
Stable Roommates and Constraint Programming
A first stab

Patrick Prosser

School of Computing Science, University of Glasgow

Abstract. In the stable roommates problem we have n agents, where
each agent ranks all n − 1 other agents. The problem is then to match
agents into pairs such that no two agents prefer each other to their
matched partners. A remarkably simple constraint encoding is presented
that uses O(n2) binary constraints, and in which arc-consistency (the
phase-1 table) is established in O(n3) time. This leads us to a specialised
n-ary constraint that uses O(n) additional space and establishes arc-
consistency in O(n2) time. An empirical study is performed and it is
observed that the n-ary constraint model can read in, model and output
all matchings for an instances with n = 1, 000 in about 2 seconds on
current hardware platforms.

1 Introduction
In the stable roommates problem (SR) [6, 5] we have an even number of agents to
be matched together as couples, where each agent strictly ranks all other agents.
The problem is then to match pairs of agents together such that the matching is
stable, i.e. there doesn’t exist a pair of agents in the matching such that agenti
prefers agentj to his matched partner and agentj prefers agenti to his matched
partner1.

The stable marriage problem (SM) [2, 10, 3, 5, 11, 8] is a specialised instance
of stable roommates where agents have gender, such that we have two sets of
agents m (men) and w (women). Each man has to be married to a woman and
each woman to a man such that in the matching there does not exist a man mi

and a woman wj where mi prefers wj to his matched partner and wj prefers mi

to her matched partner i.e. there is no incentive for agents to divorce and elope.
Constraint programming has been applied to the stable marriage problem

for some time now, probably the first efficient model being reported in 2001 [4],
a 4-valued model in [9], a specialised binary constraint in [13] and an efficient
n-ary constraint in [12]. And this raises an obvious question ”If there is an
efficient constraint model for stable marriage, is there one for the more general
stable roommates problem?”. In this paper I partially answer this question. I
present a remarkably simple constraint model for SR, using O(n2) constraints.
A more compact and computationally efficient encoding is then proposed and it
is demonstrated that this can solve instances of SR with up to 1,000 agents in
about 2 seconds.
1 For sake of brevity I will assume all agents as male, and hope that this offends no

one.

2 The Stable Roommates Problem (SR)

An example of a stable roommates instance is given in Figure 1, for n = 10,
and this instance is taken from [5] (and we will refer to this as sr10). We have
agents 1 to 10 each with a preference list, ranking the other agents. For example,
agent1’s first choice is for agent8, then agent2, followed by agent9 and so on to
last (9th) choice agent10.

1 : 8 2 9 3 6 4 5 7 10
2 : 4 3 8 9 5 1 10 6 7
3 : 5 6 8 2 1 7 10 4 9
4 : 10 7 9 3 1 6 2 5 8
5 : 7 4 10 8 2 6 3 1 9
6 : 2 8 7 3 4 10 1 5 9
7 : 2 1 8 3 5 10 4 6 9
8 : 10 4 2 5 6 7 1 3 9
9 : 6 7 2 5 10 3 4 8 1

10 : 3 1 6 5 2 9 8 4 7

1: 8 2 3 6 4 7
2: 4 3 8 9 5 1 10 6
3: 5 6 2 1 7 10
4: 9 1 6 2
5: 7 10 8 2 6 3
6: 2 8 3 4 10 1 5 9
7: 1 8 3 5
8: 10 2 5 6 7 1
9: 6 2 10 4

10: 3 6 5 2 9 8

(1,7) (2,3) (4,9) (5,10) (6,8)
(1,7) (2,8) (3,5) (4,9) (6,10)
(1,7) (2,8) (3,6) (4,9) (5,10)
(1,4) (2,8) (3,6) (5,7) (9,10)
(1,4) (2,9) (3,6) (5,7) (8,10)
(1,4) (2,3) (5,7) (6,8) (9,10)
(1,3) (2,4) (5,7) (6,8) (9,10)

Fig. 1. Stable roommates instance sr10 with n = 10 (on the left) phase-1 table (middle)
and the 7 stable matchings (on the right). Instance taken from [5].

