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Abs t rac t  

We briefly review previous attempts to generate near-optimal solutions of the Traveling 
Salesman Problem by applying Genetic Algorithms. Following the lines of Johnson [1990] we 
discuss some possibilities for speeding up classical Local Search algorithms by casting them into 
a genetic frame. In an experimental study two such approaches, viz. Genetic Local Search with 
2-Opt neighbourhoods and Lin-Kernighan neighbourhoods, respectively, are compared with the 
corresponding classical multi-start Local Search algorithms, as well as with Simulated Annealing 
and Threshold Accepting, using 2-Opt neighbourhoods. As to be expected a genetic organization 
of Local Search algorithms can considerably improve upon performance though the genetic 
components alone can hardly counterbalance a poor choice of the neighbourhoods. 

1 Introduct ion  

Genetic Algorithms (GAs) have been designed as general purpose search strategies and 
optimization methods; the GA catechism is laid down in Goldberg [1989a] and [1989b]. 
The  very name, though, might be misleading since the word "algorithm" alludes to 
a special method of solving a certain kind of problem, but  what  is really meant  is a 
general s t rategy or metaheuristic calling on principles of evolution. 

Roughly speaking, a Genetic Algorithm aims at producing near-optimal solutions by 
letting a set of random solutions undergo a sequence of unary and binary transforma- 
tions governed by a selection scheme biased towards high-quality solutions. Rechenberg 
[1973] had already experimented with a kind of Genetic Algorithm dubbed "erweit- 
erte Evolut ionsstrategie ' .  The  so-called "Evolutionary Strategies" now usually refer to 
methods  not embodying bit-string recombination, or crossover operators; see Schwefel 
[1977] for an exposition of pert inent optimization techniques and Ablay [1987] for an 
application to the TSP. 

Problems from combinatorial optimization are well within the scope of Genetic Al- 
gorithms, so it was inevitable that  the Traveling Salesman eventually became a victim 
of GA activities. Early a t tempts  closely followed the scheme of what Goldberg [1989a] 
now called a Simple GA and were actually ra ther  discouraging when compared with 
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standard TSP heuristics, for instance, the experiments of Grefenstette et al. [1985] lead 
to solutions as far as 25% from the optimum, in case of a 50-city TSP. 

The conclusion, however, that "Genetic Algorithms are not well suited for fine- 
tuning structures which are very close to optimal solutions" [Grefenstette, 1987] is a bit 
precipitate. As Suh & Van Gucht [1987] emphasize "it is ... essential if a competitive 
Genetic Algorithm is desired, to incorporate ... local improvement operators into the 
recombination step of a Genetic Algorithm". A resulting algorithm has then been 
called Heuristic GA, which in a way is a pleonasm since every GA incorporates - at 
least implicit - heuristic information about the problem. Since Lin & Kernighan [1973] 
the prevalent local improvement operator is a 2-exchange. Jog et al. [1989] further 
improve their Genetic Algorithm by incorporating Or-exchanges. 

Equally essential is the careful selection of the binary recombination operator, the 
crossover, that entails heuristic information; see again Sub & Van Gucht [1987]. For the 
TSP, Miihlenbein et al. [1988] propose a binary recombination operator that transplants 
a subpath of the first tour into the appropriately modified second tour. 

In this paper we address the question as to what extent concepts from population 
genetics can improve the performance of classical Local Search algorithms. For this 
we concentrate on a numerical study for the TSP in which the performance of Genetic 
Algorithms is compared with that of more classical search algorithms such as multi- 
start Local Search, Simulated Annealing and Threshold Accepting. The remainder of 
the paper is organized as follows. First we give a template of a general Genetic Local 
Search algorithm and show how it can be tailored to the TSP. Next we describe the 
setup of our numerical study and present the results that were obtained. The paper is 
concluded with a discussion of the potentials of Genetic Local Search algorithms, for 
now and in the future. 

2 G e n e t i c  Local  Search  

It is desirable to put the previous approaches to the TSP using GA into appropriate 
perspective. Every successful strategy to produce near-optimal solutions necessarily 
relies upon some efficient iterative heuristic, typically a Local Search technique. Well- 
known Local Search algorithms for the TSP are the 2-Opt algorithm (because of its 
efficiency), the Lin-Kernighan algorithm (because of its effectiveness), and special vari- 
ants of k-Opt algorithms (such as the Or-Opt algorithm). All these algorithms differ 
with respect to their neighbourhood structures. Any such structure specifies a set of 
neighbouring solutions that are in some sense close to that solution. The associated 
local improvement operator replaces a current solution by a neighbouring solution of 
better value if possible. Then Local Search - starting from some initial solution - pro- 
ceeds by applying this operator until a local optimum is reached. See Johnson et al. 
I1988] for more information on Local Search and its complexity. 

