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Abstract

For stable marriage (SM) and solvable stable roommates (SR) instances, it is known that
there are stable matchings that assign each participant to his or her (lower/upper) median stable
partner. Moreover, for SM instances, a stable matching has this property if and only if it is a
median of the distributive lattice formed by the instance’s stable matchings.

In this paper, we show that the above local/global median phenomenon first observed in
SM stable matchings also extends to SR stable matchings because SR stable matchings form a
median graph. In the course of our investigations, we also prove that three seemingly different
structures are pairwise duals of each other – median graphs give rise to mirror posets and vice
versa, and mirror posets give rise to SR stable matchings and vice versa. Together, they imply
that for every median graph G, there is an SR instance I(G) whose graph of stable matchings is
isomorphic to G. Our results are analogous to the pairwise duality results known for distributive
lattices, posets, and SM stable matchings. Interestingly, they can also be inferred from the work
of Feder in the early 1990’s. Our constructions and proofs, however, are smoother generalizations
of those used for SM instances.

1 Introduction

In the stable roommates problem (SR), there are 2n participants each of whom has a preference
list that ranks all others in some linear order. A matching is a set consisting of n disjoint pairs of
the participants. The matching is unstable if there is a pair of participants who prefer each other
over their assigned partners in the matching; such a pair is said to block the matching. Intuitively,
matchings with blocking pairs will likely unravel since there is always a temptation for the two
participants who form a blocking pair to leave their partners in the matching and pair up. Hence,
the goal of the problem is to find a stable matching, a matching with no blocking pairs.

A simpler version of SR, which is also sometimes referred to as the bipartite version of SR, is
the stable marriage problem (SM). There are n men and n women each of whom ranks participants
from the opposite sex only. This time, a stable matching is a set of n man-woman pairs such that
no man and woman prefer each other over their assigned partners in the matching. An instance
of SM can be transformed into an instance of SR by a simple trick: at the end of each man’s
preference list, append an arbitrary ordering of the other men; do the same for the women. It is
straightforward to check that both instances have exactly the same stable matchings.
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Gale and Shapley [13] first proposed SM and SR in 1962. They showed that every SM instance
has a stable matching and described a procedure that finds such a matching in O(n2) time. In
contrast, they noted that there are SR instances with no stable matchings and left open the question
of finding one if it exists. Two decades later, Irving [15] presented an O(n2) algorithm that can
distinguish between the solvable SR instances – i.e., those with stable matchings – and the unsolvable
ones: it outputs a stable matching for the solvable instances and reports none for the unsolvable
instances. At least three books [20, 14, 25] and hundreds of papers have been written about SM, SR
and their variants. Centralized stable matching algorithms also play an important role in society
today as they are used to match medical residents to hospitals [24] and students to schools [1, 2].

By formulating SM and SR as linear programs, Teo and Sethuraman [27] discovered the sur-
prising result that there are stable matchings which are locally fair – every participant is matched
to their (lower or upper) median stable partner.

Theorem 1 (Teo and Sethuraman) Let I be a solvable SR instance. Let L = {µ1, µ2, . . . , µl}
consist of distinct stable matchings of I. For each participant x, order his l partners in these
matchings from his most preferred to his least preferred. Let pi,L(x) denote the ith partner of x in
this sorted list.

a. When l is odd, there is a stable matching of I that assigns each participant x to his median
stable partner p(l+1)/2,L(x) in L.

b. When l is even, there is a stable matching of I that assigns each participant x to pl/2,L(x) or
pl/2+1,L(x), his lower or upper median stable partner in L.

c. Additionally, when I is originally an SM instance, there is a stable matching that assigns
each man m to pi,L(m), which simultaneously assigns each woman w to pl−i+1,L(w), for
i = 1, . . . , l.

When I is an SM instance, the set of stable matchings of I, M(I), forms a distributive lattice
M(I) = (M(I),¹). The covering graph of M(I) (i.e., the undirected Hasse diagram of the dis-
tributive lattice) can then be thought of as the unordered structure that describes the connections
between the stable matchings of I. Thus, the distance between two matchings µ and µ′, d(µ, µ′), is
the length of the shortest path connecting µ and µ′ in this graph. A stable matching µ∗ is a median
of M(I) whenever

∑
µ′∈M(I) d(µ∗, µ′) ≤ ∑

µ′∈M(I) d(µ, µ′) for every µ ∈ M(I). That is, a median
of M(I) is a stable matching whose total (or average) distance from all the stable matchings of I is
the least. Medians of M(I) are arguably fair because they best represent all the stable matchings
of I. Unlike the stable matchings in Theorem 1, however, their fairness is global in nature.

In Theorem 1(c), let αi,L refer to the stable matching that matches each man m to pi,L(m)
for i = 1, . . . , l. Recently, Cheng [9] presented a characterization of these stable matchings that
implied another surprising feature: when L = M(I) and l is odd, α(l+1)/2,L is the unique median of
M(I). On the other hand, when l is even, the stable matchings µ such that αl/2,L ¹ µ ¹ αl/2+1,L

are exactly the medians of M(I). Thus, quite remarkably, the two sets of fair stable matchings we
have considered coincide: a stable matching is “locally” median (i.e., each person is matched to
his median stable partner) if and only if it is “globally” median (i.e., the matching is a median of
M(I)). We shall call this the local/global median phenomenon of stable matchings.

In light of Theorem 1(a) and (b), a natural question to ask is whether the local/global median
phenomenon extends to solvable SR instances. To answer, we need a structure for SR stable match-
ings that generalizes the distributive lattice of SM stable matchings. In [14], Gusfield and Irving
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described a way in which SR stable matchings can be viewed as having a meet semilattice struc-
ture. Their meet semilattice, however, is a bit “unnatural”.1 Furthermore, unlike the distributive
lattice structure of SM stable matchings, very little is known about their semilattice. Thus, our
objectives are three-fold: (1) find a more natural structure that governs SR stable matchings, (2)
characterize the medians of the structure in a way that allows us to determine if the local/global
median phenomenon holds for SR stable matchings, and (3) determine if the properties known
about the distributive lattice of SM stable matchings are generalizable to the structure of the SR
stable matchings.

To address our objectives, we take the traditional approach used by Gusfield and Irving in [14]
to study the SR stable matchings; that is, we use the reduced rotation posets of the instance. Let
I be a solvable SR instance. It is known that the reduced rotation poset of I, R′(I), encodes all
the stable matchings of I (which can be exponentially large), and, yet, its size is always polynomial
in the input size. We consider the general class of posets that includes R′(I) and call it the class
of mirror posets. Here are our results:

• First, we prove that mirror posets give rise to median graphs. This implies that the set of
stable matchings of I form a median graph G(M(I)). In this graph, two stable matchings are
adjacent if and only if their encodings (with respect to the rotations in R′(I)) differ in one
rotation.