A quadratic time algorithm, essentially linear in the input size, was proposed in
[6]. The algorithm has two phases. The first phase is a sequence of proposals,
similar to that in the Gale Shapley algorithm [2], that results in the phase-1
table. The phase-1 table for sr10 is shown as the middle table in Figure 1. A
sequence of rotations are then performed for agents with reduced preference
lists that contain more than one agent. On the right hand side of Figure 1 we
show the 7 stable matching that can result from this process.

3 A Simple Constraint Model

We assume that we have two integer arrays pref and rank such that prefi,j is
the preference agenti has for agentj and ranki,j is the agent in the jth position
of agenti’s preference list. Using sr10 as our example pref3,5 = 1 (agent5 is
agent3’s first choice) pref3,6 = 2, rank3,1 = 5 and rank3,2 = 6. We also assume
that we have constrained integer variables agent1 to agentn, each with a domain
of preferences, initially {1 . . . n}. Consequently when agenti has been assigned
the value x from its domain this means that agenti is matched with his xth

choice, and that is agenti,j where j = ranki,x.
We can now make a declarative statement of the properties that a stable

matching must have, and we can do this with three constraints. Given two agents,
agenti and agentj , if agenti is matched to an agent he prefers less than agentj
then agentj must match up with an agent that he prefers to agenti, otherwise
the matching will be unstable. This property must hold between every pair of
agents and is expressed by constraint (1) below. Also, when agenti is matched to
agentj then agentj is matched to agenti, and this is expressed by constraint (2).
Finally we have the symmetric constraint to constraint (1) namely that when
agentj is matched to an agent that he prefers less than agenti, agenti must
match up with an agent he prefers to agentj , and this is constraint (3).

2

∀i∈[1..n−1]∀j∈[i+1..n] agenti > prefi,j =⇒ agentj < prefj,i (1)

∀i∈[1..n−1]∀j∈[i+1..n] agenti = prefi,j ⇐⇒ agentj = prefj,i (2)

∀i∈[1..n−1]∀j∈[i+1..n] agentj > prefj,i =⇒ agenti < prefi,j (3)

This constraint is shown pictorially in Figure 2. The three constraints are shown
for agent1 and agent3 in sr10. The brown box is the agent’s identification number
and the remaining boxes are the preference lists (a list of agents). In the top
picture (1) we have the situation where agent1 is matched to an agent he prefers
less than agent3, i.e. agent1 is matched to an agent in the green part of his
preference list. Consequently agent3 must be matched in the green region of its
preference list. The middle picture is for constraint (2) where agent1 is matched
to agent3, both taking the pair of red values. The bottom picture is for constraint
(3) where agent3 is matched in the green region to an agent he prefers less than
agent1 consequently agent1 must be matched in his green region also, to an
agent he prefers to agent3.

3: 5 6 8 2 1 7 10 4 9

1: 8 2 9 3 6 4 5 7 10

3: 5 6 8 2 1 7 10 4 9

1: 8 2 9 3 6 4 5 7 10

3: 5 6 8 2 1 7 10 4 9

1: 8 2 9 3 6 4 5 7 10
(3)

(1)

(2)

Fig. 2. A pictorial representation of the three constraints acting between agent1 and
agent3.

This constraint is not new, having been proposed for SM. Establishing arc-
consistency [7, 14] in this simple SM constraint model has been shown to be
O(n3) although at least three O(n2) encodings have been proposed, one using
boolean variables [4], one using 4-valued variables [9] and one using a specialised
n-ary constraint [12].

When sr10 is made arc-consistent the phase-1 table is produced. As we can
see from Figure 1 the first agent in the phase-1 table for agent1 is agent8 yet

3

none of the 7 solutions have a matching that contains the pair (1, 8). Therefore
our constraint program must backtrack, i.e. after producing the phase-1 table via
propagation, search instantiates agent1 ← 1 (assigned 1st preference), attempts
to make the model arc-consistent and fails, forcing a backtrack. To find a first
solution to sr10 (a first matching) the constraint program makes 3 decisions, at
least one of which results in a backtrack. To find all 7 solutions, 12 decisions are
made.

