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Abstract

Using an improved backtrack algorithm with sophisticated pruning techniques, we re-
vise previous observations correlating a high frequency of hard to solve Hamiltonian cycle
instances with the Gn;m phase transition between Hamiltonicity and non-Hamiltonicity.
Instead all tested graphs of 100 to 1500 vertices are easily solved.

When we arti�cially restrict the degree sequence with a bounded maximum degree,
although there is some increase in di�culty, the frequency of hard graphs is still low. When
we consider more regular graphs based on a generalization of knight's tours, we observe
frequent instances of really hard graphs, but on these the average degree is bounded by a
constant. We design a set of graphs with a feature our algorithm is unable to detect and so
are very hard for our algorithm, but in these we can vary the average degree from O(1) to
O(n). We have so far found no class of graphs correlated with the Gn;m phase transition
which asymptotically produces a high frequency of hard instances.

1. Introduction

Given a graph G = (V;E); jV j = n; jEj = m, the Hamiltonian cycle problem is to �nd a
cycle C = (v1; v2; : : : ; vn) such that vi 6= vj for i 6= j, (vi; vi+1) 2 E and (vn; v1) 2 E. As
for any NP-C problem, we expect solving it to require exponential time in the worst case
on arbitrary graphs (assuming P 6= NP). However, in recent years researchers examining
various NP-C problems such as SAT and graph coloring have discovered that the majority
of graphs are easy for their algorithms to solve. Only graphs with speci�c characteristics or
graphs which lie within a narrow band (according to some parameter) seem to be hard to
solve for these problems.

It is known (P�osa, 1976; Koml�os & Szemer�edi, 1983) that under a random graph model
(Gn;m) as the edge density increases there is a sharp threshold (the phase transition) such
that below that edge density the probability of a Hamiltonian cycle is 0, while above it the
probability is 1. Previous research (Section 2.1) suggested that there is a high correlation
of di�cult problems with instances generated with edge density near the phase transition.
Using an improved Hamiltonian cycle backtrack algorithm (Section 3) that employs various
pruning operators and an iterated restart technique, we observe no hard instances at the
transition for large n. Section 4 describes our results on Gn;m and related random graphs.

In an attempt to �nd a higher frequency of hard graphs, in Section 5 we examine a low
degree random graph class we call Degreebound graphs. However, these graphs are also
usually easy for our backtrack algorithm, although we do �nd a few hard graphs. Analysis
of these graphs indicates a test for non-Hamiltonian instances discussed in Section 5.3. In
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Section 6 we examine a graph class based on a generalization of the knight's tour problem.
These graphs are signi�cantly harder for our algorithm in general. In Section 7 we present a
constructed graph class which produces exponential behavior for our backtrack algorithm.

Our experimental results provide evidence that the average degree of a graph is not a
su�cient indicator for hard graphs for the Hamiltonian cycle problem. With our backtrack
algorithm, the phase transition regions of the Gn;m and Degreebound graph models are
generally asymptotically easy.

2. A Discussion of Hardness and Previous Work

The concept of hardness of instances and hard regions within graph classes, considered from
an empirical basis, is not easy to de�ne. In order to clarify what we mean, in this section
we present our notions of hardness, relating this to previous work.

2.1 What is Hardness?

A problem of size n is a set �n of instances. For the Hamiltonian cycle problem, �n is
the set of undirected graphs on n vertices. Any discussion of the hardness of a particular
instance of a problem is always with respect to an algorithm (or set of algorithms). In
general, di�erent algorithms will perform di�erently on the instance. Furthermore, for each
particular instance of Hamiltonian cycle there is an associated algorithm that either cor-
rectly answers NO or outputs a cycle in O(n) time. To meaningfully talk about the hardness
of an instance, we must assume a �xed algorithm (or a �nite class of algorithms) that is
appropriate for a large (in�nite) class of instances, and then consider how the algorithm
performs on the instance. Hardness of an instance is always a measure of performance
relative to an algorithm.

We are left with the question of how much work an algorithm must do before we consider
the instance hard for it. Note that for a single instance the distinction between polynomial
and exponential time is moot. Ideally, we would like to require the algorithm to take an
exponential (i.e. an for some a > 1) number of steps as size n increases. Note that empirical
corroboration of such is practically impossible for sets of large instances. In practice, we
must be content with evidence such as failure to complete within a reasonable time for
larger instances.

We would also like an instance to exhibit some robustness before we consider it hard for
a given algorithm. Ideally, for graph problems we would at a minimum require the instance
to remain hard with high probability under a random relabeling of the vertices. Relabeling
the vertices produces an isomorphic copy of the graph, preserving structural properties such
as degree, connectivity, Hamiltonicity, cut sets, etc. The design of algorithms is typically
based on identifying and using such properties, and as far as possible e�ciency should be
independent of the arbitrary assignment of labels.

Let us refer to a (probabilistic) problem class as a pair (�n;Pn), where Pn(x) is the
probability of the instance x given that we are selecting from �n. Problem classes are
sometimes called ensembles in the Arti�cial Intelligence literature (Hogg, 1998). The usual
classes for graph problems are Gn;p, where to generate an n vertex graph, each pair of
vertices is included as an edge with probability p, and Gn;m where m distinct edges are
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selected at random and placed in the graph. These two models are related (Palmer 1985).
For this paper we use the Gn;m model.

We do not consider mean or average run times in our de�nitions. The primary reason
is that for exponentially small sets of exponentially hard instances, it is impractical to
determine the average with any reasonable assurance. For example, if 1=2n of the instances
require �(n22n) time and the remainder are solved in O(n2) time then the average time is
quadratic, while if the frequency increases to 1=20:9n the average time is exponential. Even
for n = 100 it would be utterly impractical to distinguish between these two frequencies
with empirical studies.

Furthermore, and for similar reasons, if we want to promote a class as a benchmark class
for testing and comparing algorithms, low frequencies of hard instances are not generally
su�cient. We will say that a problem class is maximally hard (with respect to an algorithm
or set of algorithms) if the instances generated according to the distribution are hard with
probability going to one as n goes to in�nity.

As an example of maximally hard classes, empirical evidence suggests that a variety of
hidden coloring graph generators based on the Gn;p model are maximally hard for a large
variety of graph coloring algorithms (Culberson and Luo, 1993). These hard classes are
all closely related to a coloring phase transition in random graphs. In general, a phase
transition is de�ned by some parameterized probability distribution on the set of instances.
As the parameter is varied past a certain threshold value, the asymptotic probability of the
existence of a solution switches sharply from zero to one.

Phase transitions are commonly considered to be identi�ed with hard subsets of a par-
ticular problem (Cheeseman, Kanefsky, & Taylor, 1991). Many NP-C problems can be
characterized by a `constraint' parameter which measures how constrained an instance is.
Evaluation of a problem using this constraint parameter typically divides instances into
two classes: those that are solvable, and those that are unsolvable, with a sharp transition
occurring between them. When the problem is highly constrained, it is easily determined
that no solution exists. As constraints are removed, a solution is easily found.

