage

problem in particular, have received exploratory investiga-
tion as dual objective problems in [2], [7] and in [20]. Alder-
shof and Carducci [1] report optimistically on application
of a genetic algorithm to two-sided matching problems, but
the problems they examine are smaller than the 20×20 prob-
lems discussed here, so they do no address scaling issues. In
[17] a genetic algorithm is used to find gender-unbiased so-
lutions for the stable marriage problem. [5] has useful and
suggestive findings pertaining to multiobjective evolutionary
algorithms generally, as do [6] and [4]. [21] presents an inno-
vative use of ant colony optimization for the stable marriage
problem. We believe that population-based metaheuristics
generally, whether or not they involve evolutionary compu-
tation, are very promising for two-sided matching problems,
seen as multiobjective problems.

3. ESSENTIAL BACKGROUND
Again, now with more detail, in a two-sided matching

problem we are given two sets (sides) of agents, X and Y ,
and are asked to find a match, µ, consisting of a decision (in
or out?) for each pair (x, y), x ∈ X, y ∈ Y . It is helpful to
view a match as represented by a matrix, M, of size |X|×|Y |,
based upon arbitrary orderings of X and Y . The element
mi,j of M equals 1, if xi ∈ X is matched with yj ∈ Y ;
otherwise the element is 0. Thus the element mi,j of M
represents the pair (xi, yj). Matchings pair up agents from
X and Y .

Particular matching problems come with particular re-
quirements on µ (or M) as well as X and Y . For exam-
ple in the simple marriage matching problem (the focus of
this paper because it is prototypical for two-sided matching
problems), we require that |X| = |Y | = n; the number of
men equals the number of women. We further require of
any (valid) match that each man (or member of X (Y )) be

if the two pairs rematch by exchanging partners the resulting
match would be stable. In fact, the resulting match could
have a higher count of unstable pairs [14].

paired (or matched) with exactly one woman (or member
of Y (X)), and vice versa. In terms of M, this means that
there is one 1 in each row and one 1 in each column. M is
thus a permutation matrix and the number of possible valid
matches is n!. In admissions matching problems, which are
used to model, for example, interns applying to hospitals and
students applying to schools, one side of the problem, say X,
is much larger than the other. There are more doctors than
hospitals, more students than schools. Unlike conventional
marriage problems, however, one side will have quotas larger
than 1. Each doctor and each student will have a quota of
1, but each hospital and each school may have a much larger
quota and admit many doctors or students. Thus, in a valid
match for an admissions problem, each agent on one side
(X or Y ) is paired to one or more agents in the counterpart
side, not to exceed the agent’s quota. With students as X,
and schools as Y , M will have one 1 each row, and each
column will have a number of 1s not to exceed the quota of
the corresponding school.

Many other variations are possible and are met in prac-
tice for two-sided matching problems. As Roth notes [18],
two-sided matching models are often natural for represent-
ing markets, in which agents need to be paired up. Men
and women want to find partners, workers want to find em-
ployment and employers want to find workers, and so on.
Moreover, many of these markets, decentralized or free mar-
kets, experience failure and unsatisfactory performance in
practice. They experience unraveling, e.g., offers to students
are made earlier and earlier; congestion, e.g., offerers have
insufficient time to make new offers after candidates have re-
jected previous offers; and participants engage in disruptive
strategic behavior, so that behaving straightforwardly with
regard to one’s preferences becomes risky, e.g., in scheduling
offers and responding to them [3, 18, 19]. In consequence,
there is a large and growing number of applications of two-
sided matching in which decentralized markets have been
replaced by centralized ones, in which a coordinating agency
undertakes periodic matching between two sides of a specific
market. ([18] lists over 40 labor markets, mostly in medical
fields; schools in New York and Boston are using centralized
markets to match students to schools; see also [3].)

How do and how should centralized market agencies pro-
duce matches? In practice, some form of, variation on, the
deferred acceptance algorithm of Gale and Shapley [8] is
used to find a stable match, which is then used. A match
is unstable if there is a pair of matched pairs—(xi, yj) and
(xk, yl)—such that xi prefers to be matched with yl over
being matched with yj and yl prefers to be matched with xi

to being matched with xk. Stable matches are the ones that
are not unstable.