The model was implemented in the choco constraint programming toolkit
[1] using Java. The code for this simple model is shown in Listing 1. The first
thing to note is that everything is zero-based, such that the first agent is agent0
and the last agentn−1. Lines 14 to 27 read in the problem instance, building
the arrays pref and rank. To address SR with incomplete lists we add i to the
end of agenti’s preference list (lines 24 and 25) such that an unmatched agent
is matched to itself. The constraint model is produced in lines 29 to 41 with
constraint (1) posted in lines 33 and 34, constraint (2) in lines 35 and 36, and
constraint (3) in lines 37 and 38. In lines 43 to 49 the choco toolkit searches for
a first solution and prints it out.�

1 import java . i o . ∗ ;
2 import java . u t i l . ∗ ;
3 import stat ic choco . Choco . ∗ ;
4 import choco . cp . model . CPModel ;
5 import choco . cp . s o l v e r . CPSolver ;
6 import choco . ke rne l . model . Model ;
7 import choco . ke rne l . s o l v e r . So lver ;
8 import choco . ke rne l . model . v a r i a b l e s . i n t e g e r . In t ege rVar i ab l e ;
9

10 public c lass StableRoommates {
11
12 public stat ic void main (St r ing [] args) throws IOException {
13
14 Scanner sc = new Scanner (new F i l e (args [0])) ;
15 int n = sc . nextInt () ;
16 int [] [] p r e f = new int [n] [n] ;
17 int [] [] rank = new int [n] [n] ;
18 for (int i =0; i<n ; i++){
19 for (int k=0;k<n−1;k++){
20 int j = sc . nextInt () − 1 ;
21 pr e f [i] [j] = k ;
22 rank [i] [k] = j ;
23 }
24 rank [i] [n−1] = i ;
25 pr e f [i] [i] = n−1;
26 }
27 sc . c l o s e () ;
28
29 Model model = new CPModel () ;
30 In t ege rVar i ab l e [] agent = makeIntVarArray (” agent ” ,n , 0 , n−1);
31 for (int i =0; i<n−1; i++)
32 for (int j=i +1; j<n ; j++){
33 model . addConstraint (imp l i e s (gt (agent [i] , p r e f [i] [j]) ,
34 l t (agent [j] , p r e f [j] [i]))) ;
35 model . addConstraint (i fOn l y I f (eq (agent [i] , p r e f [i] [j]) ,
36 eq (agent [j] , p r e f [j] [i]))) ;
37 model . addConstraint (imp l i e s (gt (agent [j] , p r e f [j] [i]) ,
38 l t (agent [i] , p r e f [i] [j]))) ;
39 }
40 So lver s o l v e r = new CPSolver () ;
41 s o l v e r . read (model) ;
42
43 i f (s o l v e r . s o l v e () . booleanValue ())
44 for (int i =0; i<n ; i++){
45 int j = rank [i] [s o l v e r . getVar (agent [i]) . getVal ()] ;
46 i f (i<j) System . out . p r in t (” (”+ (i +1) +” , ”+ (j +1) +”) ”) ;
47 }
48 System . out . p r i n t l n () ;
49 }
50 }
� �

Listing 1. A simple encoding, StableRoommates.java

4

1: 8 2 9 3 6 4 5 7
2: 4 3 8 9 5 1 10 6
3: 5 6 8 2 1 7 10
4: 9 3 1 6 2
5: 7 4 10 8 2 6 3
6: 2 8 7 3 4 10 1 5 9
7: 1 8 3 5
8: 10 4 2 5 6 7 1
9: 6 7 2 5 10 3 4