Di�erent researchers (Cheeseman et al., 1991; Frank & Martel, 1995; Frank, Gent, &
Walsh, 1998) have examined phase transitions on random graphs for the Hamiltonian cycle
problem. The obvious constraint parameter is the average degree (or average connectivity)
of the graph. As the degree increases, the graph becomes less constrained: it becomes easier
both for a Hamiltonian cycle to exist and for an algorithm to �nd one. These researchers
have examined how Hamiltonicity changes with respect to the average degree. Frank et
al. (1998) and Frank and Martel (1995) experimentally veri�ed that when using the Gn;m

model the phase transition for Hamiltonicity is very close to the phase transition for bicon-
nectivity, which occurs when the average degree is approximately lnn (or m = n lnn=2) 1.
Cheeseman et al. (1991) experimentally con�rmed theoretical predictions by Koml�os and
Szemer�edi (1983) that the phase transition (for the Hamiltonian cycle problem) occurs when
the average degree is lnn + ln lnn. The papers also provided empirical evidence that the
time required by their backtrack algorithms increased in the region of the phase transition
and noted that the existence of very hard instances appeared to be associated with this
transition.

1. Note that the average degree equals 2m=n.
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As mentioned above, the k-colorable Gn;p class appears maximally hard for all known
algorithms with respect to a phase transition de�ned by n; p and k, where k � n= logb n
and b = 1=(1 � p). The Hamiltonian cycle Gn;m class on the other hand does not appear
maximally hard for any value of m. In fact, for large n our algorithm almost never takes
more than O(n) backtrack nodes and O(nm) running time.

We will use a much weaker requirement and say an instance is quadratically hard if it
requires at least n2 search nodes by the backtrack algorithm described in section 3. Note
that 
(n2) search nodes would take our algorithm 
(n3) time. For practical reasons, we will
also use a weaker de�nition for robustness, and say that an instance is robustly quadratically

hard if our algorithm uses at least n2 search nodes when the iterated restart feature is used
with a multiplying factor of 2. (See section 3 for program details). We say a class is
minimally hard if there is some constant � > 0 such that the probability of a hard instance
is at least � as n!1.

In Section 4 we examine Gn;m random graphs using our backtrack algorithm on graphs
of up to 1500 vertices. The empirical evidence we collect suggests that in contrast to the
graph coloring situation, the Hamiltonian cycle Gn;m class is not minimally quadratically
hard, even form at or near the phase transition, and even if we drop our minimal robustness
requirement.

Note that we do not dispute the claim that hard instances are more likely at the phase
transition than at other values of m, but rather claim that even at the transition the
probability of generating a hard instance rapidly goes to zero with increasing n.

2.2 Random Graph Theory and the Phase Transition

These results are not unexpected when one reviews the theoretical work on this graph class.
Since asymptotically the graph becomes Hamiltonian when an edge is added to the last
degree 1 vertex (Bollob�as, 1984), any algorithm that checks for a minimum degree � 2
will detect almost all non-Hamiltonian graphs. When the graph is Hamiltonian, various
researchers (Angluin & Valiant, 1979; Bollob�as, Fenner, & Frieze, 1987) have proven the
existence of randomized heuristic algorithms which can almost always �nd a Hamiltonian
cycle in low-order polynomial time. In particular, it is shown (Bollob�as et al., 1987) that
there is a polynomial time algorithm HAM such that

lim
n!1

Pr (HAM �nds a Hamilton cycle) =

8><
>:

0 if cn ! �1

e�e
�2c

if cn ! c
1 if cn !1

where m = n=2(lnn+ ln lnn+ cn).

Furthermore, as the authors point out, this is the best possible result in the sense
that this is also the asymptotic probability that a Gn;m graph is Hamiltonian, and is the
probability that it has a minimum degree of 2. In other words, the probability of �nding
a cycle is the same as the probability of one existing. Given that it is trivial to check the
minimum vertex degree of a graph, this does not leave much room for the existence of hard
instances (for HAM and similar algorithms).

Another relevant theoretical result is that there is a polynomial time algorithm which
with probability going to one, �nds some Hamiltonian cycle when a graph has a hidden
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Hamiltonian cycle together with extra randomly added edges(Broder, Frieze, & Shamir,
1994). For the algorithm to work, the average degree of a vertex needs only be a constant.
They claim the result can be easily extended to the case that the average degree is a growing
function of n. This is another indication that Hamiltonian graphs near the phase transition
will be easy to solve by some algorithm.

For a non-Hamiltonian graph to be hard for an algorithm it must contain a feature
preventing the formation of a Hamiltonian cycle which the algorithm cannot easily detect.
Suppose a backtrack algorithm does not check for vertices of degree one. The algorithm may
then require exponential backtrack before determining the non-Hamiltonicity of the graph,
since the only way it can detect this is by trying all possible paths and failing. However,
degree one vertices are easily detectable, and so are not good indicators of hard instances.
They also disappear at the phase transition.

Similarly, an algorithm might not check for articulation points, and as a result waste
exponential time on what should be easy instances. As n ! 1, the probability of an
articulation point existing (in Gn;m) goes to zero as fast as the probability of the existence
of a vertex of degree less than two. Other features can lead to non-Hamiltonicity of course,
such as k-cuts that leave k+1 or more components (Bondy & Murty, 1976), and these could
require time proportional to nk to detect. Under the assumption that NP 6=CO-NP there
must also exist a set of non-Hamiltonian instances which have no polynomial proof of their
status.

However, it seems that at the phase transition the larger the feature the less likely it
is to occur. In fact, the theoretical results summarized above indicate this must happen.
Although we know hard graphs exist, and we may expect these localized types of hard
graphs to be more frequent near the phase transition than elsewhere when using Gn;m to
generate instances, we also expect the probability of such instances to go to zero as n
increases.

3. An Overview of our Backtrack Algorithm

Our backtrack algorithm comes from Vandegriend (1998), and is based upon prior work on
backtrack Hamiltonian cycle algorithms (Kocay, 1992; Martello, 1983; Shufelt & Berliner,
1994). It has three signi�cant features which we will discuss. First, it employs a variety of
pruning techniques during the search that delete edges that cannot be in any Hamiltonian
cycle. This pruning is usually based upon local degree information. Second, before the
start of the search the algorithm performs initial pruning and identi�es easily detectable
non-Hamiltonian graphs. The third feature is the use of an iterated restart technique.
Additionally, the program provides the opportunity to order the selection of the next vertex
during path extension using either a low degree �rst ordering, a high degree �rst ordering,
or a random ordering. We normally use the low degree �rst ordering.