In practice, multi-start Local Search is used rather than a single run, i.e. the Local 
Search algorithm is repeated several times, retaining the best local optimum found. 
It is plausible that independent multiple runs of a Local Search algorithm generally 
will not constitute an effective procedure since, loosely speaking, every individual so- 
lution has to find its own way to near-optimal regions. Cooperation and competition 
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1. Init ialize:  Construct an initial population of solutions. 

2. Improve:  Use a Local Search algorithm to replace each solution in the current 
population by a better solution, e.g., a local optimum. 

3. Recombine:  Extend the current population by adding solutions obtained by re~ 
combining two or more solutions in the current population. 

4. Improve:  Use a Local Search algorithm to replace each offspring solution in the 
current population by a better solution, e.g., a local optimum. 

5. Select: Reduce the extended population to its original size according to prescribed 
selection rules. 

6. Evolve: Repeat steps 3 to 5 until some stopping criterion is met. 

Table 1: Genetic Local Search. 

between individual solutions should certainly contribute to the overall performance of 
an algorithm. Several authors have therefore devised a collective organization of Local 
Search algorithms, drawing ideas from population genetics; see e.g., Ackley [1987], Suh 
& Van Gucht [1987], Mfihlenbein et al. [1987, 1988], Miihlenbein & Kindermann [1989], 
Mfihlenbein [1989], Gorges-Schleuter [1989], Jog et al. [1989]. These approaches can be 
schematized as is shown in Table 1. This scheme is just a template, which requires fur- 
ther refinements in order to design a successful algorithm. We will now briefly mention 
a number of options in each step. 

As to initialization, one would often generate random populations. At least in the 
case of the TSP, there is a wealth of tour construction heuristics that could be used to 
make up an initial population of medium quality; see Lawler et al. [1985], or Johnson 
[1990]. 

The Local Search algorithm of choice in the improvement step should simply be 
the best one available that meets given time capacity constraints. For the TSP this 
is - beyond doubt - the heuristic due to Lin & Kernighan [1973]. In case that severe 
time restrictions are imposed one can still use a truncated version of the Local Search 
algorithm such that it goes through only a small number of iterations. 

Besides the, carefully designed binary recombination operators one may also intro- 
duce operators of higher arities such as consensus operators, that fix edges common 
to most TSP tours of a current population; see Mfihlenbein [1989], cf. the reduction 
procedure of Lin & Kernighan [1973]. 

Selection can be realized in a number of ways: one could adopt the scenario of 
Goldberg [1989a] or use deterministic ranking. Further it matters whether new recom- 
bined offspring solutions compete with the parent solutions or simply substitute them. 
A promising modification of recombination and selection involves the design of a pop- 
ulation structure that defines proximity between positions of individuals, resulting in 
overlapping cliques, called demes. Then recombination and selection is restricted to 
take place only among the individuals from each deme; see Gorges-Schleuter [1989]. 
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3 N u m e r i c a l  R e s u l t s  

We have tested two basic versions of Genetic Local Search algorithms for the TSP. 
Both algorithms depart from random populations of solutions, the population sizes 
being variable and dependent on the problem instances. The first one uses the 2- 
Opt neighbourhood structure for the Local Search in the improvement step, so that 
the standard 2-Opt heuristic is performed on each individual tour. The second one 
uses the more complicated Lin-Kernighan neighbourhood structure, thus yielding a 
pair of improvement operators, viz., the dynamical k-exchange and the additional 4- 
exchange as described in the original paper of Lin & Kernighan [1973]. We adopted the 
implementation due to Lageweg (CWI Amsterdam), disregarding the optional reduction 
part. 

In both algorithms recombination is done by taking two tours at random in the 
current population and implanting a carefully chosen subpath of one of the tours - 
containing at most one third of all cities - into the other one, in essentially the same 
way as was proposed by Miihlenbein et al. [1988] and Gorges-Schleuter [1989]. 

Selection is executed by simply collecting the best tours of the extended population. 
The algorithm stops when either all tours in the current population have the same length 
or the length of the best tours did not improve within five successive generations. 