10: 3 1 6 5 2 9 8

Fig. 3. Bound phase-1 table for sr10 using bound integer variables

The choco toolkit also supports bound integer variables, where only the upper
and lower bounds on domains are maintained and removal of values between
those bounds are performed lazily. In line 30 of Listing 1 adding the option
”cp:bound” to the constructor makeIntV arArray changes the model so that it
uses bound integer variables. When the model is made arc-consistent we then
get the bound phase-1 table shown in Figure 3. Comparing this to Figure 1 we
see that the upper and lower bounds agree with the phase-1 table but there are
values between those bounds that are omitted from the enumerated domains,
in particular we see that agent1 has agent9 in its domain yet agent9 does not
have agent1 in its domain. Nevertheless, the constraint program maintains the
desired stable roommates properties and produces the same 7 solutions as in
Figure 1. In fact, it does so in less time.

4 A more efficient model
Our constraint model can be made more computationally efficient by adopting,
and modifying, the models in [4, 9]. However, these models are bulky and quickly
exhaust memory on relatively modest sized instances of SM (n = 400 in [12]).
Therefore we propose an n-ary SM constraint (SMN), similar to that proposed
in [12], that can establish arc-consistency in O(n2) and takes O(n) additional
space (assuming we are given the arrays pref and rank read in on lines 14 to 27
of Listing 1). The means of reducing the computational cost is by eliminating
the redundancies in the simple model brought about by the arc-consistency algo-
rithm: when a variable’s domain is altered all constraints involving that variable
are revised. Therefore, if a value is removed from the domain of an agenti, O(n)
constraints will be revised. This can occur n times for an agent, and since there
are n agents this results in O(n3) complexity, assuming it takes O(1) time to
revise a constraint as above.

With a specialised n-ary constraint we can improve upon this. We can elim-
inate the above redundancy by revising only the domains of agents that must
be affected by a change in another variable’s domain. There are five possible
changes that can occur to the domain of an agent and these are:

5

– the upper bound of a variable decreases (Algorithm 1)

– the lower bound of a variable increases (Algorithm 2)

– a variable looses a value (Algorithm 3)

– a variable is instantiated (Algorithm 4)

– the constraint is initially posted (Algorithm 5)

Presented below are the algorithms that address these five cases and the actual
choco/Java implementation (Listing 2, with imports removed for brevity). The
algorithms again assume that we have constrained integer variables agent1 to
agentn, that an agent domain is initially a list of preferences {1 . . . n}, and that
we have the preference and rank arrays pref and rank. In addition we require
reversible variables lwbi and upbi, where lwbi is used to store the smallest value
in the domain of agenti and upbi the largest value. By reversible we mean that on
backtracking the values of these variables are restored. The choco toolkit provides
this as class StoredInt (see lines 17 and 18 of Listing 2). In the complexity
arguments we assume that the toolkit primitives getMin(v) (get the smallest
value in domain of variable v), setMax(v, x) (set the upper bound of variable
v’s domain to be min(max(v), x)), getMax(v) (get largest value in domain of
v), remove(v, x) (remove the value x from the domain of v if that value exists)
and getV alue(v) (get the value v is instantiated to) each have a cost of O(1).

deltaMin(i) (Algorithm 1) The lower bound of agenti has increased (and is
now the value x, line 3). Consequently, the corresponding agent now at the top
of agenti’s preference list (agentj where j = ranki,x, line 4)) can be matched
to no one that he prefers less than agenti (line 5). For the corresponding agents
that have been removed from agenti’s preference list, and that agenti preferred
to his current most preferred partner, those agents can do no worse than match
up with agents that they prefer to agenti (lines 6 to 8). The new lower bound
for agenti is saved in the reversible variable lwbi. Complexity: This method
can be called at most n times for an agent (the number of values in an agent’s
domain). Each time it is called the loop bound (line 6) is reduced (via line 9
on previous calls). Consequently this can reduce the maximum domain value of
other agents (line 5 and line 8) at most n times. Therefore over all agents the
cost of deltaMin is O(n2).

deltaMax(i) (Algorithm 2) The upper bound of agenti has decreased (and
now has the value x, line 3). For all corresponding agents removed from agenti’s
preference list we remove agenti from that agent’s preference list as they can
no longer be matched together (lines 4 to 6). The new upper bound is then
saved in the reversible variable upbi (line 7). Complexity: For an agent, this
method can be called at most n times, each time with a reduced bound on the
iteration in lines 4 to 6. Therefore lines 3 and 6 can be executed at most n times.
Consequently the cost over all n agents is O(n2).