At each level of the search, after adding a new vertex to the current path, search pruning
is used. The pruning identi�es edges that cannot be in any Hamiltonian cycle and removes
them from the graph. (Note that if the algorithm backtracks, it adds the edges deleted
at the current level of the search back to the graph.) The �rst graph con�guration that
the pruning looks for is a vertex x with 2 neighbours a; b of degree 2. Since the edges
incident on a and b must be used in any Hamiltonian cycle, the other edges incident on
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x can be deleted. The second graph con�guration that the pruning looks for is a path
P = (v1; : : : ; vk) of forced edges (so v2 : : : vk�1 are of degree 2). If k < n then the edge v1; vk
cannot be in any Hamiltonian cycle and can be deleted. If as a result of pruning, the degree
of any vertex drops below 2, then no Hamiltonian cycle is possible and the algorithm must
backtrack. The use of these operators may yield new vertices of degree 2 and therefore the
pruning is iterated until no further changes occur.

A pruning iteration takes O(n) time to scan the vertices to check for vertices with two
degree 2 neighbors, and O(n) time to extend all forced degree two paths. Since the iterations
terminate unless a new vertex of degree two is created, at most n iterations can occur. At
most O(m) edges can be deleted. On backing up from a descendant, the edges are replaced
(O(m)) and the next branch is taken. Thus, an easy upper bound on the pruning time for
a node searching from a vertex of degree d is O(d(n2 +m)), but this is overly pessimistic.
Note that along any branch from the root of the search tree to a leaf, at most n vertices
can be converted to degree 2. Also note that along each branch each edge can be deleted at
most once. If the degree is high we seldom take more than a few branches before success.
The implementation is such that when several vertices have two neighbors of degree two at
the beginning of an iteration, all redundant edges are removed in a single pass taking time
proportional to n plus the number of edges removed and checked. In practice, on Gn;m

graphs it typically takes O(n+m) time per search node on very easy Hamiltonian instances
as evidenced by CPU measurements, with harder instances taking at most twice as long
per search node.

Before the start of the recursive search, our algorithm prunes the graph as described
above. Then the algorithm checks to see if the graph has minimum degree � 2, is connected,
and has no cut-points. If any of these conditions are not true, then the graph is non-
Hamiltonian and the algorithm is �nished.

Some non-Hamiltonian instances may be very easy or very hard to detect, depending
on which vertex the algorithm chooses as a starting point. In these cases local features
exist that could be detected if the algorithm starts near them, but otherwise the algorithm
may backtrack many times into the same feature without recognizing that only the feature
matters. The seemingly hard instance on Gn� for n = 100 discussed in Section 4.2 is such a
case. This is one type of \thrashing," and is a common problem in backtracking algorithms.
For example, Hogg andWilliams (1994) noticed a sparse set of very hard 3-coloring problems
that were not at the phase transition. Baker (1995) showed that these instances were most
often hard as a result of thrashing, and that they could be made easy by backjumping or
dependency-directed backtracking.

To improve our algorithm's average performance we use an iterated restart technique.
The idea is to have a maximum limit M on the number of nodes searched. When the
maximum is reached, the search is terminated and a new one started with the maximum
increased by a multiple k (so Mi+1 = kMi). Initially, M = kn. In our experiments, we
used k = 2. By incrementing the search interval in this way, the algorithm will eventually
obtain a search size large enough to do an exhaustive search and thus guarantee eventual
completion. The total search will never be more than double the largest size allocated.

Although random restarts are sometimes e�ective on non-Hamiltonian graphs, they are
more frequently e�ective on Hamiltonian instances. During search, as edges are added
to the set of Hamiltonian edges, the net e�ect is to prune edges from the graph. For a
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Hamiltonian graph to be hard, the algorithm must select some set of edges which causes the
reduced graph to become non-Hamiltonian, and this non-Hamiltonian subgraph must itself
be hard to solve. With iterated restart, for the instance to remain hard the algorithm must
make such mistakes with high probability. As a result, we expect fewer hard Hamiltonian
instances.

Random restarts are an integral part of randomized algorithms (Motwani & Raghavan,
1995) and are used frequently in local search and other techniques to escape from local
optima (Johnson, Aragon, McGeoch, & Schevon, 1991; Langley, 1992; Selman, Levesque,
& Mitchell, 1992; Gomes, Selman, & Kautz, 1998). Further discussion of the impact of
restarts can be found in the analysis of the experiments on Gn;m graphs in Section 4.

The algorithm also provides for the possibility of checking for components and cut
vertices during recursive search after the pruning is completed at each search node. The
overhead of this extra work is O(n+m) per search node and rarely seems to pay o�. Except
where noted these checks were not used in this study.

The experimental results reported in the remaining sections were run on a variety of
machines, the fastest of which is a 300 MHZ Pentium II. All CPU times reported are
either from this machine, or adjusted to it using observed speed ratios on similar tests.
Our algorithm terminated execution after 30 minutes2. Experimental results are frequently
reported as the ratio of the number of search nodes over the number of vertices. This node
ratio is used because we feel it provides a better basis for comparing results across di�erent
graph sizes, since many of our results are O(n). Note that the number of search nodes is
calculated as the number of recursive calls performed.

We used several di�erent methods of verifying the correctness of our algorithm and our
experimental results. The algorithm was independently implemented twice, and performs
automatic veri�cation of all Hamiltonian cycles found. We performed multiple sets of exper-
iments on generalized knight's circuit graphs and compared the results (graph Hamiltonian
or not) to our theoretical predictions. Initial sets of experiments on Gn;m graphs and De-
greebound graphs were executed using two di�erent pseudo-random number generators, and
were repeated multiple times. Our source code is available as an appendix.

4. Gn;m Random Graphs

We consider random graphs of 16 to 1500 vertices with m = dn=2. From previous work
(Cheeseman et al., 1991; Koml�os & Szemer�edi, 1983) we expect the phase transition to occur
when d � lnn+ ln lnn. Thus we specify the constraint parameter (or degree parameter)
k = d =(lnn+ ln lnn).

4.1 Gn;m Using Restart

For the premiere experiment, we generate Gn;m graphs with number of vertices n = 16 : : : 96
in steps of 4, n = 100 : : : 500 in steps of 100, n = 1000 and n = 1500. For each size n, the
degree parameter k ranges from 0:5 : : : 2:0 (step size 0.01 from k = 1:00 : : : 1:20, step size

2. Since the time limit of 30 minutes is at least two orders of magnitude greater than the typical running

time, the limit is rarely used. On slower machines this limit was increased. The Knight's tour graphs
reported in Section 6 were run on a slower machine with a 30 minute time limit, although some instances
were run much longer.
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Figure 1: % of Hamiltonian graphs as a function of graph size and degree parameter for
Gn;m graphs.

0.10 for other ranges of k). We generate 5000 graphs for each data point and execute our
backtrack algorithm once on each graph. This is a grand total of 4.76 million graphs, of
which 1.19 million are of 100 or more vertices.

We use the pruning described in section 3, check for components and articulation points
after the initial pruning, and use iterated restart with a multiplicative factor of 2. We do
not check for components or articulation points during the recursive search.

