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STABLE MATCHINGS AND STABLE PARTITIONS* 
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Hsinchu, Taiwan, Republic of China 
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Recently Tan [7] defined a new structure for the stable roommates problem. called a "stable partition" 
which is a generalization of the notion of the stable matching. He proved that every instance of that 
problem contains at least one such structure, and obtained a succinct certificate of the non-existence of 
a stable matching. In this paper. we establish several results on properties of the stable partitions, 
present a simple proof of a recent theorem of Tan, and solve a maximum stable matching problem. 

KEY WORDS: Stable roommates problem. stable matching. stable partition. 

C.R. CATEGORIES: F2.2., G.2.1 

1. INTRODUCTION 

It is known that there may not exist a complete stable matching for a given 
instance of the stable roommates problem [1,4,6]. Tan [7] defined a new structure 
for this problem, called "a stable partition" which is a generalization of the notion 
of the complete stable matching, and proved that every instance of the stable 
roommates problem contains at least one such structure. In that paper, besides 
having an O(n2) algorithm to find a stable partition, he also obtained some 
interesting theoretical properties about the stable partitions. We mention the 
following results that are relevant to us. 

i) There exists a stable partition for every instance of the stable roommates 
problem. 

ii) Within a stable partition, the persons involved in the instance are partitioned 
into "even parties" and "odd parties". Any two stable partitions contain 
exactly the same odd parties. 

iii) An instance of the stable roommates problem admists a complete stable 
matching if and only if there does not exist any "odd party". 

*This research was supported by the National Science Council of the Republic of China under grant 
NSC80-0408-E-009-04. 
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12 J .  J.  M .  TAN 

The structure of the stable partition is defined recently, and leads to some new 
results; it is therefore worthwhile to study some more properties about it. We 
observe that results ( i i )  and (iii)  above are by products of the algorithm described 
in [7] ;  the proofs are quite long and complicated. In this paper, we estabish 
several results on properties of the stable partitions, give a simple proof of result 
(ii), and we shall explain that result ( i i )  implies (iii). Also we prove that, after 
"deleting" one person from an instance of the stable roommates problem, the 
number of odd parties in the resulting instance is either decreasing by 1 or 
increasing by 1. Applying this result, we define and solve the following problem: 
Find a maximum number of disjoint pairs of persons such that these pairs are 
stable among themselves (we call this a maximum stable matching problem). The 
time bound of our algorithm is O(n2). 

2. DEFINITIONS 

In this section, we state the stable roommates problem and give the definition of 
the stable partition introduced by Tan 171. There is a set S of n people. Each 
person i has a preference list that includes a subset Si of S-{i), and a rank 
ordering (most preferred first) of the persons in S,. For person i, the subset Si has 
the meaning that the only persons he is willing to be matched with are those in Si. 
A preference relation 9 is defined to be a pair (S, T), where S is a set of n persons, 
and T is the table of preference list of these n people. A complete matching M is a 
partition of the n persons into n/2 disjoint pairs of roommates such that for every 
pair {u, b) in M, u is on h's list and h is on a's list. A complete matching M is 
unstuble if there are two persons who are not matched, but who each prefer the 
other to their respective mates in the matching; such a pair is said to block the 
matching M. A complete matching which is not unstable is called stable. The 
stable roomates problem, as it originally stated [1,6], is to find a complete stable 
matching. Recently, Gusfield and Irving published a book 131 in which they listed 
over a hundred research papers related to this problem. Among those let us point 
out one, Irving 141 proposed an O ( n Z )  algorithm to find one complete stable 
matching if there is one, or report that none exists. We note that there may not 
exist any complete stable matching. A stable partition is a structure that 
generalizes the notion of the complete stable matching; Tan 171 proved that every 
preference relation contains at least one such structure. We now begin to introduce 
it. 