• We then show that the local/global median phenomenon also holds for the stable matchings
of I. In particular, a stable matching of I matches each participant to his median stable
partner if and only if the stable matching is also a median of G(M(I)). Applying results on
medians in median graphs [4], we also make note of other nice properties that these median
stable matchings possess.

• Next, we prove for any mirror poset P, there is a solvable SR instance I(P) so that the
reduced rotation poset of I(P) is isomorphic to P.

• Finally, using a result of Barthélemy and Constantin [6], we prove a similar result for median
graphs and mirror posets. That is, for any median graph G, there is a mirror poset PG so that
the median graph that arises from it, as noted in item 1, is isomorphic to G. Together with
our third result, this implies that for every median graph G, there is a solvable SR instance
IG so that the graph of its stable matchings, G(M(IG)), is isomorphic to G.

Our results strongly suggest that our proposed graph for the SR stable matchings is the appro-
priate generalization of the distributive lattice of SM stable matchings. When I is an SM instance,
for example, G(M(I)) is the covering graph of M(I). The local/global median phenomenon for
SR stable matchings holds when we use our graph as the global structure describing the SR sta-
ble matchings. The dualities between mirror posets and SR stable matchings, median graphs and
mirror posets, and median graphs and SR stable matchings generalize the dualities between posets
and SM stable matchings, distributive lattices and posets, and distributive lattices and SM sta-
ble matchings respectively [14]. Finally, because our graph is a median graph, it can be viewed

1Each stable matching µ is represented by Pµ, a set of ordered pairs (x, y) such that {x, y} is in µ or x prefers y to
his partner in µ. A stable matching µ0 is then fixed. The elements of the semilattice consists of taking the symmetric
difference between the Pµ0 and Pµ for each stable matching µ. A meet semilattice structure emerges because the
elements are closed under intersection.
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as a median semilattice [3], an ordered structure. This makes it possible to show that the meet
semilattice proposed by Gusfield and Irving is isomorphic to our structure.

To a certain extent, our structural results on SR stable matchings are rediscoveries of some of
Feder’s results [10, 11, 12]. In the late 1980’s/early 1990’s, Subramanian [26] and Feder pioneered
a different way of investigating SR by viewing SR stable matchings as the stable configurations
of a network of non-expansive gates. This allowed Feder to prove the duality between 2-SAT
(2-satisfiability) and SR instances, and the duality between median graphs and 2-SAT.

Theorem 2 (Feder) For every SR instance with 2n people, its set of stable matchings can be
described by a 2-SAT instance with O(n2) variables and clauses. The variables are of the form
zxi which denotes whether participant x is assigned to its first i choices. Conversely, every 2-SAT
instance with O(n) variables and O(n2) clauses characterizes the set of stable matchings of an SR
instance with O(n) participants.

Theorem 3 (Feder) For every median graph, there is a 2-SAT instance with no equivalent variables
whose solutions are in one-to-one correspondence with the vertices of the graph. Conversely, for
every 2-SAT instance with no equivalent variables, there is a median graph whose vertices are in
one-to-one correspondence with the solutions of the 2-SAT instance.

With a little bit of work (e.g., removing the equivalent variables in the 2-SAT representation of
an SR instance), these two theorems can be combined to prove the duality between median graphs
and solvable SR instances. Mirror posets and 2-SAT instances are also related. The (directed)
implication graph of a solvable 2-SAT instance with no trivial and equivalent variables is a mirror
poset. Conversely, mirror posets give rise to 2-SAT instances as shown in the proof of Theorem
4.3.4 in [14].

Interestingly, as far as we know, no one has taken advantage of the connections between median
graphs and SR instances since Feder’s work. In our opinion, this is due to the fact that the
machinery he used is based on stable network configurations. For example, to determine his 2-
SAT representation of the stable matchings of an SR instance, one would have to understand a
more general algorithm that generates a 2-SAT representation of the stable configurations of an
arbitrary network. Of course, there is nothing wrong with this, but it does make the transition
from median graphs to SR instances and back harder to follow. The value of our paper then
rests not only on the results but also the techniques we used. It serves as a bridge between the
works of Feder [10, 11, 12] and Teo and Sethuraman [27] using the traditional approach of Gusfield
and Irving [14]. In particular, our constructions are smooth generalizations of those used for SM,
allowing the reader to have a better grasp of the results.

The rest of the paper is arranged as follows. In Section 2, we present a simple proof of Theorem 1
based on [18], describe Irving’s algorithm for solving SR instances, and state how an SR instance’s
rotation poset encodes all its stable matchings. In Section 3, we show how mirror posets give rise
to median graphs. In Section 4, we prove the local/global median phenomenon of stable matchings
for solvable SR instances. We prove our duality result for mirror posets and SR stable matchings
in Section 5, and the corresponding result for median graphs and mirror posets in Section 6. We
conclude in Section 7.

2 Preliminaries

Klaus and Klijn [18] recently proved Theorem 1 without relying on linear programming. We present
the proof here with some modifications.
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Let I be an SR instance. From hereon, unless otherwise specified, we will always assume that
such instances are solvable. Let M(I) be its set of stable matchings. Given two stable matchings
µ and µ′ of I, a participant x prefers µ over µ′ if x prefers his partner in µ over his partner in µ′.
Here is a known property about stable matchings (Lemma 4.3.9 in [14]).

Lemma 1 Let I be an SR instance where µ and µ′ are two of its stable matchings. Suppose x and
y are partners in µ but not in µ′. Then either x prefers µ over µ′ and y prefers µ′ over µ or vice
versa; that is, x and y have opposite preferences over µ and µ′.

The next lemma says that we can quantify the degree to which x and y disagree about their
preference of µ over all other stable matchings of I.

Lemma 2 Let π = (µ1, µ2, . . . , µl) ∈ M(I)l. For each participant x, sort the multiset {pµi(x), 1 ≤
i ≤ l} from x’s most preferred to least preferred, and denote by pi,π(x) the ith person in this sorted
list. For each x and for i = 1, . . . , l, y = pi,π(x) if and only if x = pl−i+1,π(y).