The deferred acceptance algorithm (DAA) was first pub-
lished in a paper by Gale and Shapley [8], although the
procedure was discovered and used independently before.
Because the algorithm is easily understood and readily avail-
able in published works we will, in the interests of space, not
repeat it here, except to present it in pseudocode, Figure 1.
Instead, we will describe its key properties as we see them
for present purposes. First, as proved by Gale and Shap-
ley, under the special assumptions they made (e.g., prefer-
ence ranking by agents, etc., which for the sake of discussion
we retain), the stable marriage problem and the admissions
problem (see above) have stable matches and the DAA will
find one and will find one quickly (O(n2)). Second, the DAA
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1. Assume: |X| = |Y | = n

2. Each x ∈ X ranks each y ∈ Y , and each y ∈ Y ranks
each x ∈ X.

3. Matched ←− ∅, Unmatched ←− ∅.

4. For each y, string.y ←− []

5. Each x ∈ X proposes to its most-preferred y, append-
ing x to string.y.

6. Each y with length(string.y) > 1 (i.e., with more than
one proposal), retains in the string its most preferred
member of the string, and removes the rest, adding
them to Unmatched.

7. Do while Unmatched 6= ∅:

(a) Each x ∈ Unmatched proposes to its most-
preferred y, among the Y s that have not already
rejected x, appending x to string.y.

(b) Unmatched ←− ∅.
(c) Each y with length(string.y) > 1 (i.e., with more

than one proposal), retains in the string its own
most preferred member of the string, and removes
the rest, adding them to Unmatched.

8. For each x remaining on some string.y, (x, y) is added
to Matched.

9. Stop. Each x is matched to a distinct y, who has x
as the sole member of its string. This is recorded in
Matched.

Figure 1: Pseudocode for the deferred acceptance
algorithm (DAA) for the simple marriage matching
problem, Xs proposing to Y s, after [8].

is asymmetric. One side proposes, the other disposes. Fo-
cusing now on the marriage problem, if the men propose,
they obtain a stable match that is male optimal in the sense
that no man in this match strictly prefers (does better in)
any other stable match. Conversely, the match is female pes-
simal in the sense that no woman is worse off in any other
stable match. And vice versa if the women propose [8, 10,
14].

Although here we consider it only in the context of the
marriage problem, this asymmetry is a general characteristic
of the DAA in its various forms. It occasions the important
question of whether better matches exist and can be found.
To this end, we will want to look at stable matches that
may be preferable to the matches found by the DAA. As
announced above, we want to examine both social welfare
and equity. Further, it is natural to raise the question of mul-
tiple objectives in the context of ‘nearly-stable’ matches, by
which we mean matches with relatively few unstable pairs.
Decision makers, including agents participating in a central-
ized market, may quite reasonably want to exchange some
stability for improvements in, say, social welfare or equity.
We note that in many cases it may be practically difficult,
or made practically difficult by the operator of the central-
ized market, for members of matched couples to undertake
swaps, regardless of their preferences.

These issues could be neatly resolved by, for any given
problem, finding all of the stable solutions and comparing
them with respect to equity, social welfare, and whatever
other measures of performance are relevant. Predictably,
however, this is an intractable problem. Irving and Leather
[12] have shown that the maximum number of stable matches
for the simple marriage matching problem grows exponen-
tially in n (see also [10, 11]). Further, they provide a lower
bound on the maximum by problem size. Remarkably, the
lower bound is 104,310,534,400 for a problem as small as n =
32 [12]. Further, they establish that the problem of deter-
mining the number stable matches is #P-complete. These
are, of course, extreme-case results, but very little is known
about average cases. So we are left to rely upon heuristics,
and we shall for the remainder of this paper.