Let T be a table of preference lists, if person h is on the preference list of person 
a, then we write (ulh) to denote the entry b in u's preference list. Define r(u, b)= k, 
if person h occupies position k in a's preference list. If r(a, h) cr(a ,c) ,  it means that 
person a prefers h to c. For the following definition, it is helpful to use the 
example given at  the end as a running instance. 

Let (S, T )  be a preference relation, and let A be a subset of S. Denote I A ~  the 
cardinality of set A. A cyclic permutation n(A) = (a , ,  a,, a,, . . . ,a,) of the persons 
in A, where k = I A ~ .  is called a semi-purty perrnutution if one of the following three 
conditions holds: 
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STABLE PARTITIONS 13 

i) I A ~  2 3, a ,+  and a , - ,  are on a,'s preference list, and r(a , ,a i+ ,) <r(ai,ai-  
i = 1,2,3,. . . , k (subscripts modulo k); 

ii) I A ~  = 2. and u, , is on ai's preference list, i = 1,2 (subscript modulo 2); 

iii) I A ~ =  I .  

With a specified semi-party permutation n(A) = (a, .  u,, . . .a,) for persons in A, 
the entries in the preference lists of A are classified into the following categories. 

(I)  If I A ~  2 3, entry (ail h) is said to be 

i) a superior entry with respect to n(A),  if r(a,, b)<r(ai ,a i -  ,); 

ii) an infkrior entry with respect to n(A),  if r ( u , , ~ , - ~ ) ~ r ( a , , b ) ;  (Note: The 
inequality is " 5 " not " < ") 

iii) a purty entry with respect to n (A) ,  if h = u , + ,  or b=u, ,; for i =  1,2,3,. . . , k 
(subscripts modulo k). 

(11) ~ A I  =2, i.e., k = 2, (ail b) is said to be 
i) a superior entry with respect to I I  (A), if r ( q ,  h) < r(ai, ui - 

ii) an inferior entry with respect to n(A),  if r(u, ,u,~ ,)<r(u, ,b);  (Note: The 
inequality is " <" not "S".) 

iii) a party entry with respect to n(A),  if h = a i , ;  for i =  1,2 (subscripts modulo 
2). 

(111) If I A ~ =  1, then (u,lb) is a superior entry with respect to n ( A )  for every person 
b on a,'s preference list. 

In the above definition, if there is no ambiguity, we will omit the word "with 
respect !o n!.A)". For conveniencei we will assume that the table of preference lists 
is symmetric, i.e., a is on h's list if and only if b is on u's. 

Given a preference relation (S, T), a stable partition n of (S, T) consists of a 
partition of the set S; S =  Uy= , A,, A i  n A j =  4 if i #  j, and a specified semi-party 
permutation n ( A J  for each A,, i =  1,2,. . . ,m, such that the following stable 
condition is satisfied: 

If (u I h) is a superior entry then (h 1 a )  is an inferior entry. 

Remark If  T is not symmetric, then the above stable condition should be 
modified as follows: If (alb) is a superior entry then either (bla) is an inferior entry 
or u is not on h's preference list. 

In the context of the above definition, the associated semi-party permutation 
n(A,) is called a parry permutation for A,; and each A i  is called a purty. An odd 
party (even purty respectively) is a party having odd (even respectively) cardinality. 
More precisely, these terms are defined with respect to the given stable partition 
n. If there are ambiguities, we will say that A, is a party in II (or a n-party), and 
(alb) is a superior entry in n (or a n-superior entry), etc. 

A stable partition Il is specified by its party permutations and will be denoted 
by n = { n ( A l ) ,  n(A,),  n ( A , )  ,..., n(A,)). Persons a and b are said to be a 
matching puir (or mutched) in n if {a, b) forms a 2-person party in n. A subset A 
of the all-person set S is said to form a purty (an odd party respectively), if there 
exists a stable partition Il such that A is a party (an odd party respectively) in lI. 

We give the following example to illustrate the above definitions. 
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14 J. J. M. TAN 

person preference list 
1 2 .  5 .  
2 3 .  1 .  