Proof Suppose x and y are partners in j of the stable matchings in π. Hence, there exists some i so
that y = pi,π(x) = pi+1,π(x) = · · · = pi+j−1,π(x). This means that there are i− 1 stable matchings
in π that x prefers more over those that match x to y, and l − (i + j − 1) stable matchings in π
that x prefers less over those that match x to y. By Lemma 1, there are i − 1 stable matchings
in π that y prefers less over those that match y to x, and l − (i + j − 1) stable matchings in π
that y prefers more over those that match y to x. Therefore, in y’s sorted list of stable partners,
x = pl−i−j+2,π(y) = pl−i−j+3,π(y) = · · · = pl−i+1,π(y). Since we chose x, y, and i arbitrarily, the
lemma follows. 2

The lemma leads to an easy proof of Theorem 1. Since the proof does not require the stable
matchings in L to be distinct, we use π in place of L.

Proof of Theorem 1. When l is odd, (l + 1)/2 = l − (l + 1)/2 + 1. By Lemma 2, this means
that the 2n participants of I can be partitioned into n pairs {x, y} such that x = p(l+1)/2,π(y) and
y = p(l+1)/2,π(x) (i.e., x and y are each other’s median stable partners in π). Denote this perfect
matching of the participants of I as M . Now, consider any pair of participants {x′, y′} 6∈ M .
Suppose x′ prefers y′ over p(l+1)/2,π(x′). This implies that there are at least (l + 1)/2 stable
matchings in π where x′ prefers y′ over his assigned partners. But since these matchings are stable,
y′ must prefer his partners in these matchings over x′. Hence, there are at least (l + 1)/2 stable
matchings in π where y′ prefers his assigned partners over x′; i.e., y′ prefers p(l+1)/2,π(y′) over x′.
Thus, {x′, y′} cannot be a blocking pair of M so M is a stable matching of I.

When l is even, let π′ = (µ1, µ2, . . . , µl−1). According to the previous paragraph, the matching
M ′ that assigns each participant to their median stable partner in π′ is a stable matching of I. But
for each participant x, x’s median stable partner in π′ is his lower or upper median stable partner
in π. Hence, I has a stable matching that assigns each participant to his lower or upper median
stable partner in π.

Finally, when I is a stable marriage instance, every stable matching consists of man-woman
pairs. For i = 1, . . . , l, let Mi = {(m,w) : w = pi,π(m)}. Since m = pl−i+1,π(w) whenever
(m,w) ∈ Mi, no two men can be matched to the same woman. Consequently, the women also have
distinct partners in Mi so Mi is a perfect matching of the men and women. The argument for
proving Mi is stable is similar to the one for M above. Suppose (m′, w′) 6∈ Mi. If m′ prefers w′
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over his partner in Mi, then there are at least l − i + 1 stable matchings in π where m′ prefers w′

over his assigned partner. Since these are stable matchings, w′ must prefer her assigned partners
in each case to m′. Thus, w′ prefers pl−i+1,π(w′) over m′ so Mi has no blocking pairs. 2

One might wonder why we are not extending our proof of Theorem 1(c) to stable roommates
instances and, consequently, show that there is a stable matching that matches each participant
x to pi,π(x) or pl−i+1,π(x) for i = 1, . . . , l. Such a stable matching must be a subset of the set
{{x, y} : y = pi,π(x) or x = pi,π(y)}. But the set may not contain a perfect matching of the
participants because of the “non-bipartiteness” of stable roommates instances.

2.1 Solving SR Instances

Let us now describe Irving’s algorithm that computes a stable matching of an SR instance if it
has one. A more thorough discussion can be found in [14]. Throughout the algorithm, a table
is associated with the instance. Initially, it consists of the preference lists of the participants.
Subsequently, the lists are shortened until one of two terminating conditions is satisfied: some list
becomes empty, which means that the instance has no stable matching, or all the lists contain
exactly one entry, which corresponds to a stable matching of the instance. A table is always
consistent – i.e., x is present in y’s list if and only if y is present in x’s list. Thus, when a pair
{x, y} is deleted from a table, two operations are always involved: x is removed from y’s list and
y is removed from x’s list. For a table T and a participant x, we shall use fT (x), sT (x), lT (x) to
denote the first, second and last persons on x’s list in T .

The algorithm consists of two phases. The first phase is very similar to the Gale-Shapley
algorithm for solving a stable marriage instance. All participants are initially set to be free. Some
of them then become semi-engaged. However, the semi-engagement relation (as opposed to the
engagement relation) is not necessarily symmetric; for example, if x is semi-engaged to y, it may
not be the case that y is semi-engaged to x. Here is main loop: While some free person x has a
non-empty list, he proposes to the first person y on his list. If some person z is semi-engaged to y,
set z to be free. Assign x to be semi-engaged to y. Delete all pairs {x′, y} from the table such that
x′ is a successor of x in y’s list.

It is known that all possible executions of phase 1 lead to the same table. We shall denote it as
T0, the phase-1 table. It has the following properties: (i) y = fT0(x) if and only if x = lT0(y), and
(ii) the pair {x, y} is absent from T0 (i.e., x is not in y’s list and vice versa) if and only if x prefers
lT0(x) over y or y prefers lT0(y) over x. Hence, if the while loop ended because some free person’s
list became empty, the algorithm returns that the instance has no stable matching. Otherwise, if
every person’s list contains exactly one participant, the table corresponds to a perfect matching
because of property (i), which is stable because of property (ii). The algorithm outputs the stable
matching. Finally, if some person’s list contains two or more participants, the algorithm proceeds
to the second phase.

When a table T with properties (i) and (ii) above has at least one list with two or more
participants, it always has an exposed rotation ρ = (x0, y0), (x1, y1), . . . , (xr−1, yr−1) such that
yi = fT (xi) and yi+1 = sT (xi) for i = 0, . . . , r−1, where addition is done modulo r. The X-set of ρ
is {x0, x1, . . . , xr−1} while its Y -set is {y0, y1, . . . , yr−1}. Eliminating ρ from T is similar to making
xi semi-engaged to yi+1 for i = 0, . . . , r − 1; that is, all pairs {z, yi+1} such that z is a successor of
xi in yi+1’s list are deleted for i = 0, . . . , r − 1. The resulting table is denoted as T/ρ. It is easy
to check that if T has properties (i) and (ii) in the previous paragraph, then T/ρ maintains these
properties.
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Phase 2 of the algorithm now has an easy description. Set T to T0. While none of the lists in T
are empty and some list has more than one entry, find a rotation ρ exposed in T and eliminate it.
Update T to T/ρ. Once again, when the while loop ends and some list in T is empty, the algorithm
outputs that the instance has no stable matching. Otherwise, all lists have exactly one entry; the
algorithm returns the corresponding stable matching. Irving’s algorithm can be implemented in
O(n2) time.