We expect the phase transition for biconnectivity to be very similar to the phase tran-
sition for Hamiltonicity (Cheeseman et al., 1991) and we expect the phase transition for
minimum degree greater than 1 to be almost identical to the phase transition for Hamil-
tonicity (Bollob�as, 1984; Koml�os & Szemer�edi, 1983). Our experimental results matched
these expectations very closely. For the larger graphs of 100 to 1500 vertices, the percentage
of Hamiltonian graphs is plotted against the degree parameter in Figure 1. We found that
the 50% point at which half the graphs are Hamiltonian occurs when the degree parameter
k � 1:08 � 1:10. More interestingly, all the curves pass close to a �xed point near k = 1,
and it seems they are approaching a vertical line at this point. That is, they appear to be
converging on k � 1 as a phase transition, precisely as theory predicts.
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n 100 200 300 400 500 1000 1500
Nodes 7:5n 7:0n 3:3n 7:0n 3:4n 3:3n 7:0n

Table 1: Maximum Search Nodes on Gn;m for Large n

All graphs were solved, that is were either determined to be non-Hamiltonian, or a
Hamiltonian cycle was found. We are primarily interested in asymptotic behavior, since
theories concerning the relation of the phase transition to hard regions are necessarily
asymptotic in nature. For graphs of 100 vertices or more, the longest running time was
under 11 seconds, on a graph of 1500 vertices using 10,500 (or 7:0n) search nodes to �nd a
Hamiltonian cycle.

All of the 549,873 non-Hamiltonian graphs in this range were detected during the initial
pruning of the graph, and thus no search nodes were expanded. Of the 640,127 Hamiltonian
Gn;m graphs, the vast majority ( 629,806 or 98:3%) used only n search nodes, which means
that the algorithm did not need to backtrack at all3. No quadratically hard graphs were
found in this range. Table 4.1 lists the maximum number of search nodes expressed as a
factor of n to illustrate the linearity of the search tree.

These results appear to di�er from those of Frank et al. (1998), who found graphs
which took orders of magnitude more search nodes to solve. (Their hardest graph took
over 1 million nodes.) We believe this is due to two factors. Firstly, the algorithm used to
generate the results in their paper did not do an initial check for biconnectivity nor did it
use all of the pruning techniques used in our algorithm. Secondly and more importantly, on
the small random graphs they used (� 30 vertices) the probability of obtaining certain hard
con�gurations (such as biconnected and non-Hamiltonian or non-biconnected and minimum
degree � 2) is much higher than when n is larger, as we discussed in section 2.2.

The experiments on small Gn;m graphs (between 16 and 96 vertices) con�rm this con-
jecture. In this case we do �nd a small number of quadratically hard graphs, and a few
very hard graphs. We consider for purposes of this paper, that a very hard graph on less
than 100 vertices is any that takes at least 100,000 search nodes to solve. The very hard
graphs from this set of runs are given in Table 4.1.

Note that the very hardest took less than two minutes to solve, making our designation
of \very hard" questionable. Also, note that the smallest graph in this set has 36 vertices,
somewhat larger than the 30 vertex examples found by Frank et al. (1998). This is likely
because we do articulation point checking initially and better pruning. Finally, all of these
very hard graphs are non-Hamiltonian, and all occur in classes that produce less than 50%
Hamiltonian graphs. The hardest Hamiltonian graph in contrast required only 19,318 search
nodes, on a graph of 68 vertices with degree parameter 0.9.

In Figure 2 we plot the number of graphs that are quadratically hard for these small
graphs. For n from 68 to 92, all non-Hamiltonian graphs were detected during initial
pruning. One non-Hamiltonian graph at n = 96 required search (254:1n nodes). Notice
that the number of quadratically hard Hamiltonian graphs is far less than the number of
quadratically hard non-Hamiltonian graphs, and peaks for larger n. This is in accordance
with the discussion of random restarts in Section 3.

3. With 5% error in this measurement, this means that the algorithm might have backtracked over a
maximum of 0:05n search nodes.
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Vertices Degree Parameter Seconds Search Nodes Ratio

36 1.11 94.7 1179579 32766.1

40 1.00 36.5 638946 15973.6
40 1.07 18.7 327603 8190.1

44 1.00 12.3 156694 3561.2
44 1.04 20.0 293664 6674.2

48 1.02 91.2 1280135 26669.5
48 1.09 107.0 1243647 25909.3

Table 2: The Hardest Small Graphs
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Figure 2: The Number of Quadratically Hard Graphs for Small n.
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We ran additional tests for n from 32 to 54 in steps of 2, with the degree parameter
ranging from 0.96 to 1.16 with step size 0.01, generating 5000 graphs at each point. In
this case, we invoked articulation point checking at each search node. Again all graphs
were solved without timing out, and some very hard graphs were found, all of them non-
Hamiltonian. One 50 vertex graph required 9,844,402 search nodes, and required close to
20 minutes to solve. It is unclear whether the extra checking helped; the smallest graph
requiring at least 100,000 nodes had 32 vertices, while the smallest requiring over a million
had 40 vertices. Overall, the results were very similar to the �rst set of experiments on
small graphs.

4.2 Gn� Using Restart

Clearly, the more edges we add to a graph, the more likely it is to be Hamiltonian. It
also seems that once a graph is Hamiltonian, adding more edges makes it less likely to be
hard. In an attempt to �nd hard graphs for larger n, we modi�ed the Gn;m generator so
that instead of adding a �xed number of edges, it instead added edges until every vertex
has degree at least two, and then stops. In a sense this produces graphs exactly on the
Gn;m phase transition, since a minimum degree of two is the condition that asymptotically
distinguishes Hamiltonian from non-Hamiltonian graphs with high probability. We refer to
this distribution as the Gn� model.

Initially we ran 1000 graphs with this generator for n from 100 to 500, but no hard
instances were found. We increased the search to 10,000 graphs at each n, and included a
search at n = 1000. Out of all these graphs, we found one very hard graph on 100 vertices.
Even after a second attempt using more than 26 million search nodes, it was still unsolved.
Doing post-mortem analysis, we checked for cut sets of size 2 and 3 that would leave 3
or 4 (or more) components and found none. We also checked the pruned graph using the
odd degree test mentioned in Section 5.3, but this too failed to show it is non-Hamiltonian.
Finally, we set up our fast machine with unlimited time and no restarts. Three search nodes
and less than 0.1 seconds later it was proven non-Hamiltonian.

Detailed analysis (see the appendix) shows that the graph has a small feature that is
easily detected when one of a few starting points is selected. Because we use an exponentially
growing sequence of searches, we only use a few restarts. In a test of 100 random starts
with a 3 second time limit 7 trials succeeded, using from 2 to 5 search nodes each to prove
the graph non-Hamiltonian.

We also ran 10,000 Gn� graphs at each even value of n from 16 to 98. The smallest
instances requiring at least 100,000 search nodes were at n = 50. Only 5 graphs requiring
more than a million nodes were found for n < 100, two at n = 62, one at n = 70 and two at
n = 98. Two of these (one at 62, one at 98) initially timed out, but were solved in second
attempts in about 1/2 hour. Neither was susceptible to an attack by 100 restarts as on the
100 vertex graph.

Table 4.2 shows the number of non-Hamiltonian graphs for each n � 100. All of these
except the one mentioned above were detected during initial pruning. The remaining graphs
were all easily shown to be Hamiltonian, with a maximum search ratio of 7.0.