3 superior superior inferior 
4 5 .  3 .  
5 1 .  4 .  
6 superior 
7 8 . 1 0 .  

8 superior superior inferior 
9 10 . 8 .  
10 7 .  9 .  

superior 12 inferior 
12 1 1  

A stable partition is shown above, there are four parties; namely A , =  
{1 ,2 ,3 ,4 ,5} , .  A 2 = { 6 ) ,  A3={7 ,8 ,9 ,10} ,  A 4 = ( l l , 1 2 )  and l l = { ( 1 , 2 , 3 , 4 , 5 ) ,  ( 6 ) ,  
( 7 , 8 , 9 ,  l o ) ,  ( 1  1 ,12) ) .  To complete this example, we just have to fill in all the 
other entries and follow the rule that whenever ( a b )  is a superior entry, then ( b la )  
is inferior. 

A preference relation may have more than one stable partition. We can identify 
at least two other stable partitions in the above example: 

As one can see that all these three stable partitions contain the same odd parties. 
Tan [7]  proved that every preference relation contains at least on stable partition, 
and that any two stable partitions contain the same odd parties. Therefore the 
existence of an odd party depends on the preference relation, not on a particular 
stable partition. 

As stated in [ 7 ] ,  the notion of the stable partition generalized that of the 
complete stable matching in the following sense. 

PROPOSIT~ON 2.1 (Tan [ 7 ] )  A complete stable matching is a stable partition in 
which every party has cardinality two and vice versa. 

Proof This is directly from the definitions. M = { {a , ,  b i )  1 i =  1 to 4 2 )  is a 
complete stable matching if and only if = { ( a , ,  b , )  1 i= 1 to n/2)  is a stable 
partition. 

PROPOSITION 2.2 (Tan [ 7 ] )  A stable partition without any odd party induces a 
complete stable matching. 

Proof Suppose that ll is a stable partition without any odd party. Let A be an 
even party in ll with party permutation ( 4 ,  a,, a,, . . . ,a,,), k 2 2. Then decompos- 
ing party A into k matching pairs ( a , , a , ) ,  ( a 3 , a 4 ) ,  . . . , ( a  ,,-,, a,,), we have a 
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STABLE PARTITIONS 

new stable partition 

This is because every superior entry in ll' is a superior entry in n. and every 
inferior entry in l7, other than the party entries, is an inferior entry in Il'. By 
continuing to decompose any even party having cardinality 4 or more, eventually 
we obtain a stable partition in which every party has cardinality two. 

3. PROPERTIES OF STABLE PARTITIONS 

In this section, we establish some properties about the stable partitions, and give a 
simple proof of result (ii) mentioned previously. Let P = ( S ,  T)  be a preference 
relation, and let ll and ll' be two stable partitions of 9. We shall study the 
relationship between ll and l l ' .  Let Y (TI, n') be the set of all persons who have a 
superior entry in TI as a TI'-party entry, and let 4(ll,T11) be the set of all persons 
who have an inferior entry in II as a llf-party entry. We note that Y(n, TI') and 
4 ( n ,  n ' )  may not be disjoint. The following theorem says that, for each party P in 
n, the number of persons who have a superior entry in l7 as a R'-party entry is 
equal to the number of persons who have an inferior entry in ll as a ll'-party 
entry. 

THEOREM 3.1 Let .Y=(S, T )  be a preference relation, and let Il and l l '  be two 
stable partitions. Then 

i )  19(II, JI1)/ = /J(Il, W) 1; 
i i )  P n Y (TI, l7')I = P n .Y(l7, n')( for every party P in n .  

We remark that this result is an extension of the following theorem proved in 
[ 5 ] :  Consider the stable marriage problem [ 3 ] ,  where the people are divided into 
two sexes. if man m and woman w are partners in some stable matching M then 

i) there is no stable matching M' in which both m and w have worse partner; 

ii) there is no stable matching M' in which both m and w have better partner. 