Suppose a stable matching µ is obtained by eliminating the sequence ρ1, ρ2, . . . , ρt of rotations
from T0. It turns out that the order of elimination is not important as long as rotations are
eliminated from a table only when they are exposed. Hence, we write µ = T0/Z, where Z =
{ρ1, ρ2, . . . , ρt}; i.e., we specify µ by stating the set of rotations that were eliminated from T0 to
obtain µ. Furthermore, µ = T0/Z = T0/Z ′ if and only if Z = Z ′. Thus, if the rotations in Z and
Z ′ were eliminated from T0 during two separate executions of phase 2 and Z 6= Z ′, the resulting
stable matchings are different.

2.2 Rotations of Solvable Stable Roommates Instances

Suppose I is an SR instance. Let R(I) consist of all the exposed rotations that can be eliminated
during an execution of phase 2 of Irving’s algorithm. A rotation ρ = (x0, y0), (x1, y1), . . . , (xr−1, yr−1)
in R(I) is non-singular if ρ̄ = (y1, x0), (y2, x1), . . . , (yr−1, xr−2), (y0, xr−1) is also in R(I); otherwise,
it is called singular. If ρ is non-singular, we say that ρ̄ is the dual of ρ. Notice that the dual of ρ̄ is
ρ by the definition. Additionally, the X-set and Y -set of ρ are, respectively, the Y -set and X-set
of ρ̄. Here is an important result.

Theorem 4 Let µ be a stable matching of I. Suppose µ = T0/Z. Then Z contains every singular
rotation and exactly one of each dual pair of non-singular rotations of I.

Let ρ, σ ∈ R(I). We say that σ ≤ ρ if for every sequence of rotation eliminations that lead to a
stable matching in which ρ appears, σ appears before ρ. That is, σ has to be eliminated before ρ
can be exposed in a table. It is easy to verify that ≤ is a partial order. The pair R(I) = (R(I),≤)
is called the rotation poset of I. Here are some properties known about the precedence relations
between the rotations.

Lemma 3 Let ρ and σ be non-singular rotations and τ be a singular rotation of I. Then
(i) ρ 6≤ ρ̄
(ii) σ ≤ ρ if and only if ρ̄ ≤ σ̄
(iii) any predecessor of τ is a singular rotation.

Together, Theorem 4 and Lemma 3 implies that every stable matching µ of I can be obtained
from the table T0 by eliminating all the singular rotations first and then the non-singular rotations
associated with µ next. Define T ′0 to be the table obtained by eliminating from T0 all the singular
rotations of I. Let R′(I) consist of all the non-singular rotations of I, and let R′(I) = (R′(I),≤)
be the corresponding subposet of R(I). A subset S of R′(I) is complete if it contains exactly one
of each dual pair of rotations of I. It is closed if whenever ρ ∈ S, every rotation that precedes ρ in
R′(I) is also in S.
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Figure 1: The Hasse diagram of the reduced rotation poset of the SR instance example.

Theorem 5 Let I be an SR instance. There is a one-to-one correspondence between the stable
matchings of I and the complete closed subsets of R′(I). In particular, if µ is the stable matching
that corresponds to the complete closed subset Sµ of R′(I), then µ can be obtained from the phase-1
table by eliminating all the singular rotations of I and the rotations in Sµ.

Constructing R′(I) takes O(n3 log n) time. In an SR instance, a pair {x, y} is fixed if x and y
are partners in all the stable matchings of the instance. We state the next lemma, which is Lemma
4.4.1 in [14], because we will use it later.

Lemma 4 In an SR instance,
(i) {x, y} is a fixed pair if and only if x’s list in T ′0 contains only y and y’s contains only x;
(ii) otherwise, {x, y} is a stable pair if and only if the pair (x, y) or the pair (y, x) is in a non-

singular rotation of the instance.

2.3 An example

We now present an example to demonstrate the concepts we have just discussed. We will continually
bring it up throughout the paper. Below is T0, the phase-1 table of an SR instance with 20
participants. Observe that for each participant p, fT0(p) = p′ if and only if lT0(p

′) = p.

p1: p8 p20

p2: p6 p19

p3: p14 p18

p4: p13 p17

p5: p19 p15 p16

p6: p16 p8 p2

p7: p12 p15

p8: p15 p6 p1

p9: p18 p11 p12

p10: p11 p14 p13

p11: p17 p9 p10

p12: p9 p13 p7

p13: p10 p12 p4

p14: p20 p16 p10 p3

p15: p7 p5 p8

p16: p5 p14 p6

p17: p4 p11

p18: p3 p9

p19: p2 p5

p20: p1 p14

The instance has no singular rotations but has five pairs of non-singular rotations which we
describe below. Figure 1 shows its reduced rotation poset.
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ρ1 = (p10, p14), (p12, p13), (p15, p7), (p16, p5) ρ̄1 = (p13, p10), (p7, p12), (p5, p15), (p14, p16)
ρ2 = (p9, p11), (p13, p12), (p17, p4) ρ̄2 = (p12, p9), (p4, p13), (p11, p17)
ρ3 = (p11, p9), (p14, p10), (p18, p3) ρ̄3 = (p10, p11), (p3, p14), (p9, p18)
ρ4 = (p15, p5), (p6, p8), (p19, p2) ρ̄4 = (p8, p15), (p2, p6), (p5, p19)
ρ5 = (p16, p14), (p8, p6), (p20, p1) ρ̄5 = (p6, p16), (p1, p8), (p14, p20)

Here are its six stable matchings together with their corresponding complete closed subsets.

µ1 = T0/{ρ̄5, ρ̄4, ρ̄3, ρ̄2, ρ̄1}
= {{p3, p18}, {p4, p17}, {p1, p20}, {p2, p19}, {p9, p11},

{p10, p14}, {p12, p13}, {p5, p16}, {p6, p8}, {p7, p15}}
µ2 = T0/{ρ̄5, ρ̄4, ρ̄3, ρ̄2, ρ1}

= {{p3, p18}, {p4, p17}, {p1, p20}, {p2, p19}, {p9, p11},
{p10, p13}, {p12, p7}, {p5, p15}, {p6, p8}, {p14, p16}}

µ3 = T0/{ρ̄5, ρ̄4, ρ̄3, ρ̄1, ρ2}
= {{p3, p18}, {p4, p13}, {p1, p20}, {p2, p19}, {p9, p12},

{p10, p14}, {p11, p17}, {p5, p16}, {p6, p8}, {p7, p15}}
µ4 = T0/{ρ̄5, ρ̄4, ρ̄2, ρ̄1, ρ3}

