
Genetic Local Search Algor i thms
for the Traveling Salesman Prob lem

Nico L.J. Ulder 1, Emile H.L. Aarts 2,3, Hans-J/irgen Bandelt 4

Peter J.M. van Laarhoven 5 and Erwin Pesch 4
1. Oc6-Nederland BV, P.O. Box 101, NL-5900 MA Venlo

2. Philips Research Laboratories, P.O. Box 80.000, NL-5600 JA Eindhoven
3. Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven

4. University of Limburg, P.O. Box 616, NL-6200 MD Maastricht
5. Centre for Quantitative Methods, Nederlandse Philips Bedrijven BV,

P.O. Box 218~ NL-5600 MD Eindhoven

Abs t rac t

We briefly review previous attempts to generate near-optimal solutions of the Traveling
Salesman Problem by applying Genetic Algorithms. Following the lines of Johnson [1990] we
discuss some possibilities for speeding up classical Local Search algorithms by casting them into
a genetic frame. In an experimental study two such approaches, viz. Genetic Local Search with
2-Opt neighbourhoods and Lin-Kernighan neighbourhoods, respectively, are compared with the
corresponding classical multi-start Local Search algorithms, as well as with Simulated Annealing
and Threshold Accepting, using 2-Opt neighbourhoods. As to be expected a genetic organization
of Local Search algorithms can considerably improve upon performance though the genetic
components alone can hardly counterbalance a poor choice of the neighbourhoods.

1 Introduct ion

Genetic Algorithms (GAs) have been designed as general purpose search strategies and
optimization methods; the GA catechism is laid down in Goldberg [1989a] and [1989b].
The very name, though, might be misleading since the word "algorithm" alludes to
a special method of solving a certain kind of problem, but what is really meant is a
general s t rategy or metaheuristic calling on principles of evolution.

Roughly speaking, a Genetic Algorithm aims at producing near-optimal solutions by
letting a set of random solutions undergo a sequence of unary and binary transforma-
tions governed by a selection scheme biased towards high-quality solutions. Rechenberg
[1973] had already experimented with a kind of Genetic Algorithm dubbed "erweit-
erte Evolut ionsstrategie ' . The so-called "Evolutionary Strategies" now usually refer to
methods not embodying bit-string recombination, or crossover operators; see Schwefel
[1977] for an exposition of pert inent optimization techniques and Ablay [1987] for an
application to the TSP.

Problems from combinatorial optimization are well within the scope of Genetic Al-
gorithms, so it was inevitable that the Traveling Salesman eventually became a victim
of GA activities. Early a t tempts closely followed the scheme of what Goldberg [1989a]
now called a Simple GA and were actually ra ther discouraging when compared with

110

standard TSP heuristics, for instance, the experiments of Grefenstette et al. [1985] lead
to solutions as far as 25% from the optimum, in case of a 50-city TSP.

The conclusion, however, that "Genetic Algorithms are not well suited for fine-
tuning structures which are very close to optimal solutions" [Grefenstette, 1987] is a bit
precipitate. As Suh & Van Gucht [1987] emphasize "it is ... essential if a competitive
Genetic Algorithm is desired, to incorporate ... local improvement operators into the
recombination step of a Genetic Algorithm". A resulting algorithm has then been
called Heuristic GA, which in a way is a pleonasm since every GA incorporates - at
least implicit - heuristic information about the problem. Since Lin & Kernighan [1973]
the prevalent local improvement operator is a 2-exchange. Jog et al. [1989] further
improve their Genetic Algorithm by incorporating Or-exchanges.

Equally essential is the careful selection of the binary recombination operator, the
crossover, that entails heuristic information; see again Sub & Van Gucht [1987]. For the
TSP, Miihlenbein et al. [1988] propose a binary recombination operator that transplants
a subpath of the first tour into the appropriately modified second tour.

In this paper we address the question as to what extent concepts from population
genetics can improve the performance of classical Local Search algorithms. For this
we concentrate on a numerical study for the TSP in which the performance of Genetic
Algorithms is compared with that of more classical search algorithms such as multi-
start Local Search, Simulated Annealing and Threshold Accepting. The remainder of
the paper is organized as follows. First we give a template of a general Genetic Local
Search algorithm and show how it can be tailored to the TSP. Next we describe the
setup of our numerical study and present the results that were obtained. The paper is
concluded with a discussion of the potentials of Genetic Local Search algorithms, for
now and in the future.