Before proving Theorem 3.1, we need the following proposition: 

PROPOSITION 3.2 Let (S, T )  be a preference relation, and let l7 and n' be two stable 
partitions. 

i) I f '  a person has a ll-inferior entry as a party entry in n', then this person 
belongs to u l l -party of size 2 or more. 

ii) Let P = ( a , ,  a,, . . . ,a,) be a party in l7 with k 2 2. If a ,  E 4 (ll, l l ' ) ,  then a, - , 
and a, + , are in Y (TI, n'), (subscripts modulo k). 

Proof ( i )  This is trivial, because a person forming a II-party by himself has no 
inferior entry in n. 

(ii) We consider two cases k = 2 and k 2 3. 
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16 J. J .  M. TAN 

Case I. k = 2  Suppose a ,  € 4 ( I I , n 1 ) .  Then (a,la,) is superior in n ' ,  so (a,la,) is 
inferior in II'. This implies that, in a2's list, there is an entry before (a21a,) which is 
a party entry in II'. Hence a, E ,Y'(II, II'). 

Case 2. k 2 2  Since ai  has a II-inferior entry as a party entry in n ' ,  and ( ~ ~ / a , - ~ )  
is the first entry on a,'s list which is IT-inferior, so (a,la,+ ,) must be superior in II'. 
Thus (ai + , I  a,) is inferior in n ' ,  and a, + , E 9' (II, n ' ) .  As for a, , , since there is a 
IT-inferior entry on ai's list which is a party entry in n ' ,  we know that entry 
( a i l a i  ,) is either a party entry in rI' or a superior entry in II'. Therefore (a,- ,  la,) 
is either a party entry or an inferior entry in n ' .  In both cases 
a, , E ,Y ( n ,  nr). 

We may now prove Theorem 3.1 

Proof We first claim that IY(I I ,n r ) (519( IT ,n ' ) / .  We prove this by defining a 
one to one mapping f from Y(II ,  II') into Y(II.II') as follows: For each person a 
in Y ( n ,  n ') ,  we define f (a)=b, where (alb) is the first entry on a's list (starting 
from the most preferred entry) which is a IT'-party entry. Since a € Y ( n , I I 1 ) ,  entry 
(alb) is a superior entry in II and is also a party entry in n ' ,  so (bla) is an inferior 
in II and is a party entry in n ' .  This implies that b€Y(I I ,  n ' ) .  Suppose that f is 
not one to one, then there exist two distinct persons a and a' in Y ( n ,  IT1) such 
that f (a )  = f (a') = b. This means that (alb) ((a'l h) respectively) is the first entry on 
a's list (a"s list respectively) which is a party entry in n'. However, both (bla) and 
(bla') are party entries in II', so one of them is n'-superior, without loss of 
generality, say (bla). Then (alh) is inferior in n ' ,  there has to be another entry on 
a's list before (alb) which is a II'-party entry, given a contradiction, thus 
j ,v(n, nr) j  5 1.9 ( n ,  nT)j. 

We now prove that I P  n .CP(n, n')I 2 I P  n 4 ( n ,  n')l for every party P in II. For 
a single person party in rI, this is trivial, because this person does not have any II- 
inferior entry. Let P =  (a,,a,, . . . ,a,) be a n-party with k 2 2 .  If u,E.Y(II,II'), by 
Proposition 3.2, a , - ,  and a , + ,  are in Y(IT,Ht). Then the mapping defined by 
g(a,) = a,, , (or alternatively gl(ai) = a,- ,) is one to one from I P  n 4 ( n ,  n')l into 
I P  n Y ( n ,  n8)l. So I P  n .F(H, n')I 5 I P  n Y ( n ,  nl)l .  Then we have 

Observing .Y(IT, n ' ) l z  I"(", "')I, we conclude that Y(IT, IT') = l.Y(H, n')l and 
I P  n Y ( n , n f )  = (P  n Y ( n ,  n f ) l  for every party P in II. 