= {{p3, p14}, {p4, p17}, {p1, p20}, {p2, p19}, {p9, p18},
{p10, p11}, {p12, p13}, {p5, p16}, {p6, p8}, {p7, p15}}

µ5 = T0/{ρ̄5, ρ̄3, ρ̄2, ρ1, ρ4}
= {{p3, p18}, {p4, p17}, {p1, p20}, {p2, p6}, {p9, p11},

{p10, p13}, {p12, p7}, {p5, p19}, {p8, p15}, {p14, p16}}
µ6 = T0/{ρ̄4, ρ̄3, ρ̄2, ρ1, ρ5}

= {{p3, p18}, {p4, p17}, {p1, p8}, {p2, p19}, {p9, p11},
{p10, p13}, {p12, p7}, {p5, p15}, {p6, p16}, {p14, p20}}

Below, the participants’ stable partners in the six stable matchings were collected and sorted
according to their preferences.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

1 p8 p6 p14 p13 p19 p16 p12 p15 p18 p11

2 p20 p19 p18 p17 p15 p8 p12 p6 p11 p14

3 p20 p19 p18 p17 p15 p8 p12 p6 p11 p14

4 p20 p19 p18 p17 p16 p8 p15 p6 p11 p13

5 p20 p19 p18 p17 p16 p8 p15 p6 p11 p13

6 p20 p19 p18 p17 p16 p2 p15 p1 p12 p13

p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

1 p17 p9 p10 p20 p7 p5 p4 p3 p2 p1

2 p9 p13 p10 p16 p7 p5 p4 p3 p2 p1

3 p9 p13 p10 p16 p7 p5 p4 p3 p2 p1

4 p9 p7 p12 p10 p5 p14 p4 p3 p2 p1

5 p9 p7 p12 p10 p5 p14 p4 p3 p2 p1

6 p10 p7 p4 p3 p8 p6 p11 p9 p5 p14
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When π = (µ1, µ2, µ3, µ4, µ5, µ6), it is easy to verify that µ1 and µ2 are the only stable matchings
that match participants to their lower or upper median stable partners in π.

3 From mirror posets to median graphs

Let us now define a class of posets based on Lemma 3, and a class of graphs called median graphs.
In this section, we will prove that mirror posets give rise to median graphs.

Definition 1 A poset P = (P,≤) is a mirror poset if P can be partitioned into pairs of dual
elements, where the dual of ρ ∈ P is denoted as ρ̄, such that

(i) ρ 6< ρ̄ for each ρ ∈ P and
(ii) σ < ρ if and only if ρ̄ < σ̄ for any ρ, σ ∈ P .

Let G = (V, E) be a graph, and let d(u, v) denote the length of the shortest path from u to v
in G. Suppose π = (v1, v2, . . . , vl) ∈ V l. Define the distance of vertex u from π as

D(u, π) =
l∑

i=1

d(u, vi).

A vertex u∗ ∈ V is a median of π if D(u∗, π) ≤ D(u, π) for each u ∈ V . When π consists exactly
of the vertices of G, we shall also say that a median of π is a median of G. The median set of π
consists of all the medians of π.

Definition 2 A graph is a median graph if every family of three vertices always has a unique
median. Equivalently, a graph is a median graph if for any three vertices u, v, w, there exists a
unique vertex that lies in a shortest path from u to v, u to w, and v to w.

An immediate consequence of the definition is that every median graph is connected and bipar-
tite. Median graphs were first studied by Avann [3], and introduced independently by Nebeský [23]
and Mulder and Schrijver [22]. Surveys by Klavžar and Mulder [19], Bandelt and Chepoi [5], and
Knuth [21] summarizes the extensive research work that has been done in this area. Important
examples of median graphs include trees and hypercubes.

Let P = (P,≤) be a mirror poset. A subset S ⊆ P is partially complete if it contains at most
one element from each dual pair in P ; it is complete if it contains exactly one element from each
dual pair in P . It is closed if whenever ρ ∈ S and σ ≤ ρ then σ ∈ S. We shall use SP to denote the
set that consists of all the complete closed subsets of P in P. For any subset T ⊆ P , an element
ρ ∈ T is a minimal element of T if none of its predecessors in P are in T ; it is a maximal element
of T if none of its successors in P are in T .

We construct a graph on SP as follows. Let G(SP) be the graph whose vertex set is SP , and
whose edge set consists of pairs (S, S′) if and only if they differ in only one dual element (i.e., there
is an element ρ ∈ P so that ρ ∈ S and ρ̄ ∈ S′, and S − {ρ} = S′ − {ρ̄}.) We state several technical
results that will be used to prove the main result of this section: G(SP) is a median graph. While
it suffices to show that every family of three vertices in G(SP) has a unique median, we actually
do more work and identify the medians of an arbitrary sequence of vertices in G(SP) because the
result will turn out to be useful in the next section.
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Lemma 5 Let P = (P,≤) be a mirror poset. Suppose S is a partially complete and closed subset
of P . Then there exists T ∈ SP so that S ⊆ T . In other words, S can be extended to a complete
closed subset of P.

Proof Suppose S is a partially complete and closed subset of P . This means that there exists
dual pairs {ρi, ρ̄i}, i = 1, . . . , k so that neither ρi nor ρ̄i is part of S. Let ρ be a minimal element
of {ρ1, ρ̄1, . . . , ρk, ρ̄k}. Suppose σ ≤ ρ. Either σ ∈ S or σ 6∈ S because σ̄ ∈ S. Since P is a mirror
poset, ρ̄ ≤ σ̄. Thus, if σ 6∈ S, ρ̄ must be in S since S is closed. But this is a contradiction since
neither ρ nor ρ̄ are in S. Hence, σ ∈ S. This means that all the predecessors of ρ are in S so
S∪{ρ} is closed. The set S∪{ρ} is also partially complete since S was partially complete and does
not contain ρ̄. When S ∪ {ρ} 6∈ SP , we again choose a minimal element from the set containing all
dual pairs not in S ∪ {ρ} and add it to this set. By the same reasoning, the resulting set must be
partially complete and closed. We repeat this until every dual pair has an element in the set. 2

Lemma 6 The graph G(SP) is connected. Moreover, for S, S′ ∈ SP , d(S, S′) = |S′ − S|.
Proof Let us first prove the following claim.