2 G e n e t i c Local Search

It is desirable to put the previous approaches to the TSP using GA into appropriate
perspective. Every successful strategy to produce near-optimal solutions necessarily
relies upon some efficient iterative heuristic, typically a Local Search technique. Well-
known Local Search algorithms for the TSP are the 2-Opt algorithm (because of its
efficiency), the Lin-Kernighan algorithm (because of its effectiveness), and special vari-
ants of k-Opt algorithms (such as the Or-Opt algorithm). All these algorithms differ
with respect to their neighbourhood structures. Any such structure specifies a set of
neighbouring solutions that are in some sense close to that solution. The associated
local improvement operator replaces a current solution by a neighbouring solution of
better value if possible. Then Local Search - starting from some initial solution - pro-
ceeds by applying this operator until a local optimum is reached. See Johnson et al.
I1988] for more information on Local Search and its complexity.

In practice, multi-start Local Search is used rather than a single run, i.e. the Local
Search algorithm is repeated several times, retaining the best local optimum found.
It is plausible that independent multiple runs of a Local Search algorithm generally
will not constitute an effective procedure since, loosely speaking, every individual so-
lution has to find its own way to near-optimal regions. Cooperation and competition

111

1. Init ialize: Construct an initial population of solutions.

2. Improve: Use a Local Search algorithm to replace each solution in the current
population by a better solution, e.g., a local optimum.

3. Recombine: Extend the current population by adding solutions obtained by re~
combining two or more solutions in the current population.

4. Improve: Use a Local Search algorithm to replace each offspring solution in the
current population by a better solution, e.g., a local optimum.

5. Select: Reduce the extended population to its original size according to prescribed
selection rules.

6. Evolve: Repeat steps 3 to 5 until some stopping criterion is met.

Table 1: Genetic Local Search.

between individual solutions should certainly contribute to the overall performance of
an algorithm. Several authors have therefore devised a collective organization of Local
Search algorithms, drawing ideas from population genetics; see e.g., Ackley [1987], Suh
& Van Gucht [1987], Mfihlenbein et al. [1987, 1988], Miihlenbein & Kindermann [1989],
Mfihlenbein [1989], Gorges-Schleuter [1989], Jog et al. [1989]. These approaches can be
schematized as is shown in Table 1. This scheme is just a template, which requires fur-
ther refinements in order to design a successful algorithm. We will now briefly mention
a number of options in each step.

As to initialization, one would often generate random populations. At least in the
case of the TSP, there is a wealth of tour construction heuristics that could be used to
make up an initial population of medium quality; see Lawler et al. [1985], or Johnson
[1990].

The Local Search algorithm of choice in the improvement step should simply be
the best one available that meets given time capacity constraints. For the TSP this
is - beyond doubt - the heuristic due to Lin & Kernighan [1973]. In case that severe
time restrictions are imposed one can still use a truncated version of the Local Search
algorithm such that it goes through only a small number of iterations.

Besides the, carefully designed binary recombination operators one may also intro-
duce operators of higher arities such as consensus operators, that fix edges common
to most TSP tours of a current population; see Mfihlenbein [1989], cf. the reduction
procedure of Lin & Kernighan [1973].

Selection can be realized in a number of ways: one could adopt the scenario of
Goldberg [1989a] or use deterministic ranking. Further it matters whether new recom-
bined offspring solutions compete with the parent solutions or simply substitute them.
A promising modification of recombination and selection involves the design of a pop-
ulation structure that defines proximity between positions of individuals, resulting in
overlapping cliques, called demes. Then recombination and selection is restricted to
take place only among the individuals from each deme; see Gorges-Schleuter [1989].

112

3 N u m e r i c a l R e s u l t s

We have tested two basic versions of Genetic Local Search algorithms for the TSP.
Both algorithms depart from random populations of solutions, the population sizes
being variable and dependent on the problem instances. The first one uses the 2-
Opt neighbourhood structure for the Local Search in the improvement step, so that
the standard 2-Opt heuristic is performed on each individual tour. The second one
uses the more complicated Lin-Kernighan neighbourhood structure, thus yielding a
pair of improvement operators, viz., the dynamical k-exchange and the additional 4-
exchange as described in the original paper of Lin & Kernighan [1973]. We adopted the
implementation due to Lageweg (CWI Amsterdam), disregarding the optional reduction
part.

In both algorithms recombination is done by taking two tours at random in the
current population and implanting a carefully chosen subpath of one of the tours -
containing at most one third of all cities - into the other one, in essentially the same
way as was proposed by Miihlenbein et al. [1988] and Gorges-Schleuter [1989].