4. MATCHING WITH AGENTS
We developed an agent-based model, called SimpleMar-

riageMatching (freely available for research and teaching
purposes from the authors), that simulates a distributed
market for the simple marriage matching problem. At ini-
tialization, each agent is given a preference ranking of the
agents in the counterpart (opposite “gender”), and the n
“men” (members of Y ) are randomly paired with the n “wo-
men” (members of X) to create a valid match for the simple
marriage matching problem. The program then maintains
a valid match throughout its execution. (The results we re-
port here assume the “collective” swapping regime, which we
now describe.) In the main loop of the program, agents are
put into a random order, then each agent in turn examines
the agents of the counterpart set (the women, if the agent is
a man, the men if the agent is a woman). If the agent finds
a matched pair with the property that the agent prefers the
counterpart member of the pair (the woman, if the agent is a
man; the man if the agent is a woman) and the agent’s coun-
terpart member prefers the agent to its own current match,
then matching of the two pairs may be swapped. Starting
with (xi, yj) and (xk, yl) we get (xi, yl) and (xk, yj). The
agent identifies all potential swaps in the counterpart set,
that is matched couples such that the agent prefers its coun-
terpart to its present match and the counterpart prefers the
agent to its current match and the preferences are positive
net of the transaction cost. The agent picks the most attrac-
tive of these from its point of view, the swap is made, and
the agent’s turn is over. (If there are no potential swaps,
this also terminates the agent’s turn.) Note: the swapping
does not depend on the preference of the agent’s mate for the
mate of the counterpart pair, or vice versa. Further, what-
ever swapping that is done is on the basis of preference net
of transaction cost, which is measured in rank units. Thus,
for example, if the transaction cost is 2, and xi is the focal
agent, then a swap only occurs if xi’s preference for yl is
more than 2 ranks superior to xi’s preference for its current
mate, yj ; and similarly for yl’s preferences.

Table 1 summarizes results from an experiment in which
n=20 and the transaction cost was set to 0. There were
100 runs in which the agents were initialized with a random
preference regime. For each of these runs, there were 100
replications, with the preference regimes constant, but the
initial matches randomly varying and the order of swap con-
sideration randomly changing. Table 2 summarizes results
from a similar experiment, with transaction cost set to 1. In
both experiments (Tables 1 and 2), every replication of every
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Table 1: 20×20, Transaction Cost = 0
1st Qu Median 3rd Qu

Init. # unstable pairs 73 83 93
Final # unstable pairs 0 0 0
InitialSocialWelfareSum 395 420 444
Final SocialWelfareSum 161 171 183
Initial Equity 119 133 148
Final Equity 61 69 80
SwapCount 42 55 79
InitialSumXScores 192 210 228
Final SumXScores 74 85 97
InitialSumYScores 192 210 227
Final SumYScores 75 85 97

Number of Runs 100
Number of Replications 100
TransactionCost 0
SwappingRegime Collective

run produced a stable match. Neglecting transaction costs
(NTC) the median number of unstable pairs in a replica-
tion is 3 (Table 2), rather small, and the statistics for social
welfare, equity, and agent scores are very similar to those in
Table 1, with no transaction cost. A small amount of insta-
bility has not lead to significant changes in social welfare,
agent welfare, or equity. From a random start, these my-
optic and greedy agents manage to improve their positions,
and that of their entire society, quite nicely. (We remind the
reader that the search space here is huge: 20! ≈ 2.4× 1018.)

Table 2: 20×20, Transaction Cost = 1
1st Qu Median 3rd Qu

Init. # unstable pairs 59 69 78
Final # unstable pairs 0 0 0
Init. # unstbl pairs NTC 73 83 93
Fin. # unstbl pairs NTC 2 3 4
InitialSocialWelfareSum 395 420 445
Final SocialWelfareSum 165 175 186
Initial Equity 118 132 147
Final Equity 61 70 78
SwapCount 26 31 38
InitialSumXScores 192 210 228
Final SumXScores 77 88 100
InitialSumYScores 192 210 227
Final SumYScores 76 86 98

Number of Runs 100
Number of Replications 100
TransactionCost 1
SwappingRegime Collective

At n = 40, Tables 3 and 4 tell a story similar to that for
n = 20. Not every replication, however, leads to a stable
match when transaction cost is 0. What stops the search
in a replication is the number of swaps (changing partners)
reaching MaximumSwaps = 100,000. With a transaction cost
of 2, Table 4, the swap count is again low and the measures
of performance again similar to those with transaction cost
0. Notice that again, the random starts yield poor perfor-
mance measures, but the agents individually and collectively
achieve much improvement.