Claim: Let S, S′ ∈ SP . Suppose ρ is a minimal element of S′ − S. Then S − {ρ̄} ∪ {ρ} ∈ SP .
Proof of claim: First, let us show that ρ̄ is a maximal element of S so that S−{ρ̄} remains closed.
Suppose this is not the case so there exists σ ∈ S such that ρ̄ ≤ σ. This also means that σ̄ ≤ ρ.
Now, either σ ∈ S′ or it is not. If it is, then S′ is not closed since ρ̄ 6∈ S′ – a contradiction. If σ 6∈ S′

then σ̄ ∈ S′. This means that both σ̄ and ρ are in S′ − S so ρ is no longer a minimal element of
S′ − S which is, again, a contradiction. Hence, σ does not exist.

Second, let us show that all the predecessors of ρ also belong to S − {ρ̄} so that S − {ρ̄} ∪ {ρ}
is still closed. Let τ ≤ ρ so ρ̄ ≤ τ̄ . (Note that τ 6= ρ̄ by the first property of mirror posets.) Since
we just showed that ρ̄ is a maximal element of S, τ̄ 6∈ S. But S is a complete set of P so τ ∈ S.
Thus, S − {ρ̄} ∪ {ρ} is a closed subset of P . Finally, S − {ρ̄} ∪ {ρ} is complete since every dual
pair still has exactly one element in it.

Consider S, S′ ∈ SP . Topologically order the elements in S′−S and let the result be ρ1, ρ2, . . . , ρk.
Let T0 = S and Ti = Ti−1∪{ρi}−{ρ̄i} for i = 1, . . . , k so Tk = S′. Since T0 ∈ SP and ρ1 a minimal
element of S′ − T0, the above claim states that T1 ∈ SP . Furthermore, ρ2 is a minimal element
of S′ − T1; again, by the above claim T2 ∈ SP . Applying this argument repeatedly, we have
that each Ti ∈ SP . In addition, it is easy to check that Ti and Ti+1 are adjacent in G(SP) for
i = 0, . . . , k − 1. Therefore, T0, T1, . . . , Tk is a path from S to S′ in G(SP). This path shows that
d(S, S′) ≤ |S′ − S|. But in fact any path from S to S′ must be have length at least |S′ − S| since
the elements in S′ − S must be introduced into the sets encountered along the path one at a time.
Hence, d(S, S′) = |S′ − S|. 2

Lemma 7 Let π = (S1, S2, . . . , Sl) ∈ S l
P . For each ρ ∈ P , define nρ,π to be the number of times

ρ appears in the sets S1, S2, . . . , Sl. Let Smaj(π) = {ρ : nρ,π > l/2}; i.e., Smaj(π) consists of all
rotations ρ that appear in majority of the closed subsets in π. Then, Smaj(π) is closed and partially
complete. Additionally, when l is odd, Smaj(π) is complete.

Proof When ρ ∈ Si, each σ ≤ ρ also belongs to Si since Si is closed; hence, nσ,π ≥ nρ,π. Thus,
Smaj(π) is closed because when nρ,π > l/2, it is also the case that nσ,π > l/2.

For any dual pair {ρ, ρ̄}, nρ,π + nρ̄,π = l. Since at most one of these values can be greater than
l/2, at most one of ρ and ρ̄ can belong to Smaj(π). And when l is odd, Smaj(π) is complete because
exactly one of nρ,π and nρ̄,π is greater than l/2. 2
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Theorem 6 Let π = (S1, S2, . . . , Sl) ∈ S l
P .

(i) When l is odd, Smaj(π) is the unique median of π in G(SP).
(ii) When l is even, either Smaj(π) is the unique median of π in G(SP) or the extensions of

Smaj(π) are exactly the medians of π in G(SP).

Proof Since d(S, Si) = |Si−S|, ρ ∈ S contributes a value of 1 to d(S, Si) if ρ 6∈ Si and 0 otherwise.
Thus, d(S, Si) is the sum of the contributions of each ρ ∈ S to d(S, Si). Therefore,

D(S, π) =
l∑

i=1

d(S, Si) =
∑

ρ∈S

nρ̄,π

because the number of times that ρ ∈ S does not appear in S1, . . . , Sl is equal to the number of
times that ρ̄ appears in those sets. This also implies that

D(S, π)−D(S′, π) =
∑

ρ∈S

nρ̄,π −
∑

ρ∈S′
nρ̄,π

=
∑

ρ∈S−S′
nρ̄,π −

∑

ρ∈S′−S

nρ̄,π

=
∑

ρ∈S−S′
(nρ̄,π − nρ,π)

since S and S′ are complete subsets so ρ ∈ S − S′ if and only if ρ̄ ∈ S′ − S.
When l is odd, Lemma 7 states that Smaj(π) ∈ SP . Furthermore, for each ρ ∈ Smaj(π)

nρ̄,π < nρ,π so nρ̄,π − nρ,π < 0. It follows that for each S′ 6= Smaj(π), D(Smaj(π), π)−D(S′, π) < 0
so Smaj(π) is the unique median of π in G(SP).

So suppose l is even. If there is no dual pair {ρ, ρ̄} with nρ,π = nρ̄,π = l/2, Smaj(π) is complete
and closed. The above discussion again implies that Smaj(π) is the unique median of π. But when
this is not the case, Smaj(π) is partially complete and closed. By Lemma 5, it can be extended
into a complete closed subset of P. Let T1, T2 ∈ SP so that Smaj(π) ⊂ T1, T2; that is, T1 and T2

are extensions of Smaj(π). We note that when ρ ∈ T1− T2, nρ̄,π = nρ,π so D(T1, π)−D(T2, π) = 0.
In other words, all extensions of Smaj(π) have the same distances from π. Now suppose S′ is not
an extension of Smaj(π) but T is. Then for every ρ ∈ T − S′, either nρ̄,π = nρ,π or nρ̄,π < nρ,π;
moreover, there must be at least one element ρ ∈ T −S′ with nρ̄,π < nρ,π. Thus, it must be the case
that D(T, π)−D(S′, π) < 0. This shows that the extensions of Smaj(π) are exactly the medians of
π in G(SP). 2

An immediate consequence of the above theorem is that every family of three vertices of G(SP)
has a unique median.

Corollary 1 The graph G(SP) is a median graph.

4 The graph of stable roommates matchings and its medians

When I is an SR instance, R′(I) is a mirror poset whose complete closed subsets are in one-to-one
correspondence with the stable matchings of I. Our discussion in the previous section suggests a
natural graph for the stable matchings of I. For each µ ∈ M(I), let Sµ denote the complete closed
subset of R′(I) that corresponds to µ.
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Definition 3 Let G(M(I)) denote the graph whose vertices are the stable matchings of I, and two
stable matchings µ and µ′ are adjacent if and only if Sµ and Sµ′ differ by one rotation.