Clearly the probability of non-Hamiltonian graphs drawn from Gn� is decreasing with
n. It seems likely that the probability of hard instances is also going to zero.
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n 100 200 300 400 500 1000
Non-Ham 154 56 29 20 15 3

Table 3: Number of Non-Hamiltonian Graphs from Gn�

n k = 1:00 k = 1:50 k = 2:00

500 0.20 0.20 0.21
1000 0.43 0.50 0.60
1500 0.68 0.80 0.87

Table 4: CPU Seconds per 1000 Search Nodes for Gn;m Graphs

4.3 Gn;m Without Using Restart

We wanted to know how important the restart feature is asymptotically. We ran 1000 Gn;m

graphs for n from 100 to 1500, for each of the parameter settings in the premiere experiment,
but this time using the backtrack algorithm without the iterated restart feature. As before,
all non-Hamiltonian instances were detected during initial pruning. One quadratically hard
Hamiltonian graph was found at n = 300, with degree parameter 1.20, which required
163,888, or 1:82n2 search nodes and took 28.5 seconds. A few other graphs were nearly
quadratic, for example on n = 1500 there were 4 graphs that required 0:15n2, 0:19n2,
0:36n2 and 0:47n2 search nodes. It seems that asymptotically, even in the absence of
iterated restarts, the Gn;m class does not provide hard instances with high probability.

4.4 Gn;m Summary

Based on a set of timing runs, we present in Table 4.4 an indication of how running time per
search node increases with the number of vertices n and degree parameter k. Because the
times are usually so short, we cannot get reliable numbers for n < 500. The times shown
are for the evaluation of 1000 search nodes, and are averaged (total CPU divided by total
nodes searched) over graphs that were solved in less than 1:1n search nodes. For instances
that require signi�cantly more search nodes, the time per 1000 nodes seems to increase
somewhat, but there are so few examples for large n that we are unable to provide exact
estimates. For n = 15004, the average time per 1000 nodes for instances requiring more
than 2n search nodes is 0.89 seconds at k = 1:00, 1.04 at k = 1:50 and 1.31 at k = 2:00.
Note that this includes at least one instance that took 7n search nodes. This table indicates
that the growth is approximately linear in n+m.

The experimental evidence clearly indicates thatGn;m random graphs are asymptotically
extremely easy everywhere, despite the existence of a phase transition. Our results temper
the �ndings of the various researchers (Cheeseman et al., 1991; Frank et al., 1998; Frank
& Martel, 1995) studying phase transitions and the Hamiltonian cycle problem. Cheese-
man et al.'s explanation of their observed increase in di�culty near the phase transition
was that \on the border [between the regions of low and high connectivity] there are many

4. n = 1500 is the only value of n for which we have at least one instance requiring � 2n search nodes at
each of the three values of k. The times for 1000 and 1500 come from separate runs on 1000 graphs per
sample point.
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almost Hamiltonian cycles that are quite di�erent from each other . . . and these numerous
local minima make it hard to �nd a Hamiltonian cycle (if there is one). Any search pro-
cedure based on local information will have the same di�culty." (Cheeseman et al., 1991).
Unfortunately, while their observations were accurate, their observed hardness was due to
their algorithms and the limited size of the graphs tested, not to intrinsic properties of the
Hamiltonian cycle problem with respect to the phase transition on Gn;m graphs. We have
shown that an e�cient backtrack algorithm �nds the phase transition region of Gn;m graphs
easy in general.

5. Degreebound Graphs

Intuitively, the reason that it is so hard to generate a hard instance from Gn;m is that by
the time we add enough edges to make the minimum degree two, the rest of the graph is
so dense that �nding a Hamiltonian cycle is easy. Alternatively, we see that to create a
non-Hamiltonian property or feature, we must have regions of low degree, while at the same
time meeting the minimal requirements that make the instance hard to solve. This problem
can be characterized as one of high variance of vertex degrees. The only region where we
get even a few hard graphs from Gn;m is when n is small enough that the average degree is
also low.

To avoid the consequences of this degree variation, in this section we use a di�erent
random graph model Gn(d2 = p2; d3 = p3; : : :) for which n is the number of vertices and
di = pi is the percentage of vertices of degree i. As an example G100(d2 = 50%; d3 = 50%)
represents the set of graphs of 100 vertices in which 50 are of degree 2 and 50 are of degree
3. We refer to a graph generated under this model as a Degreebound graph. In this paper
we only consider graphs whose vertices are of degree 2 or 3.

It is quite di�cult to generate all graphs with a given degree sequence with equal proba-
bility (Wormald, 1984). Instead, we adopt two variations which generate graphs by selecting
available edges. In each case each vertex is assigned a free valence equal to the desired �nal
degree. In version 1 pairs of vertices are selected in random order, and added as edges
if the two vertices have at least one free valence each. This continues until either all free
valences are �lled (a successful generation) or all vertex pairs are exhausted (a failure). If
failure occurs, the process is repeated from scratch. Initial tests indicate about 1/3 of the
attempts fail in general. For e�ciency reasons, in the implementation an array of vertices
holds each vertex once. Pairs of vertices, v; w are selected at random from the array and
if v 6= w, and (v; w) is not already an edge, then (v; w) is added as an edge, and the free
valence of each of v and w is reduced by one. When the free valence of a vertex is zero, the
vertex is deleted from the array. This step is repeated until only a small number (twice the
maximum degree) of vertices remains, and then all possible pairs of the remaining vertices
are generated and tested in random order.

In version 2 an array initially holds each vertex v deg[v] times. Pairs of vertices are
randomly selected, and if not equal and the edge does not exist, then the edge is added, and
the copies of the two vertices are deleted from the array. This is repeated until the array is
empty, or 100 successive attempts have failed to add an edge. The latter case is taken as
failure, and the process is repeated from scratch. This method seldom fails.
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Neither of these two methods guarantees a uniform distribution over the graphs of the
given degree sequence. For example, given the degree sequence on �ve vertices f1; 1; 2; 2; 2g,
there are seven possible (labeled) graphs. One consists of two components, an edge and a
triangle. The other six are all four paths; thus all six are isomorphic to one another. Of the
10! permutations of the pairs of vertices, 564,480 generate the graph on two components,
while for each four path there are 322,560 distinct permutations. The remaining permuta-
tions (31.2 %) do not yield a legal graph. Thus, the �rst graph is 1.75 times as likely as
any of the other six. Of course, a four path (counting all isomorphic graphs) is 3.428 times
as likely as the two-component graph.

On the other hand, a version 2 test program (not our generator which prohibits degree
one vertices) consistently generated the �rst graph about 8%{10% more often than any of
the others, based on several million random trials.

5.1 Experimental Results on Degreebound Graphs

We test graphs of 100 : : : 500 vertices (step size 100) 1000 and 1500 vertices with the mean
degree varying from 2:6 : : : 3:0 (step size of 0.01 from 2.75 to 2.95, step size of 0.05 elsewhere).
We generate 1000 graphs for each data point, execute our algorithm once on each graph,
and collect the results. This test was repeated for each of the two versions.