Table 3: 40×40, Transaction Cost = 0 (†Mean=3,
Max=124)

1st Qu Median 3rd Qu

Init. # unstable pairs 314 340 367

Final # unstable pairs† 0 0 0
InitialSocialWelfareSum 1570 1638 1709
Final SocialWelfareSum 476 499 529
Initial Equity 492 532 572
Final Equity 200 224 245
SwapCount 1610 5731 22389
InitialSumXScores 769 819 869
Final SumXScores 217 246 280
InitialSumYScores 772 820 869
Final SumYScores 224 253 293

Number of Runs 100
Number of Replications 100
TransactionCost 0
SwappingRegime Collective

Table 4: 40×40, Transaction Cost = 2
1st Qu Median 3rd Qu

Init. # unstable pairs 258 284 311
Final # unstable pairs 0 0 0
Init. # unstable pairs NTC 314 341 369
Final # unstable pairs NTC 7 9 11
InitialSocialWelfareSum 1569 1641 1711
Final SocialWelfareSum 483 505 529
Initial Equity 493 533 574
Final Equity 198 218 239
SwapCount 89 105 127
InitialSumXScores 771 820 869
Final SumXScores 226 251 279
InitialSumYScores 772 821 870
Final SumYScores 225 251 278

Number of Runs 100
Number of Replications 100
TransactionCost 2
SwappingRegime Collective

Finally, when n = 100 and transaction cost is 0, the runs
do not terminate in acceptable time, so no results are avail-
able. The issue of scaling is one we will return to below.
Table 5 shows results for when transaction cost is 5. Now
each replication results in a stable match, although neglect-
ing transaction costs no replication found a stable match and
the median number of unstable pairs has risen to about n

3
.

Even so, the agents make remarkable improvements in the
various measures of performance, from their random starts.

5. EVOLUTIONARY MATCHING
We also developed a genetic algorithm based system, called

Stable Matching GA, that samples the solution space of
the simple marriage matching problem. Solutions are repre-
sented as permutations of 1. . .n. After experimentation we
settled on a mutation rate of 0.4 per solution, a two-point
crossover rate of 0.6, a population size of 50, runs of 2,000
generations, and 100 repetitions or trials per problem. Mu-
tation was effected by randomly choosing alleles at two loci
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Table 5: 100×100, Transaction Cost = 5
1st Qu Median 3rd Qu

Init. # unstable pairs 1709 1808 1908
Fin. # unstable pairs 0 0 0
Init. # unstbl pairs NTC 2061 2165 2270
Fin. # unstbl pairs NTC 28 32 37
InitialSocialWelfareSum 9830 10104 10376
Final SocialWelfareSum 1984 2048 2113
Initial Equity 3173 3329 3492
Final Equity 878 934 994
SwapCount 655 1049 1901
InitialSumXScores 4859 5050 5242
Final SumXScores 941 1020 1106
InitialSumYScores 4858 5055 5249
Final SumYScores 939 1018 1103

Number of Runs 100
Number of Replications 100
TransactionCost 5
SwappingRegime Collective

and swapping them, thereby maintaining a valid solution,
as a permutation. We used order crossover, OX, as our two
point crossover operator ([16, page 217], [9, page 174]).

The fitness of a given solution is its number of unstable
pairs. The lower the fitness value, the fitter a solution is and
the higher chance it has for participating in the reproduction
process. To a given population, one generation of solutions
goes through three processes: fitness evaluation, selection
(we used tournament-2), and reproduction (with mutation
and crossover as described above). The evolution stops after
a specified number of generations are reached.

We ran the GA seeking to minimize the number of unsta-
ble pairs in the match solutions. We report here with regard
to the stable matches found by the GA for these 25 random
20×20 problems, and we compare the GA’s solutions with
the DAA solutions for these problems. The results may be
summarized as in Table 6.