The following result, in a way similar to Proposition 3.2, can be proved from 
the above theorem. 

COROLLARY 3.3 Let (S, T) be a preference relution, and let I I  and n' be two stable 
partitions. 
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STABLE PARTITIONS 17 

i )  If a person has i r  n-superior entry as a party entry in n', then this person 
belongs to u n-party of' size 2 or more. 

ii) Let Y = ( a , ,  a,, . . . , a k )  he a ptrrry in n with k 2 2. 11 ui ~ . ' f ( n ,  n'), then a i - ~  , 
and u i + ,  are in . f (n .  n') (subscripts nzodulo k). 

Proof' (i) For a single person party in n, this particulai person has no 
n-inferior entry. So the result follows immediately from (ii) of Theorem 3.1. 

(ii) If ui+ $ . F ( n ,  n') ( a , - ,  $ . f ( n ,  n') respectively), then the mapping g' ( g  
respectively) defined in the above Theorem 3.1 is one to one from I P n  . f ( n ,  n')l 
into 1 P n  .'/'(n,n1)l, but not onto. This is because there is no  element mapping to 
a,€ P n ,Y'(n, n'). Then I P  n . ~ ( n ,  nl)l < IP n .'/'(n, n l ) l ,  given a contradiction. 

Now, we can prove the following theorem in [7]. 

THEOREM 3.4 Giuen a prej2rrnc.e relution ( S ,  T ) ,  any two stable pmrtitions contain 
exactly the same odd parties (not orzly hazing the same persons inrolced in (z 
corresponding odd purties, hut ulso with the same party permutittion). 

Pro(?/' Let n and n '  be two stable partitions. We first observe that n and 
' contain the same odd parties of size 1. This is because 
I P  n .Y(n,  nr ) l  = I P  n . f  ( n ,  nr)l for every party P in n ,  and a person constituting a 
single person odd party in n has no n-inferior entry. So this particular person has 
to be a single person odd party in n'. 

Consider an odd party P= ( a , ,  a,, . ..,a,,+ ,) in n ,  where k, 1 .  For each person 
a,, he cannot form a single-person party in n'. So, in ui's list, there must be an 
entry which is a n'-party entry. We note that, being in a n-party of size 3 or 
iiiore, dii eiiiiy in a,'s list is c i t h ~ i  ~ - s . ; i ; c i i ~ r  i;r R-infix%:, thus i:i is either in 
Y ( n ,  n ' )  or  in . f (n,  n ' ) .  

If u,  r -Y'(n, n ' )  (a i  ~ . f  ( n ,  n') respectively), by Corollary 3.3 (by Proposition 3.2 
respectively), then a,+ , 6.f ( n ,  n') ( a , + ,  ~ : f ( n ,  n') respectively) (subscript modulo 
2 k +  I ) .  Since the number of persons in party P is odd and the party permutation 
is cyclic, it is immediately that a,r.'Y'(Il,n') if and only if U , E ~  ( n , n l ) .  So, for 
each person (1; in odd party P, he has two entries on his preference list as party 
entries in n'; one is n-superior and the other one is n-inferior. Note that (u,lu,- ,) 
is the first entry on ui's list which is n-inferior. So, on u;s list, every entry before 
( u i l u i  ,) is n'-superior. In particular, (ai lui+ ,) is Fl'-superior, and hence (a i  + I Iu,) is 
n'-inferior, i= 1,2,. . . ,2k + 1, (subscripts modulo 2k + I ) .  Therefore, every entry 
after (including) (u , (u ,  ,) is nr-inferior. i= 1,2,. . . , 2 k +  l (subscript modulo 2k+ I). 
This indicates that persons { u  a . . , r 2 +  ) with the permutation 
(a , , u , ,  . . ..a,,+ ,) is also an odd party in n ' ,  and the theorem follows. 