We compared the performance of the above two algorithms with that of the cor- 
responding multi-start Local Search algorithms, as well as with Simulated Annealing 
(SA) and its deterministic variant Threshold Accepting (TA) due to Dueck & Scheuer 
[1988]. Both SA and TA use the 2-Opt neighbourhood structure. For Lin-Kernighan 
and TA the original FORTRAN code was translated to PASCAL (in a straightforward 
manner), so that all six programs were in PASCAL. Moreover, care was taken to have 
identical data structures and subroutines wherever possible. Our experimental study 
is based on a comparison of the statistical averages of the tour lengths of the final 
solutions obtained by applying the six algorithms five times each to eight well-known 
instances of the TSP, ranging from 48 up to 666 cities. For each instance, the algorithms 
are all allowed an almost equal amount of running time. So we focus on effectiveness 
rather than efficiency. The reference points are given by SA according to the cooling 
schedule of Aarts & Van Laarhoven [1985], with the parameter value $ = 1. In order 
to have the stopping criterion for the two Genetic Local Search algorithms fulfilled just 
within the time bounds provided by each run of SA, we adjusted the free parameter, the 
population size~ accordingly. Indeed, the larger the populations become, the more di- 
versity we get and thus longer running times. Table 2 gives the average deviations from 
the known optimal solutions. The genetic versions Gen2-Opt and GenLK of 2-Opt and 
Lin-Kernighan, respectively, perform clearly better than their multiple-run companions. 
Moreover, GenLK is superior to the other algorithms. In contrast to the 2-Opt and the 
LK variants, the outcomes for SA and TA do not change considerably with the problem 
sizes; the average deviations from an optimum are 2.4% for SA and 2.0% for TA over 
all instances. 

Now, let us have a closer look at the numbers of iterations (trials or runs) that were 
needed to arrive at the solutions from Table 2. It is interesting to compare Mult2-Opt 
and Gen2-Opt - and the two LK versions - in this respect. See Table 3: Gen2-Opt allows 
3.2 to 9.2 more single runs of 2-Opt than Mult2-Opt - the corresponding numbers for LK 
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Instance 

GRO48 
TOM57 
EUR100 
GRO120 
LIN318 
GRO442 
GRO532 
GRO666 

SA TA 
6 1 . 8 9 ' i . 6 5  1.35 

10 1.94 2.88 1.34 

8~66 2.59 3.41 3.23 
2.94 2.01 4.57 

1600 2.37 1,27 6.35 
4100 2.60 1.31 9.29 
8600 2.77 1,79 8.34 

17000 2.19 1.70 8.67 

Mul t2-Opt  Mul tLK Gen2-Opt  GenLK 
0 
0 
0 
0.08 
0.37 
0.27 
0.37 
1.18 

0.19 
0.50 
1.15 
1.42 
2.02 
3.02 
2.99 
3.45 

0 
0 
0 
0.05 
0.13 
0.19 
0.17 
0.36 

Legend to the table: 

: Average running time in seconds on a VAX 8650 under VMS 5.1 
: Simulated Annealing with 2-Opt neighbourhoods 
: Threshold Accepting with 2-Opt neighbourhoods 
: Multi-start Local Search with 2-Opt neighbourhoods 
: Multi-start Local Search with Lin-Kernighan neighbourhoods 
: Genetic Local Search with 2-Opt neighbourhoods 
: Genetic Local Search with Lin-Kernighan neighbourhoods 

: instance 
: instance 
: instance 
: Instance 
: mstance 
: instance 
: instance 
: instance 

SA 
TA 
Mult2-Opt 
MultLK 
Gen2-Opt 
GenLK 

G RO48 
TOM57 
CUR100 
GRO120 
LIN318 
GRO442 
GRO532 
GRO666 

with 48 cities due to GrStschel 
with 57 cities due to Karg & Thompson 
with 100 cities due to Aarts & Van Laarhoven 
with 120 cities due to GrStschel 
with 318 cities due to Lin & Kernighan 
with 442 cities due to GrStschel 
with 532 cities due to GrStschel 
with 666 cities due to GrStschel 

Table 2: Performance comparison of six Local-Search-based algorithms: average rein- 
tive deviation from the optimal tour length in ~o for eight well-known instances of the 
Traveling Salesman Problem. 

are 1.2 and 2.7, respectively - al though the genetic variants still have to spend additional 
t ime on recombinat ion and selection. It  thus pays off when intermediate solutions are 
of higher quality. Note tha t  the populat ion sizes forced by the experimental  design are 
quite small: for GenLK the sizes range from 8 to 10 while the range is 14 to 56 in the 
case of Gen2-Opt .  