Here, in Table 6, the column labeled Case is for the 25
random 20×20 random problem instances; “D(DorE) 1G.S.
Soln” means the count of strictly dominant (better than
the DAA (Gale-Shapley) solutions on the two dimensions
of fairness and social welfare) or (in parentheses) the count
of weakly dominant (at least as good as the DAA solution)—
for at least 1 of the solutions (and there may be only one).
“D(DorE) 2G.S.Soln” means the count of strictly dominant
(better than the DAA on the two dimensions of fairness
and social welfare) or (in parentheses) the count of weakly
dominant (at least as good as the DAA solutions)—for both
DAA solutions (although there may be only one). So the
form X(Y)/Z means X solutions strictly dominating, Y so-
lutions weakly dominating, and Z solutions found by the GA
overall. (All of these solutions are stable solutions.) Finally,
“Found G.S.Soln/#GS” with the form X/Y means of the Y
DAA solutions (from Gale-Shapley), X of them were found
by the GA.

To summarize, Table 6 shows:

• In 18 of 24 cases, the GA found at least one stable
solution that strictly dominates both of the GS/DAA
solutions. (In case 20, there is only 1 GS/DAA solu-
tion.)

Case D(DorE) D(DorE) Found
Case 1G.S.Soln 2G.S.Soln G.S.Soln
Case / TC / TC / #GS

1 9(10) / 10 4(5) / 10 2/2
2 6(8) / 8 5(5) / 8 2/2
3 4 (5)/ 6 0(1) / 6 2/2
4 7(8) / 8 3(4) / 8 2/2
5 3(5) / 6 3(3) / 6 2/2
6 4(5) / 6 1(2) / 6 2/2
7 10(11) / 11 9(10) / 11 2/2
8 5(6) / 6 1(2) / 6 2/2
9 4(5) / 6 0(2) / 6 2/2
10 6(7) / 7 2(4) / 7 2/2
11 9(11) / 12 2(4) / 12 2/2
12 4(5) / 6 1(3) / 6 2/2
13 8(9) / 9 4(5) / 9 2/2
14 1(3) / 4 0(1) / 4 2/2
15 4(5) / 6 1(2) / 6 2/2
16 4(5) / 5 1(2) / 5 2/2
17 5 (7)/ 7 3(3) / 7 2/2
18 10(11) / 11 2(4) / 11 2/ 2
19 4(6) / 6 4(4) / 6 2/2
20 0(1) / 1 0(1) / 1 1/1
21 8(10) / 10 7(8) / 10 2/2
22 4(5) / 5 2(3) / 5 2/2
23 1(3) / 3 0(1) / 3 2/2
24 2(3) / 6 0(1) / 6 2/2
25 5(6) / 6 1(2) / 6 2/2

Table 6: 20x20x25 TPXOver Strongly Dominating
Solution Counts (m04x06p50t100g2000)

• Excluding case 20 with only 1 GS/DAA solution, in
24 of 24 cases the GA found one or more stable solu-
tion that strictly dominates one of the two GS/DSS
solutions.

Our study thus shows promising results on using a GA to
search for favorable matching schemes. In terms of search-
ing for stable match schemes, the GA found either strictly
better or at least equally good solutions compared to the De-
ferred Acceptance algorithm results with regard to fairness
and social welfare. When stability is not the only objective,
GAs provide many other dominant solutions. Depending on
how different objectives are weighted, sometimes a minimum
number of unstable pairs may be a cheap price to pay for the
improvement on other objectives (for example, higher indi-
vidual satisfaction or greater assignment fairness). The key
point of our finding is about the GA’s capability for provid-
ing decision makers with information about the otherwise
unseen alternatives.

6. AGENT MODEL COMPARISON
For comparison purposes we report on runs from the agent

model on the same 25 20×20 randomly generated problems
on which we ran the GA. It is a bit tricky to make the
computational efforts of the two programs commensurate.
Standardly in GA work comparisons are made on the basis
of the number of fitness evaluations, but in the agent model
we do not have a fitness function to evaluate. In the two
models, however, there is a common basis for comparison:
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the number of calculations of whether two matched pairs are
mutually unstable. In the GA, this is how fitness is evalu-
ated. The fitness of a solution is the number of (mutually)
unstable matched pairs it has. To calculate this number re-

quires n(n−1)
2

comparisons of two matched pairs. Thus, the
number of comparisons undertaken for a single case (there

are 25 in the present context) is n(n−1)
2
×K ×G×R, where

K is the population size, G is the number of generations per
replication, and R is the number of replications per case.