Let us relate some other works to the above results. The following theorems 
have been established in [ I ,  2 and 71 using various approaches; they are all 
immediate consequence of Theorem 3.4. We shall explain them respectively. 

THEOREM 3.5 (Tan 171) Given u prej2renc.e relation ( S ,  T ) ,  there exists a complete 
stable matching if' and only ij' there does not exist any odd party. 

THEOREM 3.6 (Gale and Shapley [I]) In the stable murriage problem, where the 
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I X J.  J .  M .  TAN 

people are drcrded rnro rho ,eyes o f  tyual numhrr, and ~ h r r r  ruth perso11 runh, all 
the mernhers o f  the oppovte w x  117 order o f  preference, then there rllwa\>\ 1 5  u 
(omplrrr rriddr mulc hrng 

Consider the following form of the stable marriage problem, where the number 
of males and the number of fcmales may not be equal, and where the preference 
list of each person may include only a proper subset of the members of the 
opposite sex. Gale and Sotomayer 121 defined a stable matching, although in 
different terms, to be a stable partition in which every party has cardinality 2 or  I. 
They had the following result. 

THEOREM 3.7 I f '  a person is unmatched (matched respectiwly) in some stable 
matching, then he/& is unmarchr~d (marched respc~riaely) in ewry  srahle murching. 

Proof' of Throrrm 3.5 A complete stable matching is a stable partition without 
odd party. And a stable partition without odd party induces a complete stable 
matching. So, by Theorem 3.4. this result follows. 

Proof' of' Thror~nl  3.6 It is obvious that therc does not cxist any odd party of 
size more than 3 in this case. It is not difficult to see that there does not exist any 
odd party of size I either, since the number of males and the number of females 
are equal, and each person ranks all the members of the opposite sex. By Theorem 
3.5, there exists a complete stable matching. 

Proof' of Thcorrm 3.7 In this case, an  unmatched person represents a 
single-person odd party. By Theorem 3.4, any two stable partitions contain the 
same odd parties. So the resuit o'hviousiy hoids. 

4. A MAXIMUM STABLE MATCHING 

Given an instance of the stable roommates problem, since there may not exist any 
complete stable matching, let us consider the problem of finding a maximum 
number of disjoint pairs of persons such that these pairs are stable among 
themselves. Or in other words, we would like to exclude a minimum number of 
persons such that there 1s a complete stable matching for the remaining ones. We 
call this a maximum stable matching. 

T o  achieve this goal, we shall prove the following two results. The reason for 
showing them is obvious: It is the existence of an  odd party that prevents from 
having a complete stable matching. 

i) After deleting a person who is in an odd party, the number of odd parties in 
the resulting instance is dccrcasing by one. 

i i )  After deleting an arbitrary person from the instance, the number of odd 
parties in the resulting instance can be decreasing by at most one. In  fact, we 
shall prove that the number of odd parties in the resulting instance is either 
decreasing by 1 or  increasing by 1. 

First let us establish the above two facts, and explain later how one may use 
them to  find a maximum stable matching. 
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STABLE PARTITIONS 19 

Let 8 = ( S ,  T) be a preference relation, and a E S.  We define the deletion of 
person a from 8, denoted by 8 - a ,  to be the preference relation (S', Ti), where 
S 1 = S - { a ) ,  and T' is the preference lists obtained from T by deleting the 
preference list of person a and the entries (xla),  for every x E St. In view of 
Theorem 3.4, any two stable partitions of 8 contain the same odd parties, we 
define O.P.(B)  to be the number of distinct odd parties in 8. Our first result is the 
following: 

PROPOSITION 4.1 Given a preference relation 9 = ( S ,  T ) ,  let II be a stable partition 
of 8, and let P = ( a , ,  a, ,  . . . , a,, + ,) be an odd party wirh k 2 0. Then, after deleting 
a 2 k +  1 ,  

is a stable partition of 9 a, , , , .  