6

Algorithm 1: deltaMin (awakeOnInf in Listing 2).

1 deltaMin(int i)
2 begin
3 x← getMin(agenti)
4 j ← ranki,x
5 setMax(agentj , prefj,i)
6 for w ← lwbi to x− 1 do
7 h← ranki,w
8 setMax(agenth, prefh,i − 1)

9 lwbi ← x

Algorithm 2: deltaMax (awakeOnSup in Listing 2).

1 deltaMax(int i)
2 begin
3 x← getMax(agenti)
4 for y ← x + 1 to upbi do
5 j ← ranki,y
6 remove(agentj , prefj,i)

7 upbi ← x

removeValue(i,x) (Algorithm 3) The value x has been removed from the do-
main of agenti consequently the corresponding agent (agentj where j = ranki,x)
can no longer be matched to agenti (lines 3 and 4). Complexity: An execution
is O(1) cost and this can happen at most O(n2) times, i.e. n times for each of
the n agents.

Algorithm 3: removeValue (awakeOnRem in Listing 2).

1 removeValue(int i, int x)
2 begin
3 j ← ranki,x
4 remove(agentj , prefj,i)

instantiate(i) (Algorithm 4) The variable agenti has been assigned the value
y (line 3) and corresponds to being matched to agentj where j = ranki,y. All
agents that agenti preferred to agentj can only be matched to agents that they
prefer to agenti (lines 4 to 6). Furthermore, all agents that agenti preferred less
than agentj can no longer consider agenti as a possible partner (lines 7 to 9). We
then ensure that the matching is symmetric: if agenti is matched to agentj then

7

agentj is matched to agenti (lines 10 and 11). Finally we update the upper and
lower bounds for the domain (lines 12 and 13). Complexity: An execution has
a cost of O(n) as we respond to the (at most n− 1) removals from the domain
of the variable (lines 4 to 9). An agent can be instantiated with a value at most
once during propagation. Consequently, over all n agents this has a cost of O(n2)

Algorithm 4: instantiate (awakeOnInst in Listing 2).

1 instantiate(int i)
2 begin
3 y ← getV alue(agenti)
4 for x← lwbi to y − 1 do
5 j ← ranki,x
6 setMin(agentj , prefj,i − 1)

7 for z ← y + 1 to upbi do
8 j ← ranki,z
9 remove(agentj , prefj,i)

10 j ← ranki,y
11 agentj ← prefj,i
12 lwbi ← y
13 upbi ← y

init() (Algorithm 5) This is called at the top of search, when the model is
made arc-consistent by revising all the constraints. First, the upper and lower
bounds for each agent are initialised (lines 2 to 4) and then propagation kicks
off by making all agents consistent with respect to their most preferred partner,
and this is similar to the proposal stage in [6]. Complexity: Line 6 is called n
times and each individual call to deltaMin(i) has cost O(n), consequently we
have an O(n2) cost in total.

Algorithm 5: init (class constructor and awake in Listing 2).

1 init()
2 begin
3 for i← 1 to n do
4 lwbi ← 1
5 upbi ← n

6 for i← 1 to n do
7 deltaMin(i)

8

�
1
2 public c lass SRN extends AbstractLargeIntSConstra int {
3
4 private int n ;
5 private int [] [] p r e f ;
6 private int [] [] rank ;
7 private I S t a t e In t [] upb ;
8 private I S t a t e In t [] lwb ;
9 private IntDomainVar [] agent ;