Selection is executed by simply collecting the best tours of the extended population.
The algorithm stops when either all tours in the current population have the same length
or the length of the best tours did not improve within five successive generations.

We compared the performance of the above two algorithms with that of the cor-
responding multi-start Local Search algorithms, as well as with Simulated Annealing
(SA) and its deterministic variant Threshold Accepting (TA) due to Dueck & Scheuer
[1988]. Both SA and TA use the 2-Opt neighbourhood structure. For Lin-Kernighan
and TA the original FORTRAN code was translated to PASCAL (in a straightforward
manner), so that all six programs were in PASCAL. Moreover, care was taken to have
identical data structures and subroutines wherever possible. Our experimental study
is based on a comparison of the statistical averages of the tour lengths of the final
solutions obtained by applying the six algorithms five times each to eight well-known
instances of the TSP, ranging from 48 up to 666 cities. For each instance, the algorithms
are all allowed an almost equal amount of running time. So we focus on effectiveness
rather than efficiency. The reference points are given by SA according to the cooling
schedule of Aarts & Van Laarhoven [1985], with the parameter value $ = 1. In order
to have the stopping criterion for the two Genetic Local Search algorithms fulfilled just
within the time bounds provided by each run of SA, we adjusted the free parameter, the
population size~ accordingly. Indeed, the larger the populations become, the more di-
versity we get and thus longer running times. Table 2 gives the average deviations from
the known optimal solutions. The genetic versions Gen2-Opt and GenLK of 2-Opt and
Lin-Kernighan, respectively, perform clearly better than their multiple-run companions.
Moreover, GenLK is superior to the other algorithms. In contrast to the 2-Opt and the
LK variants, the outcomes for SA and TA do not change considerably with the problem
sizes; the average deviations from an optimum are 2.4% for SA and 2.0% for TA over
all instances.

Now, let us have a closer look at the numbers of iterations (trials or runs) that were
needed to arrive at the solutions from Table 2. It is interesting to compare Mult2-Opt
and Gen2-Opt - and the two LK versions - in this respect. See Table 3: Gen2-Opt allows
3.2 to 9.2 more single runs of 2-Opt than Mult2-Opt - the corresponding numbers for LK

113

Instance

GRO48
TOM57
EUR100
GRO120
LIN318
GRO442
GRO532
GRO666

SA TA
6 1 . 8 9 ' i . 6 5 1.35

10 1.94 2.88 1.34

8~66 2.59 3.41 3.23
2.94 2.01 4.57

1600 2.37 1,27 6.35
4100 2.60 1.31 9.29
8600 2.77 1,79 8.34

17000 2.19 1.70 8.67

Mul t2-Opt Mul tLK Gen2-Opt GenLK
0
0
0
0.08
0.37
0.27
0.37
1.18

0.19
0.50
1.15
1.42
2.02
3.02
2.99
3.45

0
0
0
0.05
0.13
0.19
0.17
0.36

Legend to the table:

: Average running time in seconds on a VAX 8650 under VMS 5.1
: Simulated Annealing with 2-Opt neighbourhoods
: Threshold Accepting with 2-Opt neighbourhoods
: Multi-start Local Search with 2-Opt neighbourhoods
: Multi-start Local Search with Lin-Kernighan neighbourhoods
: Genetic Local Search with 2-Opt neighbourhoods
: Genetic Local Search with Lin-Kernighan neighbourhoods

: instance
: instance
: instance
: Instance
: mstance
: instance
: instance
: instance

SA
TA
Mult2-Opt
MultLK
Gen2-Opt
GenLK

G RO48
TOM57
CUR100
GRO120
LIN318
GRO442
GRO532
GRO666

with 48 cities due to GrStschel
with 57 cities due to Karg & Thompson
with 100 cities due to Aarts & Van Laarhoven
with 120 cities due to GrStschel
with 318 cities due to Lin & Kernighan
with 442 cities due to GrStschel
with 532 cities due to GrStschel
with 666 cities due to GrStschel

Table 2: Performance comparison of six Local-Search-based algorithms: average rein-
tive deviation from the optimal tour length in ~o for eight well-known instances of the
Traveling Salesman Problem.

are 1.2 and 2.7, respectively - al though the genetic variants still have to spend additional
t ime on recombinat ion and selection. It thus pays off when intermediate solutions are
of higher quality. Note tha t the populat ion sizes forced by the experimental design are
quite small: for GenLK the sizes range from 8 to 10 while the range is 14 to 56 in the
case of Gen2-Opt .