Similar exper iments  have been carried out for other t ime conditions, for example  
using ~ = 0.1 in the cooling schedule of the SA algorithm. The obtained results show a 
similar behaviour  as those obtained for $ = 1. Fur thermore,  we have run experiments  
where heavy t ime constraints were imposed. Under such circumstances t runcat ions 
of 2-Opt  or Lin-Kernighan were needed in the improvement  step in order to achieve 
sat isfactory results. The  populat ion sizes ranged f rom 10 to 30 and were thus smaller 
than  recommended  for Simple GAs design by Grefenstet te  [1986]. 
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Instance SA TA Mult2-Opt MultLK Gen2'Opt GenLK 
GRO48 
TOM57 
EUR100 
GRO120 
LIN318 
GRO442 
GRO532 
GRO666 

89,112 
145,236 
668,250 

1,135,260 
15,221,706 
34,988,499 
61,442,010 

112,494,060 

180,000 
300,000 

1,800,000 
2,400,000 

45,000,000 
120,000,000 
246,000,000 
450,000,000 

40 
41 
67 
64 
99 

108 
116 
122 

19 
14 
31 
30 
37 
67 
77 
45 

140 
140 
216 
216 
390 
720 
954 

1,120 

24 
32 
40 
48 

100 
100 
120 
100 

Table 3: Total numbers o/ trials (SA, TA), numbers o/ single runs (MultP-Opt, MultLK), 
and population sizes times generation numbers (GenP-Opt, GenLK), respectively, for the 
data in Table 2. 

4 D i s c u s s i o n  

To investigate the potentials of Genetic Local Search in combinatorial optimization, we 
applied two pertinent algorithms to the TSP. The TSP offers a great challenge since 
there exists a plethora of approximative algorithms for this problem that serve as a good 
comparative standard. Among these, the algorithms based on exchange heuristics are 
the widest used ones, with the Lin-Kernighan heuristic as the uncontested champion; 
cf. Johnson [1990]. We decided to implement Genetic Local Search - incorporating the 
2-Opt and Lin-Kernighan heuristics - in a straightforward way: only a single parameter, 
i.e. the population size, has to be chosen by the user in advance. It is therefore not 
necessary to first calibrate a whole bunch of parameters in order to get reasonably good 
solutions. Our experimental study indicates that Genetic Local Search is consistently 
superior to the notorious multi-start Local Search. With larger problem sizes it becomes 
apparent that this simplistic strategy tends to strand at local optima of only moderate 
quality, so that the SA and TA algorithms eventually beat Gen2-Opt in this experiment. 
Certainly, both Gen2-Opt en GenLK can be improved further by integrating more 
subroutines inferred from population genetics; see Miihlenbein [1989.]. Still, GenLK 
seems to outperform the ~'champions" ASPARAGOS and TA on the TSP. This is not 
really surprising since the much poorer 2-Opt heuristic - or a truncation thereof - is 
embedded in the latter two algorithms. The additional use of Or-Opt, or Or-exchanges, 
does not seem to provide strinkingty better results either; cf. Mfihlenbein et al. [1988] 
and Jog et al. [1989]. One word of caution is in order here: there is an ungoing confusion 
between "proto-heuristic" - Local Search technique and crossover - for a specific problem 
and "metaheuristic" - general purpose solution strategy- for organizing the particular 
proto-heuristic effectively. It is thus notoriously spoken of the SA and the TA algorithms 
for the TSP although either procedure embodies a specific heuristic operator, viz., the 
2-exchange. We have refrained from including SA and TA endowed with dynamic k- 
exchange instead in our experimental study since this would have required extra testing 
of appropriate cooling schedules and threshold sequences. Anyway, Genetic Local Search 
should not be viewed as being opposed to SA or TA because elements of these strategies 
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can be implemented in Genetic Local Search at the improvement or selection step. A 
genetic organization of some basic Local Search algorithms would constitute only one 
out of many implementation devices that are necessary in order to cope with very 
large problem sizes; see concluding remarks and announced research in Johnson [1990]. 
In the case of the TSP with thousands of cities, some hierarchical structuring of the 
solution strategy seems to be unavoidable; for a pertinent approach commencing by 
a geometrical clustering of the cities; see Reinelt [1989]. Then Genetic Local Search 
techniques may enter into any level of a hierarchically organized strategy to further 
improve intermediate "solutions. 
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