10
11 public SRN(So lver s , IntDomainVar [] agent , int [] [] pre f , int [] [] rank) {
12 super (agent) ;
13 n = agent . l ength ;
14 this . agent = agent ;
15 this . p r e f = pre f ;
16 this . rank = rank ;
17 upb = new StoredInt [n] ;
18 lwb = new StoredInt [n] ;
19 for (int i =0; i<n ; i++){
20 upb [i] = s . getEnvironment () . makeInt (n−1);
21 lwb [i] = s . getEnvironment () . makeInt (0) ;
22 }
23 }
24
25 public void awake () throws Contradict ionExcept ion {
26 for (int i =0; i<n ; i++) awakeOnInf (i) ;
27 }
28
29 public void propagate () throws Contradict ionExcept ion { }
30
31 public void awakeOnInf (int i) throws Contradict ionExcept ion {
32 int x = agent [i] . g e t I n f () ;
33 int j = rank [i] [x] ;
34 agent [j] . setSup (p r e f [j] [i]) ;
35 for (int w=lwb [i] . get () ;w<x ;w++){
36 int h = rank [i] [w] ;
37 agent [h] . setSup (pr e f [h] [i]−1);
38 }
39 lwb [i] . s e t (x) ;
40 }
41
42 public void awakeOnSup(int i) throws Contradict ionExcept ion {
43 int x = agent [i] . getSup () ;
44 for (int y=x+1;y<=upb [i] . get () ; y++){
45 int j = rank [i] [y] ;
46 agent [j] . remVal (p r e f [j] [i]) ;
47 }
48 upb [i] . s e t (x) ;
49 }
50
51 public void awakeOnRem(int i , int x) throws Contradict ionExcept ion {
52 int j = rank [i] [x] ;
53 agent [j] . remVal (p r e f [j] [i]) ;
54 }
55
56 public void awakeOnInst (int i) throws Contradict ionExcept ion {
57 int y = agent [i] . getVal () ;
58 for (int x = lwb [i] . get () ; x<y ; x++){
59 int j = rank [i] [x] ;
60 agent [j] . setSup (p r e f [j] [i]−1);
61 }
62 for (int z=y+1;z<=upb [i] . get () ; z++){
63 int j = rank [i] [z] ;
64 agent [j] . remVal (p r e f [j] [i]) ;
65 }
66 int j = rank [i] [y] ;
67 agent [j] . setVal (p r e f [j] [i]) ;
68 lwb [i] . s e t (y) ;
69 upb [i] . s e t (y) ;
70 }
71 }
� �

Listing 2. SRN.java

9

5 Empirical Study
Experiments were performed over random problems, with random instances gen-
erated using Algorithm 6, where lines 6 to 8 perform a Knuth-shuffle. The list
is then outputted, omitting the current agent (line 9). Experiments were per-
formed on a 2.4GHz Intel Xeon E5645 processor with 97 GBytes of RAM, using
java version 1.6.0 26 and choco-2.1.0. We investigate our three models: (a) SR,
the simple constraint model, (b) SRB, the simple model using bound integer
variables and (c) SRN , the n-ary constraint model. In all cases a sample size of
100 is used, unless stated otherwise.

Algorithm 6: randomRoommates, generate an instance of size n.

1 randomRoommate(int n)
2 begin
3 print(n)
4 prefList← {1 . . . n}
5 for i← 1 to n do
6 for j ← n downto 2 do
7 k ← random(j)
8 swap(prefListj , prefListk)

9 print(prefList \ i)

Figure 4 presents six scatter plots. Plots on the left are for 10 ≤ n ≤ 100 and
on the right 100 ≤ n ≤ 1, 000 (and or n > 100 we omit SR). The top row of
graphs gives the time to build the model, the middle row the time to enumerate
all matchings and the bottom row gives the total time where total time is the
time to read the instance, model, solve and output the run time statistics. In all
scatter plots time is measured in milliseconds. What we see is that build time
for SR and SRB are pretty much the same and are growing quadratically (as
expected) whereas SRN appears to grow linearly. The solve time for SRB is
significantly faster than SR but these dwarf that of SRN : when n = 1, 000 SRB
takes minutes whereas SRN takes seconds. The total run times shows that SR is
does not scale beyond n = 100 and at n = 1, 000 SRN typically takes 4 minutes
whereas SRN takes 2 seconds, i.e. SRN is two orders of magnitude faster.