Figure 3 shows the percentage of graphs which are Hamiltonian as the mean degree and
graph size varies5. There is a clear transition from a mean degree of 2.6 (near 0% chance of
a Hamiltonian cycle) to a mean degree of 3 (for which Robinson and Wormald, 1994 predict
an almost 100% chance of a Hamiltonian cycle on uniformly distributed graphs). For a
phase transition, we would expect the slope to grow steeper as the graph size increases.
Figure 3 shows this increase in steepness.

Note that the double points on the curve for n = 100 are due to unavoidable discretiza-
tion. Since the total degree of a graph must be even, when the generators detect that the
total degree speci�ed is odd, one of the minimum degree vertices is selected and its degree
incremented. Thus, for example, whether the fraction of degree 3 vertices speci�ed is 0.81 or
0.82, the number of degree three vertices is 82. Discretization e�ects also occur for n = 300,
500 and 1500, but with lessened impact.

In Table 5.1 we summarize the observed hard instances from these graphs. We note
that several instances exceeded our time bounds, and although these are certainly at least
quadratically hard, they are not included in the quadratically hard instances. The frequency
of hard instances appears to be decreasing with n on these graphs. In particular there are
no quadratically hard non-Hamiltonian instances over 1000 vertices, except those that are
too hard to solve with our program.

Interestingly, there turns out to be an O(n + m) time test which shows that most of
the unresolved instances are non-Hamiltonian. This test is described briey in Section 5.3.
We implemented the test as a separate program and tested each of the unresolved graphs,
with the results indicated in the last column of Table 5.1. The remaining �ve graphs
remain unresolved. If this test were included in the initial pruning of our program, then
the instances enumerated in the last column of Table 5.1 would all be solved (proven non-
Hamiltonian) without search.

5. For these graphs, the mean degree is 2.0 plus the fraction of degree 3 vertices.

232



The Gn;m Phase Transition is Not Hard for the Hamiltonian Cycle Problem

0

20

40

60

80

100

60 65 70 75 80 85 90 95 100

%
 H

am
ilt

on
ia

n

% Vertices of Degree 3

Version 1

n = 100
    200
    300
    400
    500

   1000
   1500

0

20

40

60

80

100

60 65 70 75 80 85 90 95 100

%
 H

am
ilt

on
ia

n

% Vertices of Degree 3

Version 2

n = 100
    200
    300
    400
    500

   1000
   1500

Figure 3: % of Hamiltonian graphs for Degreebound Graphs.

233



Vandegriend & Culberson

Version 1

Number of Quadratically Hard Timed Out
Vertices No HC HC Total No HC

100 5 0 0 0
200 18 0 3 3
300 8 0 11 10
400 1 0 14 14
500 0 0 14 14
1000 0 0 7 7
1500 0 1 6 6

Version 2

Number of Quadratically Hard Timed Out
Vertices No HC HC Total No HC

100 5 0 0 0
200 9 0 6 5
300 10 0 13 13
400 3 0 11 11
500 1 1 10 9
1000 0 1 6 4
1500 0 0 6 6

Table 5: Number of Hard Graphs for Degreebound Graphs

Thus, although these classes may provide a small rate of hard instances for our current
program, it is not clear they are even minimally hard. Furthermore, it appears there exist
simple improvements to our program that would eliminate most of these hard instances.

In Figure 4 we illustrate the distribution of the graphs that timed out. The other
quadratically hard graphs had similar distributions. About all that can be concluded is
that the hard instances seem to be distributed over a mean degree range from 2.78 to 2.94.

The backtrack program is a little faster on Degreebound graphs than on Gn;m graphs,
as we would expect given fewer total edges. For 1500 vertices, the times per 1000 search
nodes ranged from 0.27 seconds for the easiest (no backtrack) instances to 0.56 seconds for
the harder ones.

5.2 Analysis of Degreebound Graphs

An analysis of the Degreebound graph class led us to conjecture that the prime factor
determining the Hamiltonicity of a graph was whether or not the graph had a degree 3
vertex with 3 neighbours of degree 2. We label this a 3D2 con�guration (or a 3D2 event).
A graph with a 3D2 con�guration is non-Hamiltonian. The following informal analysis
provides evidence for our conjecture.

Let E(n; �) represent the expected number of 3D2 con�gurations in a graph with n
vertices. Let D2 = �n be the number of degree 2 vertices and D3 = (1� �)n the number of

degree 3 vertices. Note that the mean degree d = 2D2+3D3

n = 2�n+3n(1��)
n = 3��. Assuming

equal probability of all combinations,
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# of Mean Degree for 50% HC Point
Vertices Experimental Theoretical

100 2.78 2.78
200 2.81 2.82
300 2.83 2.85
400 2.84 2.86
500 2.85 2.87
1000 2.88 2.90
1500 2.90 2.91

Table 6: Experimental and approximate theoretical values for the location of the 50%
Hamiltonian point for Degreebound graphs of various sizes.

E(n; �) =
D3

�D2

3

�
�n�1

3

� =
n(1� �)

��n
3

�
�n�1

3

� =
n(1� �)(�n)(�n� 1)(�n� 2)

(n� 1)(n� 2)(n� 3)

We restrict ourselves to the asymptotic case (n!1) which gives us

E(n; �) �
n(1� �)(�n)3

n3
� n(1� �)�3

When E(n; �) ! 0, the probability of having con�guration 3D2 approaches 0. We
want to �nd � for which n(1 � �)�3 ! 0 as n ! 1. This occurs when � = o(n�1=3).
Since a Hamiltonian cycle cannot exist if E(3D2) > 0, this tells us that the phase transition
asymptotically occurs when the mean degree equals 3. Asymptotically, Degreebound graphs
with d < 3 are expected to be non-Hamiltonian while Degreebound graphs with d > 3
are expected to be Hamiltonian (ignoring other conditions). This agrees with results of
Robinson andWormald (1994) who proved that almost all 3-regular graphs are Hamiltonian.

If we let � = n�1=3 this gives us E(n; �) � 1. Substituting this equation in our expression
for mean degree gives us d = 3�n�1=3. Table 5.2 lists mean degrees for di�erent values of n
using this formula along with our experimentally determined values for the point where 50%
of the graphs are Hamiltonian. They are remarkably similar. This suggests that the 3D2
con�guration is the major determinator of whether a Degreebound graph will be Hamilto-
nian or not. Minor e�ects (which we have ignored) come from propagation of deleted edges
while pruning and other less probable cases such as those mentioned in Section 5.3. Since
the 3D2 con�guration is detected by our algorithm before the search is started, this also
implies that the phase transition will be easy for our algorithm, since most non-Hamiltonian
graphs are instantly detected. This matches our experimental observations.