For the agent model, in each round (tick) during a repli-
cation each of the 2n agents undertakes a comparison with
the n agents of opposite gender, so we have 2n2 comparisons
per round/tick. Since the number of rounds/ticks varies by
replication, we estimated the number of comparisons empir-
ically at about 3500 per replication in the 20×20 cases. In
consequence we set the number of replications per case to
be 1000, putting us roughly on parity with the GA effort.

Case D1GS/TC D2GS/TC

1 8 / 8 3 / 8
2 6 / 8 5 / 8
3 4 / 6 0 / 6
4 7 / 7 3 / 7
5 3 / 6 3 / 6
6 4 / 6 1 / 6
7 10 / 10 9 / 10
8 8 / 8 3 / 8
9 4 / 6 0 / 6
10 6 / 7 2 / 7
11 9 / 12 2 / 12
12 4 / 6 1 / 6
13 8 / 8 4 / 8
14 1 / 4 0 / 4
15 4 / 6 1 / 6
16 4 / 5 1 / 5
17 5 / 6 3 / 6
18 10 / 10 2 / 10
19 4 / 6 4 / 6
20 0 / 1 0 / 1
21 8 / 9 7 / 9
22 4 / 4 2 / 4
23 1 / 3 0 / 3
24 2 / 6 0 / 6
25 5 / 6 1 / 6

Table 7: Agent 20x20x25 SD

Table 7 shows the results. The column labeled“D1GS/TC”
has the form X/Y, where X is the number of stable solutions
found that strictly dominate one of the GS/DAA solutions
and Y is the total number of stable solutions found. Simi-
larly, in the column labeled “D2GS/TC” with form X/Y, X
is the number of stable solutions found that strictly domi-
nate both GS/DAA solutions and Y is the number of stable
solutions found. Comparing Tables 7 and 6 we find that the
agent model and the GA perform about equally as measured
by the numbers of dominating solutions found.
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Figure 2: Plot of alternate stable solutions found for
test case 7. GS/DAA in red ∗, GA in ◦, agent model
in 4.

7. NEARLY-STABLE MATCHES
A stable match is one in which there are no pairs of

matched couples that are mutually unstable. A nearly-stable
match is one in which there are few pairs of matched cou-
ples that a mutually unstable. In a “one-away” match there
is only one pair of matched couples that is mutually unsta-
ble. We emphasize that in such a one-away match there is
no guarantee that swapping the unstable pair of couples will
produce a stable match. The new couples resulting from the
swap may be unstable with many other couples and unrav-
eling may well be possible [14].

Our GA typically was able to find very many one-away
solutions and very many of these were Pareto superior to
the GS/DAA solutions. See Table 8 and Figure 3 for a
graphical presentation.

8. SUMMARY & DISCUSSION
We find and are reporting in compressed form the following:

1. Typically in simple marriage matching problems there
are stable matches that are Pareto superior to the de-
ferred acceptance matches, in regard to equity and so-
cial welfare (as we have characterized them).

2. With roughly equal computational effort, both the agent-
based model and the genetic algorithm we built find
similar numbers and quantities of stable solutions for
the simple marriage matching problems we examined.

3. There are typically very many nearly-stable matches
that are superior to the deferred acceptance (stable)
matches on equity and/or social welfare (or both). We
found these solutions with the genetic algorithm.

4. Scale is an important issue. As the size of the prob-
lem exceeds 50 or so, the agent-based model becomes
generally unable to find any stable solution with zero
transaction costs with fewer than millions of swaps
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Test Case D1GS/TC D2GS/TC

1 121 / 128 31 / 128
2 100 / 143 88 / 143
3 31 / 140 1 / 140
4 78 / 97 49 / 97
5 49 / 96 39 / 96
6 28 / 83 7 / 83
7 113 / 124 75 / 124
8 53 / 67 15 / 67
9 61 / 94 9 / 94
10 78 / 110 14 / 110
11 75 / 154 20 / 154
12 10 / 97 7 / 97
13 82 / 106 18 / 106
14 27 / 65 12 / 65
15 73 / 134 7 / 134
16 56 / 87 14 / 87
17 72 / 87 56 / 87
18 52 / 89 11 / 89
19 43 / 84 27 / 84
20 1 / 38 1 / 38
21 124 / 148 109 / 148
22 64 / 82 35 / 82
23 11 / 61 1 / 61
24 20 / 96 8 / 96
25 76 / 107 8 / 107

Table 8: 20x20x25 TPXOver, 0.8, Mutation, 0.3,
One-Away Strongly Dominating Solution Counts
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Figure 3: One-away solutions compared to GS/DSS
solutions, 40x40, case 6; see Table 9. GS/DAA in
red ∗.