In Table 1 we give the average total cpu time in seconds (i.e. time to read in
the instance, produce the model, enumerate all solutions and output run time
statistics) for 100 ≤ n ≤ 1, 000. Also tabulated is the average number of nodes
reported by the choco toolkit where a node is a decision made, and that decision
might be one that leads to a failure and a backtrack. The last column is the
proportion of instances that had matchings. What is most interesting, from the
constraint programming perspective, is that there are so few nodes and this
suggests that backtracking is in some sense bounded.

We now investigates the problem (given n what proportion of instances have
matchings?) and our best run times (using SRN , finding a first matching)

10

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 10 20 30 40 50 60 70 80 90 100

m
ill

is
ec

on
ds

n

Build Time

SR
SRB
SRN

 0

 50000

 100000

 150000

 200000

 250000

 100 200 300 400 500 600 700 800 900 1000

m
ill

is
ec

on
ds

n

Build Time

SRB
SRN

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10 20 30 40 50 60 70 80 90 100

m
ill

is
ec

on
ds

n

Solve Time

SR
SRB
SRN

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 100 200 300 400 500 600 700 800 900 1000

m
ill

is
ec

on
ds

n

Solve Time

SRB
SRN

 0

 2000

 4000

 6000

 8000

 10000

 12000

 10 20 30 40 50 60 70 80 90 100

m
ill

is
ec

on
ds

n

Total Time

SR
SRB
SRN

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 100 200 300 400 500 600 700 800 900 1000

m
ill

is
ec

on
ds

n

Total Time

SRB
SRN

Fig. 4. Performance of the models: top row is build time, middle row solve time, bottom
row is total time.

11

n cpu time nodes matched

100 0.423 4 0.63
200 0.511 6 0.52
300 0.645 7 0.53
400 0.768 7 0.38
500 0.950 7 0.45
600 1.094 7 0.41
700 1.290 7 0.42
800 1.555 8 0.44
900 1.786 8 0.39

1,000 2.046 8 0.40

Table 1. Proportion of instances with solutions and average run times (figures in
brackets are from [6]). Sample size of 1,000

against the results in [6]. Shown in Table 2 are the proportion of instances with
matchings, for n ∈ {10 . . . 90} with a sample size of 1,000, and average cpu time
measured in seconds. The time includes reading in the instance, building the
model, finding a matching and printing out run time statistics. The figures in
brackets are those reported in [6], where a PDP11/44 was used and the algorithm
was coded in Pascal, with a sample size of 1,000 for n equal to 10 and 20, sample
size 500 for n = 30, and sample size 200 for 40 ≤ n ≤ 90. Table 2 shows that
our best constraint encoding, allied to nearly 30 years of hardware advance, has
resulted in an improvement of little over a factor of seven. A back of the envelope
calculation suggests that the hardware used in the study today is about 15,000
times faster than that used in 1985. So why are we only 7 times faster? Have we
squandered all those hard won hardware advances? Part of the explanation is
that the distance from the application to the hardware has been ever increasing.
And this has been done to increase the ease of use of the machine. In this case
the journey to the hardware goes through my program then on to the choco
constraint programming toolkit (allowing us to more easily model and solve
combinatorial problems), then to java and its virtual machine (giving us all
that we expect of a modern programming language, i.e. ease of use, richness,
portability) and then finally to the hardware. Nevertheless it is hard to believe
that this has used up a factor of 2,000 of the 15,000 times speed up. Of course,
part of that cost could be due to the programmer.

6 Conclusion

It has been demonstrated that there is a simple constraint model for the stable
roommates problem. It was demonstrated that arc-consistency on this model
produces the phase-1 table in O(n3) time. A backtracking search that maintains
arc-consistency on each decision allows us to enumerate all matching. However,
it was shown that the search process can make decisions that lead to failure.