Thus, G(M(I)) is isomorphic to G(SR′(I)). According to Corollary 1, it is a median graph.
Furthermore, Theorem 6 describes the complete closed subsets of R′(I) that correspond to the
medians of a sequence of stable matchings in G(M(I)). After the next lemma, we present the
connections between these medians and the stable matchings discovered by Teo and Sethuraman.

Lemma 8 Let I be an SR instance. Suppose that participant x appears in the X-sets of the non-
singular rotations ρ1, . . . , ρr. In particular, (x, yi) ∈ ρi for i = 1, . . . , r, and x prefers yi over yi+1

for i = 1, . . . , r − 1. Then
(i) ρ1 ≤ ρ2 ≤ . . . ≤ ρr,
(ii) (yi+1, x) ∈ ρ̄i for i = 1, . . . , r − 1 and
(iii) the stable partners of x are exactly y1, y2, . . . , yr, yr+1 ordered from her most preferred to her

least preferred, where (yr+1, x) ∈ ρ̄r.

Proof Let 1 ≤ i ≤ r − 1. Since x prefers yi over yi+1, yi appears before yi+1 in x’s list. In order
for ρi+1 to be exposed in a table, yi+1 has to be the first person in x’s list. Thus, yi has to be
removed from x’s list. But ρi is the only non-singular rotation that contains (x, yi) so it has to be
eliminated first. It follows that ρ1, ρ2, . . . , ρr forms a chain in R′(I).

Suppose (z, x) ∈ ρ̄i. This means that once ρi has been eliminated, the front of x’s list is z. If
z 6= yi+1, then z has to be removed in order for ρi+1 to be exposed. Thus, (x, z) must be part of
some rotation that lies between ρi and ρi+1. But no such rotation exists according to part (i), so
z = yi+1.

According to Lemma 4, every stable partner of x must appear with x in some non-singular
rotation of I. Since x is in the X-set of σ if and only if x is in the Y -set of σ̄, we simply need
to consider the participants that appear with x in ρ1, . . . , ρr and ρ̄1, . . . , ρ̄r. Applying part (ii),
the stable partners of x consists exactly of y1, y2, . . . , yr and yr+1 where (yr+1, x) ∈ ρ̄r. Clearly, x
prefers yr over yr+1. 2

Theorem 7 Let I be an SR instance and π = (µ1, µ2, . . . , µl) ∈ M(I)l. For each participant x
and for i = 1, . . . , l, define pi,π(x) as before.

a. When l is odd, the stable matching that assigns each participant x to p(l+1)/2,π(x) is the unique
median of π in G(M(I)).

b. When l is even, the stable matchings that assign each participant x to pl/2,π(x) or pl/2+1,π(x)
are medians of π in G(M(I)). Additionally, when every stable matching of I is part of π, all
medians of π assign each participant x to pl/2,π(x) or pl/2+1,π(x).

Proof In this proof, let (Sµ1 , Sµ2 , . . . , Sµl
) be an alternate representation for π = (µ1, µ2, . . . , µl).

We then define nρ,π and Smaj(π) as before; i.e., nρ,π is the number of times rotation ρ ap-
pears in Sµ1 , Sµ2 , . . . , Sµl

, and Smaj(π) consists of those rotations that appear in majority of
Sµ1 , Sµ2 , . . . , Sµl

.
For each participant x, let R′(x) denote the set containing all the non-singular rotations that

have x as part of their X-sets. Let µ∗ be a stable matching that matches each participant to her
(lower or upper) median stable partner in π. To prove part (i), we will show that Sµ∗ ∩ R′(x) =
Smaj(π) ∩ R′(x) for every participant x. Hence, Sµ∗ = Smaj(π). According to Theorem 6, µ∗ is
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the unique median of π. To prove the first half of part (ii), we will show that Smaj(π) ∩ R′(x) ⊆
Sµ∗ ∩R′(x) for every participant x. This implies that Smaj(π) ⊆ Sµ∗ ; i.e., either Sµ∗ = Smaj(π) or
Sµ∗ is an extension of Smaj(π). Again, according to Theorem 6, µ∗ is a median of π.

Let x be some participant. If R′(x) = ∅, then Smaj(π) ∩ R′(x) = Sµ ∩ R′(x) = ∅. So suppose
R′(x) 6= ∅. From Lemma 8, the rotations in R′(x) can be arranged as ρ1, . . . , ρr which forms a
chain in R′(I). Furthermore, the stable partners of x are y1, y2, . . . , yr, yr+1 where (x, yi) ∈ ρi for
i = 1, . . . , r, (yr+1, x) ∈ ρ̄r, and the partners are arranged from x’s most preferred to least preferred
stable partner. It is also straightforward to verify that if x is matched to yi+1 in some stable
matching µ, then Sµ ∩R′(x) = {ρ1, . . . , ρi}.

Assume l is odd. Suppose x is matched to yi∗+1 in µ∗. Then Sµ∗∩R′(x) = {ρ1, . . . , ρi∗}. By our
definition of µ∗, we also have p(l+1)/2,π(x) = yi∗+1. This means that at least (l + 1)/2 of the stable
matchings in π match x to yi∗+1, yi∗+2, . . . , or yr+1. In all of these stable matchings, ρi∗ must be in
their corresponding closed subsets. Hence, nρi∗ ,π ≥ (l+1)/2. Applying a similar reasoning, we also
conclude that nρi∗+1,π ≤ (l − 1)/2. And since nρ,π ≤ nσ,π whenever σ < ρ in R(I), it follows that
Smaj(π) ∩ R′(x) = {ρ1, . . . , ρi∗}. In other words, Smaj ∩ R′(x) = Sµ∗(π) ∩ R′(x) for an arbitrary
participant x.

Suppose l is even. Again, suppose x is matched to yi∗+1 in µ∗ so Sµ∗ ∩ R′(x) = {ρ1, . . . , ρi∗}.
Using the same argument in the previous paragraph, when pl/2,π(x) = yj+1, Smaj(π) ∩ R′(x) =
{ρ1, . . . , ρj}. But by our assumption, pl/2,π(x) or pl/2+1,π(x) is yi∗+1. Hence, j ≤ i∗. Therefore,
Smaj(π) ∩R′(x) ⊆ Sµ∗ ∩R′(x).