Test Case D1GS/TC D2GS/TC

1 6 / 8 4 / 8
2 19 / 20 8 / 20
6 13 / 16 6 / 16

Table 9: 40x40 Case1,2,6 GA TPXOver Strongly
Dominating Opt Solution Counts

(match alterations). The GA generally continues to
perform well, see Table 9, but this needs more exten-
sive testing. We note that these findings apply to the
randomly-generated test problems we have used. In
these problems, preferences are uncorrelated. Actual
applications may be different (think of the marriage
market). When preferences are identical there will be
only one stable match and generally, the number of
stable matches will decline with increasing correlation
of preferences. The effects on nearly-stable matches
are not known to us.

5. Adding transaction costs to the agent model generally
results in better finding of stability, but even costs in
the range of n

10
are overwhelmed when n is 100 or more.

The agents simply do not find stable solutions even in
this attenuated sense. The agents do, however, gener-
ally improve overall social welfare and equity scores as
a side-effect of their swapping.

We see both a practical, applied upshot of these findings and
a theoretical one. On the applied side:

1. The case is now quite strong for insisting that two-
sided matching problems be viewed as multiobjective,
and that policy should look well beyond the GS/DAA-
style solutions. Alternate solutions that are Pareto
superior do (often) exist and may be found by heuristic
methods such as those on display here.

2. The necessity of stability, or equilibrium in a match-
ing, can be questioned, at least in many applications.
When the number of unstable pairs is small but non-
zero, there will in many cases be no realistic means for
the pairs to find each other and unravel the matching.
We agree with Kreps’s more general comment that

Unless a given game has a self-evident way to
play, self-evident to the participants, the no-
tion of a Nash equilibrium has no particular
claim upon our attention. [15, page 31]

Matching applications should reconsider their require-
ments for (exact, full) stability, especially when, as
we have seen in an example, there may be very many
nearly-stable matches with superior equity and social
welfare properties.

3. Our agent-based simulation of a distributed market
raises the possibility that centralized markets might
become superior to distributed markets by the tactic
of simulating them under various conditions, realizable
or not, and allocating results based on the simulations.
This is an intriguing idea for future consideration.

On the theoretical side, there are two main points aris-
ing. First, the agent model is an epistemically very gener-
ous model of how real agents cope. That even this model
will fail to achieve equilibrium under non-drastic scaling up
raises the question concretely of whether real markets can
find equilibrium.

Second, looking forward we note that matching problems
in general and the simple marriage matching problem in par-
ticular may have application broader than heretofore con-
ceived. Consider a model of a market with n buyers of a
good such as a house and n sellers of the good. Assume
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that for each possible pair there is a negotiated price at
which they would transact the sale of the house in ques-
tion. This provides a ranking of the buyers for each seller,
since sellers we presume only care about price. On the buyer
side, however, price is only one factor among many in de-
termining the value of the property. So buyers have pref-
erence rankings on the houses (sellers) that are influenced
by, but not determined by, the negotiated prices. At equi-
librium, all the houses are sold, and a stable matching is
achieved. What we have learned from the agent and evolu-
tionary models described here is that even with the rather
heroic epistemic powers of our agents, they will not be able
to attain stable matches in any reasonably large market con-
text. Nor is there much assurance that on any one run of
the market good equity or social welfare outcomes will be
achieved. The upshot is (1) centralized markets, of the sort
in which deferred acceptance algorithms are commonly run,
may be more widely desirable and (2) heuristic alternatives
to deferred acceptance may well be able to offer practical
improvements and complements to deferred acceptance in
these centralized markets.
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