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I Péter Biró
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I Need for donors
I Deceased donors

I UK: 6980 patients on transplant list, 1453 transplants carried
out (2007-08)

I Median waiting time: 841 days (adults), 164 days (children)
based on patient registrations during 2000-03

I Source: UKT

I Living donors
I 2007: 36% of all kidney transplants from living donors

(Source: UKT), but. . .
I Blood type incompatibility (e.g., A 6−→ B)
I Positive crossmatch (tissue-type incompatibility)
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is possible between them.

We consider these pairs as single
vertices of a directed graph,
D = (V ,A).

(i , j) ∈ A if and only if donor i is
compatible with patient j .

The weight of an arc is the
score of the corresponding dona-
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A score (0-89) is given to each arc (i , j):

I Location points (0 or 20)
I 20 if di and pj are in the same “area”, 0 otherwise

I Sensitisation points (0-50)
I Based on calculated sensitisation (“panel reactive antibody”

test) % divided by 2

I HLA mismatch points (0, 5, 10 or 15)
I HLA (“Human Leukocyte Antigen”) mismatch levels

determine tissue-type incompatibility

I Donor-donor age difference (0 or 3)
I 3 points if donor-donor age difference ≤ 20 years, 0 otherwise

I “Final discriminator” involving actual donor-donor age
difference
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The optimisation problems

A set of exchanges is a permutation of V , s.t. i 6= π(i) implies
(i , π(i)) ∈ A(D).

A vertex i ∈ V is covered by π if π(i) 6= i .

A set of exchanges is optimal if:

1. the number of vertices covered by π is maximum;

2. subject to (1), the sum of the weights is maximum (i.e., the
total score is maximum).

We study 3 cases:

I Only 2-cycles (pairwise exchanges) are possible.

I The cycle lengths are unrestricted.

I 2- and 3-cycles (pairwise and 3-way exchanges) are allowed.
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A set of pairwise exchanges in D corresponds to a matching in
G with the same weight, since w({i , j})= w(i , j) + w(j , i) for
every edge {i , j} of G .

The problem of finding a maximum weight matching in G can be
solved by Edmonds’ algorithm in polynomial time.
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With an edge of weight 0, between each patient and his/her donor.

A set of exchanges in D corresponds to a perfect matching in G
with the same weight.

The problem of finding a maximum weight perfect matching in G
can be solved in polynomial time.
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exchanges

we create a bipartite graph G , maximum weight perfect matching
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Test results for large instances:

Pairwise exchanges Unrestricted exchanges

nodes size weight time size weight longest c. time

100 46 971 0.3s 52 1458 (52) 0.3s

200 86 2662 0.9s 95 3215 (43) 1.0s

300 150 4151 2.0s 169 5459 (136) 2.3s

400 194 6760 3.4s 208 7662 (124) 4.0s

500 256 8161 5.4s 268 9056 (169) 7.1s

600 322 10404 7.9s 343 11606 (213) 9.5s

700 368 12495 10.4s 374 13520 (152) 14.3s

800 418 14447 14.0s 450 15370 (323) 20.0s

900 458 15543 17.2s 487 16703 (230) 24.2s

1000 516 17508 21.3s 530 18552 (191) 32.5s
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Pairwise and 3-way exchanges: a hard problem

The problem of finding a maximum weight set of exchanges
involving only 2- and 3-cycles is NP-hard

I Abraham et al, 2007

and APX-hard also

I Biró, Manlove and Rizzi, 2009

so. . .

I Either we use some polynomial-time heuristics, but we cannot
guarantee to find the optimum.

I Or we find an exact solution by an exponential algorithm.

But, in the latter case, instead of checking each possible exchange
we can reduce the running time by using some ideas...
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Integer linear program implemented in Matlab

We create an integer program as follows:

I list all the possible cycles (exchanges) of lengths 2 and 3 in
the directed graph as C1,C2, . . . ,Cm

I use binary variables x1, x2, . . . , xm

where xi = 1 ⇔ Ci belongs to an optimal solution

I build an n × m matrix A where n = |V | and Ai ,j = 1 ⇔ vi is
incident to Cj

I let b be an n × 1 vector of 1s

I let c be a 1 × m vector of values corresponding to the
optimisation criterion, e.g., cj could be weight of Cj

Then solve max cx s.t. Ax ≤ b

I Roth, Sönmez and Ünver, 2007

I Abraham et al., 2007
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s.t. Ax ≤ b
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Comparing the models: test results

Pairwise 2- and 3-way

nodes size weight size weight 3-c. size inc. weight inc.

30 11 627 16 979 4 5 352

35 11 554 16 1041 4 5 487

40 14 882 21 1414 6 7 532

45 16 1036 22 1554 6 6 518

50 17 1091 25 1709 6 8 618



Results from UKT matching runs

Matching run Apr 08 Jul 08 Oct 08 Jan 09 Apr 09
Number of pairs 76 85 123 126 122

Pairwise #2 cycles 2 1 6 5 5
exchanges size 4 2 12 10 10

weight 91 6 499 264 388

Pairwise #2 cycles 2 1 2 1 2
and 3-way #3 cycles 4 0 7 5 5
exchanges size 16 2 25 17 19

weight 620 6 1122 633 757

Unbounded size 22 2 33 28 28
exchanges weight 857 6 1546 1134 1275

longest c. 20 2 27 19 23

Chosen #2 cycles 2 1 6 5 5
solution #3 cycles 4 0 3 1 2
(UKT) size 16 2 21 13 16

weight 620 6 930 422 618
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Extensions to the basic model

These models can be easily modified to find

I an optimal set of pairwise and 3-way exchanges with the
fewest number of 3-cycles

I maximum cardinality maximum weight set of exchanges

I exchanges with altruistic donors

Future work

I Cycles of length 4 and greater

I Larger size of datasets