Proof ll' is simply obtained from ll by decomposing the odd party P =  
( a , ,  a, ,  . . . ,a,,+ ,) into k matching pairs while excluding person a,,+ , from the 
relation. It is clear that every superior entry in II' is a superior entry in ll, and 
every inferior entry in ll, other than the party entries, is an inferior entry in II'. So 
ll' is a stable partition of 8 - a 2 , +  ,. 

In the context of the above proposition, we know that O.P. (8 -a, ,  + ,) = 

O . P . ( B ) -  1. One remark is required here: Even though the above proposition 
states the effect of deleting person a, ,+ ,  from 8, it makes no difference to delete 
any other person a,, i=  1 to 2k+ 1; since the party permutation is cyclic. The 
following theorem says that, after deleting an arbitrary person from the preference 
relation, the number of odd parties is either decreasing by 1 or increasing by 1. 

THEOREM 4.2 Let 9 = ( S ,  T) be a preference relation and let a E S. Then 
I o . P . ( ~  - a)  - O.P.(B)~ = 1. 

Proof Let I S [  = n, O . P . ( 8 )  = m and O . P . ( 8  - a )  = m'. Then I S -  {all = n  - 1, and 
both n - m  and ( n -  1 m are even numbers. So the difference 
( ( n - m ) - ( ( n - 1 ) - m ' ) = I m r - m + l l  is also an even number. Hence ~ o . P . ( B - a ) -  
o . P . ( ~ ) I  = Im'-ml is odd. 

Suppose that there exists a person a such that I O . P . ( ~ - U )  - o.P.(B)\ = k and 
k# 1. Then by Proposition 4.1 and Theorem 3.4, a cannot be in an odd party in 
the preference relation 9. So a must be in an even party, by using the same 
technique used in proving Proposition 2.2, we can prove that there exists a stable 
partition ll and a person b such that {a ,  b )  forms a two-person party in T I .  It is 
clear that II - { ( a ,  b ) )  is a stable partition of the preference relation (8 - a )  - b. So 
O . P . ( B - a - b ) = O . P . ( 9 ) ,  and Io.P.(~-a)-o.P.(B-a-b)l=k. We have just 
showed that if there exists a person a in the preference relation 9 such that 
IO.P.(8) - O . P . ( ~ - U ) ~  = k, k # 1 then there exists another person b in the preference 
relation 8' = 8 - u such that I o . P . ( ~ ?  - O.P.(B' - b)l = k, k # 1. Replacing person a 
and preference relation 8 by b and Y ( = b - a ) ,  we may obtain the same 
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20 J. J. M. TAN 

conclusion recursively. Since S is a finite set, where 8 = ( S ,  T), this would give a 
contradiction. So ~o.P. (B)  - o . P . ( ~  - a ) /  = 1 for every person a E S. 

Now, let us explain how we find a maximum stable matching. We first apply, 
for example, the 0 ( n 2 )  algorithm described in Tan [7] to find a stable partition. If 
there are m odd parties in the partition, by Theorem 4.2 and Theorem 3.5. at least 
m persons have to be excluded from a maximum stable matching. Using the 
method described in Proposition 4.1, we delete one person from each odd party to 
eliminate all the odd parties. The remaining table of preference lists does not 
contain any odd party. then we may apply the technique used in proving 
Proposition 2.2 to obtain a complete stable matching for the remaining persons 
which gives a maximum stable matching. 

As for the time bound of this algorithm for finding a maximum stable matching, 
it is obvious that the main work is to find a stable partition, which is O(n2)  as 
described in [7]. The time required for all the other work is dominated by that, so 
the overall time bound is O(n2) .  

COROLLARY 4.3 Given a preference relation P = ( S .  T ) ,  the number of pairs in a 
maximum stable matching is equal to + (n -O .P . (P ) ) ,  where  IS( and O . P . ( B )  is the 
number of odd parries in b. 
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