5.3 A Non-Hamiltonicity Test for Sparse Graphs

While preparing the �nal version of this paper, we observed that in the 3D2 con�guration
we could replace the vertex of degree three with a component of several vertices. In general,
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if there are three vertices of degree two that form a minimal cut then the graph is non-
Hamiltonian. In fact, we can replace the three vertices by a minimal cut of any odd number
c of degree 2 vertices, and the claim of non-Hamiltonicity remains true.

Checking all possible subsets of size c would be very expensive, but fortunately there is
an even more general condition that includes all of these as special cases and can be tested in
linear (i.e O(n+m)) time. Let F be a set of edges that are forced to be in any Hamiltonian
cycle if one exists. For example, edges incident on a vertex of degree two are forced. Let
G0 = G � F be the graph formed by deleting the forced edges from G. Let C1 : : : Ch be
components of G0, and de�ne the forced degree of component Ci to be the number of end
points of forced edges (from F ) in Ci. If any component has an odd forced degree, then G
is non-Hamiltonian.

The proof of correctness of this test is simple. Observe that if there is a Hamiltonian
cycle in G then while traversing the cycle each time we enter a component, there must be a
corresponding exit. Since the forced edges act as a cut set (that separates the components),
they are the only edges available to act as entries and exits to a component. All forced edges
must be used. Therefore, if there is a Hamiltonian cycle there must be an even number of
forced edges connecting any component to other components, each contributing one to the
forced degree of the component. Each forced edge internal to (with both end points in) a
component contributes two to the forced degree, so if there is a Hamiltonian cycle the total
forced degree of each component must be even.

To obtain the results in the last column of Table 5.1, we �rst did the initial pruning, and
then applied the test to the pruned graphs, using only the forced edges incident on degree
two vertices.

6. Generalized Knight's Circuit Graphs

In this section we examine a graph class based upon the generalized knight's circuit problem
in which the size of the knight's move is allowed to vary along with the size of the (rectan-
gular) board. An instance of the generalized knight's circuit problem is a graph de�ned by
the 4-tuple (A;B)� n�m where A;B is the size of the knight's move and n;m is the size
of the board. The vertices of the graph correspond to the cells, and thus jV j = nm. Two
vertices are connected by an edge if and only if it is possible to move from one vertex to
the other by moving A steps along one axis and B along the other. (See Vandegriend, 1998
for more information about this problem.)

For this graph class there is no easy way to de�ne phase transitions since there is
no clear parameter which separates the Hamiltonian graphs from the non-Hamiltonian
graphs (although Vandegriend, 1998 shows that there are ways of identifying groups of
non-Hamiltonian graphs). Thus to �nd hard graphs, we look for graphs which take a signif-
icant amount of time to solve relative to their size. We perform 1 trial per graph (problem
instance) and report the ratio of search nodes to number of vertices.

We examined a total of 300 generalized knight's circuit graphs over ranges of A;B; n;m
(Speci�c A;B; n triplets with m allowed to vary, for A + B � 9, n � 13, m � 60.) They
ranged in size from 80 to 390 vertices. Of the 300 instances examined, 121 graphs (40 %)
were found to be Hamiltonian and 141 graphs (47 %) were found to be non-Hamiltonian.
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search nodes # of trials % of trials

� 2n 1 0.8
5n 43 35.5
10n 37 30.6
20n 11 9.1
50n 8 6.6
100n 8 6.6
200n 2 1.7
500n 5 4.1
1000n 2 1.7
2000n 1 0.8
5000n 1 0.8
10000n 1 0.8
20000n 0 0.0
50000n 1 0.8

Table 7: Histogram of the search node ratio of our backtrack algorithm on 121 Hamiltonian
generalized knight's circuit instances.

For the remaining 38 graphs (13 %) our backtrack algorithm failed (reached the 30 minute
time limit), which implies these graphs are very hard for our backtrack algorithm.

A majority (91%) of the non-Hamiltonian graphs were solved without any search. How-
ever, a signi�cant number of the remaining graphs took many search nodes to solve. 9
graphs (6.4%) took more than 10n nodes and 7 graphs (5.0%) took more than 100n nodes.
The hardest graph took � 11276n search nodes (n = 324). So while the majority of the
non-Hamiltonian graphs were easy, a signi�cant percentage of these generalized knight's
circuit graphs were quite hard for our algorithm.

A larger variance in hardness was observed with the Hamiltonian graphs. Table 6 shows
the distribution with respect to the number of search nodes required. Unlike Gn;m and
Degreebound graphs, these graphs could not be solved in only n search nodes. Almost
all the graphs required at least 2n search nodes. 33% of the graphs required at least 10n
nodes, 11% required at least 100n nodes and the hardest graph required � 34208n nodes
(n = 198).

7. A Hard Constructed Graph Class

It is worthwhile when designing an algorithm to determine under what conditions and how
frequently it might fail to perform and just how badly it might do. The measure can be
in terms of how bad an approximation is, or how long an exact algorithm may take in the
worst case. There is a long tradition of designing instance sets that foil speci�c combinato-
rial algorithms (Johnson, 1974; Mitchem, 1976; Olariu & Randall, 1989; Spinrad & Vijayan,
1985). Other special classes are intended to be more general, and are frequently based on
certain features or constructs together with some randomization to hide the features (Cul-
berson & Luo, 1996; Brockington & Culberson, 1996; Kask & Dechter, 1995; Bayardo Jr. &
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Schrag, 1996). The Gn;m class is frequently used to study graph algorithms over all possible
graphs.

In this section we consider a special construction for a Hamiltonian graph which is
extremely hard (exponential increase in di�culty with size) for our backtrack algorithm.
It consists mostly of special constructs tied together with some randomly chosen edges. It
bears some resemblance to graphs such as the Meredith graph (Bondy & Murty, 1976) used
to disprove certain theoretical conjectures. This graph remains di�cult when we vary the
neighbour selection heuristic or pruning techniques used by our backtrack algorithm. The
graph we construct we refer to as the Interconnected-Cutset (ICCS ) graph.

Our class is intended merely to show that exponentially hard classes clearly exist for
our algorithm, and many other backtrack algorithms using similar approaches. We do not
claim our graphs are intrinsically hard, as there is a polynomial time algorithm that will
solve this particular class.

The basic concept we use in constructing these graphs is the non-Hamiltonian edge,
which we de�ne as an edge which cannot be in any possible Hamiltonian cycle. Note that
since the graphs are Hamiltonian, each vertex must be incident on at least two edges which
are not non-Hamiltonian. Our goal is to force the algorithm to choose a non-Hamiltonian
edge at some point. The key observation is that once such an edge is chosen, the algorithm
must backtrack to �x that choice. With multiples of these bad choices, after backtracking
to �x the most recent bad choice, the algorithm must eventually backtrack to an earlier
point to �x a less recent bad choice, which means the more recent choice must be redone,
with the algorithm making the bad choice again. The amount of work performed by the
algorithm is at least exponential in the number of bad choices. See Vandegriend (1998) for
more details.