Similar exper iments have been carried out for other t ime conditions, for example
using ~ = 0.1 in the cooling schedule of the SA algorithm. The obtained results show a
similar behaviour as those obtained for $ = 1. Fur thermore, we have run experiments
where heavy t ime constraints were imposed. Under such circumstances t runcat ions
of 2-Opt or Lin-Kernighan were needed in the improvement step in order to achieve
sat isfactory results. The populat ion sizes ranged f rom 10 to 30 and were thus smaller
than recommended for Simple GAs design by Grefenstet te [1986].

114

Instance SA TA Mult2-Opt MultLK Gen2'Opt GenLK
GRO48
TOM57
EUR100
GRO120
LIN318
GRO442
GRO532
GRO666

89,112
145,236
668,250

1,135,260
15,221,706
34,988,499
61,442,010

112,494,060

180,000
300,000

1,800,000
2,400,000

45,000,000
120,000,000
246,000,000
450,000,000

40
41
67
64
99

108
116
122

19
14
31
30
37
67
77
45

140
140
216
216
390
720
954

1,120

24
32
40
48

100
100
120
100

Table 3: Total numbers o/ trials (SA, TA), numbers o/ single runs (MultP-Opt, MultLK),
and population sizes times generation numbers (GenP-Opt, GenLK), respectively, for the
data in Table 2.

4 D i s c u s s i o n

To investigate the potentials of Genetic Local Search in combinatorial optimization, we
applied two pertinent algorithms to the TSP. The TSP offers a great challenge since
there exists a plethora of approximative algorithms for this problem that serve as a good
comparative standard. Among these, the algorithms based on exchange heuristics are
the widest used ones, with the Lin-Kernighan heuristic as the uncontested champion;
cf. Johnson [1990]. We decided to implement Genetic Local Search - incorporating the
2-Opt and Lin-Kernighan heuristics - in a straightforward way: only a single parameter,
i.e. the population size, has to be chosen by the user in advance. It is therefore not
necessary to first calibrate a whole bunch of parameters in order to get reasonably good
solutions. Our experimental study indicates that Genetic Local Search is consistently
superior to the notorious multi-start Local Search. With larger problem sizes it becomes
apparent that this simplistic strategy tends to strand at local optima of only moderate
quality, so that the SA and TA algorithms eventually beat Gen2-Opt in this experiment.
Certainly, both Gen2-Opt en GenLK can be improved further by integrating more
subroutines inferred from population genetics; see Miihlenbein [1989.]. Still, GenLK
seems to outperform the ~'champions" ASPARAGOS and TA on the TSP. This is not
really surprising since the much poorer 2-Opt heuristic - or a truncation thereof - is
embedded in the latter two algorithms. The additional use of Or-Opt, or Or-exchanges,
does not seem to provide strinkingty better results either; cf. Mfihlenbein et al. [1988]
and Jog et al. [1989]. One word of caution is in order here: there is an ungoing confusion
between "proto-heuristic" - Local Search technique and crossover - for a specific problem
and "metaheuristic" - general purpose solution strategy- for organizing the particular
proto-heuristic effectively. It is thus notoriously spoken of the SA and the TA algorithms
for the TSP although either procedure embodies a specific heuristic operator, viz., the
2-exchange. We have refrained from including SA and TA endowed with dynamic k-
exchange instead in our experimental study since this would have required extra testing
of appropriate cooling schedules and threshold sequences. Anyway, Genetic Local Search
should not be viewed as being opposed to SA or TA because elements of these strategies

t15

can be implemented in Genetic Local Search at the improvement or selection step. A
genetic organization of some basic Local Search algorithms would constitute only one
out of many implementation devices that are necessary in order to cope with very
large problem sizes; see concluding remarks and announced research in Johnson [1990].
In the case of the TSP with thousands of cities, some hierarchical structuring of the
solution strategy seems to be unavoidable; for a pertinent approach commencing by
a geometrical clustering of the cities; see Reinelt [1989]. Then Genetic Local Search
techniques may enter into any level of a hierarchically organized strategy to further
improve intermediate "solutions.

Acknowledgement

We would like to thank the other members of the Eindhoven-Maastricht study group
on artificial intelligence for stimulating discussions.

References

AARTS, E.H.L. AND P.J .M. VAN LAARHOVEN [1985], A New Polynomial-Time Cooling
Schedule, Proc. IEEE Int. Conf. Computer-Aided Design, Santa Clara, pp. 206-208.