12

n Proportion with matchings Average cpu time

10 0.889 (0.868) 0.168 (0.142)
20 0.834 (0.815) 0.178 (0.374)
30 0.781 (0.766) 0.199 (0.727)
40 0.736 (0.745) 0.226 (1.183)
50 0.727 (0.710) 0.258 (1.760)
60 0.704 (0.725) 0.285 (2.367)
70 0.706 (0.670) 0.317 (3.110)
80 0.670 (0.675) 0.339 (3.964)
90 0.670 (0.690) 0.377 (4.875)

Table 2. Proportion of instances with solutions and average run times (figures in
brackets are from [6]). Sample size of 1,000

The simple model was enhanced by using bound, rather than enumerated, con-
strained integer variables and arc-consistency delivers a bound phase-1 table.
Nevertheless, this results in a substantial improvement in performance but the
complexity of producing the phase-1 table remains O(n3). This lead to a spe-
cialised n-ary constraint with O(n2) cost for arc-consistency. Empirical study
showed that this model can enumerate all matching to problems with 1,000
agents in about 2 seconds, orders of magnitude faster than the simple model.

So, why is it “A first stab”? This is, I believe, the first constraint programming
solution to this problem, and there is lots of work still to do. The first piece of
work is to explain the relationship between the rotations in [6] and maintaining
arc-consistency in the model during search. Clearly, the constraint model can
fail during search, but are these failures bounded by some polynomial, i.e. can
we prove that that exponential behaviour will not occur? Then there is the
issue of how we might put the constraint model to good use, i.e. can we have a
richer model where stable matching is only one of possibly many criteria that
must be satisfied? And then there is the direct step into hard variants of stable
roommates, by enhancing the n-ary constraint to deal with incomplete lists and
ties in preference lists. And of course, there is the goal of winning back some of
the speed up from nearly three decades of hardware advances.

References

1. choco constraint programming system. http://choco.sourceforge.net/.

2. D. Gale and L.S. Shapley. College admissions and the stability of marriage. Amer-
ican Mathematical Monthly, 69:9–15, 1962.

3. D. Gale and M. Sotomayor. Some remarks on the stable matching problem. Dis-
crete Applied Mathematics, 11:223–232, 1985.

4. I.P. Gent, R.W. Irving, D.F. Manlove, P. Prosser, and B.M. Smith. A constraint
programming approach to the stable marriage problem. In CP’01, pages 225–239,
2001.

13

5. D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and Algo-
rithms. The MIT Press, 1989.

6. Robert W. Irving. An efficient algorithm for the ”stable roommates” problem. J.
Algorithms, 6(4):577–595, 1985.

7. A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8:99–118, 1977.

8. David Manlove. Algorithmics of Matching under Preferences, volume 2 of Theo-
retical Computer Science. World Scientific, 2013.

9. D.F. Manlove and G. O’Malley. Modelling and solving the stable marriage problem
using constraint programming. In Proceedings of the Fifth Workshop on Modelling
and Solving Problems with Constraints, held at the 19th International Joint Con-
ference on Artificial Intelligence (IJCAI 2005), pages 10–17, 2005.

10. A.E. Roth. The evolution of the labor market for medical interns and residents: a
case study in game theory. Journal of Political Economy, 92(6):991–1016, 1984.

11. A.E. Roth and M.A.O. Sotomayor. Two-sided matching: a study in game-theoretic
modeling and analysis, volume 18 of Econometric Society Monographs. Cambridge
University Press, 1990.

12. C. Unsworth and P. Prosser. An n-ary constraint for the stable marriage problem.
In Proceedings of the Fifth Workshop on Modelling and Solving Problems with Con-
straints, held at the 19th International Joint Conference on Artificial Intelligence
(IJCAI 2005), 2005.

13. C. Unsworth and P. Prosser. A specialised binary constraint for the stable marriage
problem. In SARA05, 2005.

14. Pascal van Hentenryck, Yves Deville, and Choh-Man Teng. A generic arc-
consistency algorithm and its specializations. Artificial Intelligence, 57:291–321,
1992.

14