The ICCS graph is composed of k identical subgraphs ICCSS arranged in a circle.
To force the desired cycle we have a degree 2 vertex between each subgraph. Since each
subgraph has a Hamiltonian path between the connecting vertices, the ICCS graph is
Hamiltonian. Due to the construction of the ICCS subgraph, extra non-Hamiltonian edges
can be added between di�erent subgraphs. These edges help prevent components from
forming during the search, which greatly reduces the e�ectiveness of the component checking
search pruning. See Figure 5. Heavy lines are forced edges that must be in any Hamiltonian
cycle.

Figure 6 contains a sample ICCS subgraph. Non-Hamiltonian edges are denoted by
dashed lines, and forced edges are denoted by heavy lines.

To see that the dashed lines cannot be part of any Hamiltonian cycle observe that
any path through the ICCSS must enter and exit on an SC vertex, and between any two
SC vertices in sequence the path can visit at most one SI vertex. Thus, each such path
uses at least one more vertex from SC than from SI . Since initially jSC j = jSI j + 1, any
Hamiltonian cycle can enter and exit the ICCSS only once, and must alternate between
SC and SI vertices. Since the ST vertices only have one edge leading to an SI vertex,
these edges are forced. This also allows us to interconnect subgraphs without adding new
Hamiltonian cycles by connecting vertices of SC of two di�erent subgraphs (since these
additional edges are all non-Hamiltonian edges). By interconnecting the subgraphs in this
fashion, we strongly reduce the e�ectiveness of checking for components or cut-points during
the search. In the current implementation, for each vertex in each SC we randomly choose a
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Figure 5: A sample ICCS graph.
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Figure 6: A sample ICCS subgraph ICCSS .
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vertex in another SC and add the edge. Thus, the average number of such edges per vertex
is a little less than two, since some edges may be repeated.

One additional design element was added to handle various degree selection heuristics
that our algorithm could use. At each stage in the search, the neighbours of the current
endpoint of the partial path are arranged in a list to determine the order in which they will
be chosen by our backtrack algorithm. There are 3 main heuristics: sorting the list to visit
lower degree neighbours �rst, sorting to visit higher degree neighbours �rst, and visiting in
random order. (Our backtrack algorithm normally uses the lower degree �rst heuristic.)

The SD vertex in the ICCS subgraph is used to fool the low degree �rst heuristic. The
SD vertex is only incident to the two ST vertices and to two vertices in SI , which makes
it degree 4. When the algorithm enters a subgraph from the degree 2 connecting vertex, it
reaches one of the ST vertices. From the ST vertex, the choices are the SD vertex (degree
4) and the one SI vertex (degree jSC j � 2, because it is not connected to the SD vertex and
the other ST vertex). If jSC j > 6 then the SD vertex will have a lower degree and thus will
be chosen �rst.

The high degree �rst heuristic avoids following the edge from the ST vertex to the SD
vertex, and instead goes to the SI vertex. From there it chooses one of the SC vertices (not
including SD or the other ST vertex, which are not adjacent). From this point, its choice is
one of the SI vertices (maximum degree = jSC j � 2) or one of the SC vertices in a di�erent
subgraph (degree � jSC j if that subgraph has not yet been visited). Since the SC vertex
normally will have a higher degree, the algorithm will follow the non-Hamiltonian edge to
that vertex.

If the next neighbour is chosen at random, then from a ST vertex, the algorithm has a
50% chance of making the wrong choice. Similarly, at each SC vertex the algorithm has a
small chance of following a non-Hamiltonian edge. As the number of subgraphs is increased,
the probability of the algorithm making all the right choices rapidly approaches 0.

Another reason why the ICCS subgraph is expected to be hard for a backtrack algorithm
is that there are many possible paths between the two ST vertices. If a non-Hamiltonian
edge has previously been chosen, then the backtrack algorithm will try all the di�erent
combinations of paths (and fail to form a Hamiltonian cycle) before it backtracks to the
bad choice.

We performed experiments on various ICCS graphs. We varied the number of subgraphs
from 1 to 4, and varied the independent set size (jSI j) from 6 to 8. We used our backtrack
algorithm as speci�ed in Section 3 with the addition of checking for components and cut-
points during the search. We executed our algorithm 5 times per graph. Our results are
listed in Table 7 for the low degree �rst heuristic. Our experiments using the other degree
selection heuristics exhibited similar results.

We have also performed similar experiments using a randomized heuristic algorithm
(Frieze, 1988; P�osa, 1976). Due to the signi�cant di�erence in operation between this
algorithm and backtrack algorithms, it easily solved these small ICCS graphs. However its
performance rapidly decreased as the graphs were increased in size.

The average degree of ICCS graphs with more than one subgraph lies within the fol-
lowing range:

jSI j � 2:5 +
9:5

jSI j+ 1
� d � jSI j � 2 +

8

jSI j+ 1
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n #S jSI j Min Median Max

14 1 6 14 14 210
28 2 6 606 616 3,777
42 3 6 10,467 47,328 112,795
56 4 6 6,538,842 32,578,160 36,300,827

16 1 7 16 48 112
32 2 7 13,056 21,797 70,949
48 3 7 1,350,084 5,247,287 8,027,520

18 1 8 18 54 270
36 2 8 283,164 430,620 750,211
54 3 8 > 1:2� 108

Table 8: Search nodes required by our backtrack algorithm on ICCS graphs.

From this formula we see that as the size of each independent set is increased, the mean
degree increases linearly. However, as the number of subgraphs is increased, the mean
degree remains constant. The ICCS graphs remain hard over a very wide range of mean
degrees (from O(1) to O(n)). Therefore the average degree in this case is not a relevant
parameter for determining hardness.

8. Conclusions and Future Work

Our backtrack Hamiltonian cycle algorithm found Gn;m graphs easy to solve, along with
a majority of Degreebound graphs. We have also performed similar experiments (Vande-
griend, 1998) using a randomized heuristic algorithm (Frieze, 1988; P�osa, 1976) which had
a high success rate on Gn;m graphs, less so on Degreebound graphs. More interestingly, the
existence of a phase transition for both problems did not clearly correspond to a high fre-
quency of di�cult instances. We suspect that other properties play a more important role
than does the average degree. This is supported by our results on generalized knight's circuit
graphs, which are all highly regular (with many symmetries), and for which the majority
have average degrees between 4 and 8, compared to a mean degree � 3 on Degreebound
graphs.

These results should not be surprising, since it has been shown that asymptotically for
randomly generated graphs, when the edge is added that makes the last vertex degree 2,
then with high probability the graph is Hamiltonian (Bollob�as, 1984). In addition, e�cient
algorithms have been shown to solve these instances in polynomial time with high proba-
bility (Bollob�as et al., 1987). Since vertices of degree less than 2 are a trivially detectable
counter-indicator, it is hardly surprising that asymptotically determining Hamiltonicity of
graphs in Gn;m is easy.

We also observe that the performance of our backtrack algorithm can widely vary for
a single graph due to the selection of the initial vertex. Multiple restarts of our backtrack
algorithm after a time limit was reached often resulted in superior performance. We suggest
a little randomization of the algorithm be used while empirically identifying intrinsically
hard random instances of any problem.
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