ABLAY, P. [1987], Optimieren mit Evolutionsstrategien, Spektrum der Wissenschaft 7, 162-173.
ACKLEY, D.H. [1987], A Connectionist Machine for Genetic Hillclimbing, Kluwer Academic

Publishers.
DUECK, G. AND T. SCHEUER [1988], Threshold Accepting. A General Purpose Optimization

Algorithm Appearing Superior to Simulated Annealing, TR 88.i0.011, IBM Heidelberg
Scientific Center.

GOLDBERG, D.E. [1989a], Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley.

GOLDBERG, D.E. [1989b], Zen and the Art of Genetic Algorithms, Proc. 3rd Int. Conf. Ge-
netic Algorithms, Morgan Kaufmann Publishers, pp. 80-85.

GORGES-SCHLEUTER, M. [1989], ASPARAGOS, A Parallel Genetic Algorithm and Popula-
tion Genetics, Proc. 3rd Int. Conf. Genetic Algorithms, Morgan Kaufmann publishers, pp.
422-427.

GREFENSTETTE, J .J . [1986], Optimization of Control Parameters for Genetic Algorithms,
IEEE Trans. Systems Man Cybernetics 16, 122-128.

GREFENSTETTE, J .J . [1987], Incorporating Problem Specific Knowledge into Genetic Algo-
rithms, in L. Davis, Genetic Algorithms and Simulated Annealing, Pitman, pp. 42-60.

GREFENSTETTE, J . J . , R. GOPAL, B. ROSMAITA, AND D. VAN GUCHT [1985], Genetic
Algorithms for the Traveling Salesman Problem, Proc. 1st Int. Conf. Genetic Algorithms
and Their Applications, Lawrence Erlbaum Ass., pp. 160-168.

JOG, P., J.Y. SUH, AND D. VAN GUCHT [1989], The Effects of Population Size, Heuris-
tic Crossover and Local Improvement on a Genetic Algorithm for the Traveling Salesman
Problem. Proc. 3rd Int. Conf. Genetic Algorithms, Morgan Kaufmann Publishers, pp.
110-115.

JOHNSON, D.S. [1990], Local Optimization and the Traveling Salesman Problem, Proc. 17th
Colloq. Automata, Languages, Programming, Springer-Vertag (in press).

JOHNSON, D.S., C.H. PAPADIMITRIOU, AND M. YANNAKAKIS [1985], How Easy is Local
Search?, Journal of Computer and System Science 37, 79-100.

LAWLER, E.L., J .K. LENSTRA, A.H.G. RINNOOY KAN, AND D.B. SHMOYS [1985], The
Traveling Salesman Problem, John Wiley & Sons.

116

LIN, S., AND B.W. KERNIGHAN [1973], An Effective Heuristic Algorithm for the Traveling
Salesman Problem~ Operations Research 21,498-516.

M/JHLENBEIN, H. [1989], Parallel Genetic Algorithms, Population Genetics and Combinatorial
Optimization, Proc. 3rd Int. Conf. Genetic Algorithms, Morgan Kaufmann Publishers,
pp. 416-421.

MUHLENBEIN, H., M. GORGES-SCHLEUTER, AND O. KR.~MER [1987], New Solutions to
the Mapping Problem of Parallel Systems: the Evolution Approach, Parallel Computing
4, 269-279.

M/JHLENBEIN, H., M. GORGES-SCHLEUTER, AND O. KR.~MER [1988], Evolution Algo-
rithms in Combinatorial Optimization, Parallel Computing 7, 65-85

MOHLENBEIN, H., AND J. KINDERMANN [1989], Dynamics of Evolution and Learning - To-
wards Genetic Neural Networks, in R. Pfeiffer, Connectionism in Perspective, Elsevier (in
press).

RECHENBERG, I. [1973], Optimierung Technischer Systeme nach Prinzipien der Biologischen
Evolution, Problemata, Fromann-Holzboog.

REINELT, G. [1989], Fast Heuristics for Large Geometric Traveling Salesman Problems, Report
hr. 185, Institut fiir Mathematik, Universit~it Augsburg.

SCHWEFEL, H.-P. [1977], Numerische Optimierung yon Computer-Modellen Mittels der Evo-
lutionsstrategie, Birkh~user Verlag.

SUH, J .Y., AND D. VAN GUCHT [1987], Incorporating Heuristic Information into Genetic
Search, Proc. 2rd Int. Conf. Genetic Algorithms, Lawrence Erlbaum Associates, pp. 100-
107.