Finally, let us prove the second half of part (ii). Let every stable matching of I occur in
π, and let µmed be a median of π. According to Theorem 6, Smaj(π) ⊆ Sµmed

. Suppose x is
matched to yi+1 in µmed. This means that ρ1, . . . , ρi ∈ Sµmed

but ρi+1, . . . , ρr+1 6∈ Sµmed
. In

particular, ρi+1, . . . , ρr+1 6∈ Smaj . If pl/2,π(x) = yj+1 for some j > i, then as in the previous
paragraphs nρj ,π ≥ l/2 + 1; i.e., ρj ∈ Smaj . But j ≥ i + 1 so this is a contradiction. It follows that
pl/2,π(x) = yj+1 where j ≤ i. If pl/2,π(x) = yi+1 or pl/2,π(x) = yj+1, j < i but pl/2+1,π(x) = yi+1,
we are done since x is matched to either her lower or upper median stable partner. The only case
we have to consider is pl/2,π(x) = yj+1, j < i but pl/2+1,π(x) = yk, k > i + 1. This implies that x
is never matched to yi+1 in the stable matchings in π, which is a contradiction since every stable
matching of I occurs in π. Since x is an arbitrary participant of I, every participant in µmed must
be matched to her lower or upper median stable partner. 2

Corollary 2 Let I be an SR instance. A stable matching µ matches each participant x to her
(lower or upper) median stable partner in I if and only if µ is a median of the graph G(M(I)).

In other words, the local/global median phenomenon that was observed in SM stable matchings
generalizes to SR stable matchings. It does so because the graph underlying the set of stable
roommates matchings is a median graph.

Example continued. In the example in Section 2.3, Sµ1 = {ρ̄5, ρ̄4, ρ̄3, ρ̄2, ρ̄1}, Sµ2 = {ρ̄5, ρ̄4, ρ̄3, ρ̄2, ρ1},
Sµ3 = {ρ̄5, ρ̄4, ρ̄3, ρ2, ρ̄1}, Sµ4 = {ρ̄5, ρ̄4, ρ3, ρ̄2, ρ̄1}, Sµ5 = {ρ̄5, ρ4, ρ̄3, ρ̄2, ρ1}, Sµ6 = {ρ5, ρ̄4, ρ̄3, ρ̄2, ρ1}.
Thus, when π = (µ1, µ2, µ3, µ4, µ5, µ6), Smaj(π) = {ρ̄5, ρ̄4, ρ̄3, ρ̄2} – which is a closed but not com-
plete subset of R′(I). Its two extensions are Sµ1 and Sµ2 . Thus, µ1 and µ2 are the medians of
G(M(I)). This can also be verified by drawing G(M(I)), shown in Figure 2 where ui corresponds
to µi, i = 1, . . . , 6. But µ1 and µ2 are also the only two stable matchings in π that match partici-
pants to their median stable partners as noted in Section 2.3. Hence, µ1 and µ2 are median stable
matchings in a local and global sense.
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Figure 2: The graph of stable matchings for the instance given in Section 2.3. Node ui corresponds
to the stable matching µi for i = 1, . . . , 6.

Below, we note a few more properties of the median set of π = (µ1, . . . , µl) ∈ M(I)l based on
the work of Bandelt and Barthélemy [4] on the medians of median graphs.

• In a graph G = (V, E), the interval I(u, v) between any two vertices u and v is the set
{t : d(u, t) + d(t, v) = d(u, v)}. The median set of π in G(M(I)) is always some interval
I(α(π), β(π)) in G. In particular, the set induces a connected subgraph of G(M(I)). The
values of α(π) and β(π) can be determined from Proposition 6 of [4].

• For each µ ∈ M(I), let N(µ) consist of all stable matchings adjacent to µ in G(M(I)). A
stable matching µ∗ is said to be a local median of π if D(µ∗, π) ≤ D(µ, π) for each µ ∈ N(µ∗).
It turns out that because G(M(I)) is a median graph, µ∗ is a local median of π if and only
if it is a median of π.

• A stable matching µ∗ is a Condorcet vertex of π if the number of stable matchings in π closer
to µ∗ is greater than or equal to the corresponding number for every other stable matching
µ. The Condorcet set of π contains all the Condorcet vertices of π. The median set of π is
exactly the Condorcet set of π whenever G(M(I)) is a cube-free median graph (i.e., a graph
that does not contain the cube, which is formed by connecting the corresponding vertices of
two 4-cycles, as a subgraph).

5 Mirror posets and stable roommate matchings

When I is an SR instance, R′(I) is a mirror poset. In this section, we prove the converse – that
every mirror poset gives rise to an SR instance. Our construction is a generalization of the one
used by Irving and Leather [16] to create a small SM instance from an arbitrary poset. The proof,
however, is more involved because only half of the rotations are revealed from the construction;
careful analysis is needed to argue the existence of the other half of the rotations.

For any two vertices α and β of a directed graph, let 〈α, β〉 denote the directed arc from α to
β and (α, β) = (β, α) the undirected edge between the two elements. We say that β is a neighbor
of α when there is an edge 〈α, β〉 or 〈β, α〉 in the directed graph.

Let P = (P,≤) be a mirror poset with 2n elements, and let S be one of its complete closed
subsets. Without loss of generality, assume that when the elements of S are topologically ordered,
the result is σ̄n, σ̄n−1, . . . , σ̄1. Thus, the other elements of P are σ1, . . . , σn, and σ̄n, . . . , σ̄1, σ1, . . . , σn

is a topological ordering of the elements of P . Let H(P) denote the Hasse diagram of P.
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procedure construct-instance (P, (σ̄n, σ̄n−1, . . . , σ̄1))

begin
form P ′ from P by adjoining an element σ̄n+1 that precedes all others and an element σn+1

that is a successor of all others;
for each edge 〈α, β〉 in the Hasse diagram H(P ′) of P ′

create a participant p(α, β) = p(β, α);
for each pair of edges 〈α, β〉 and 〈β̄, ᾱ〉

place p(α, β) and p(β̄, ᾱ) on each other’s (initially empty) preference lists;
{This completes iteration 0.}
for i := 1 to n
begin

N(i) := (αi
0, . . . , α

i
r−1), an arbitrary ordering of the neighbors of σi;

E(i) := (xi
0, . . . , x

i
r−1) where xi

j := p(σi, α
i
j);

L(i) := (yi
0, . . . , y

i
r−1), the ordered set of people such that yi

j is (currently) last on xi
j ’s list;

for j := 0 to r − 1 do
place yi

j+1 at the end of xi
j ’s list;

place xi
j at the beginning of yi

j+1’s list;
{addition in the subscript is taken mod r}

{This completes iteration i.}
end
for each participant

if his list is incomplete
add missing participants at the end of his list in an arbitrary order;

{This completes iteration n + 1.}
return the created SR instance as I(P);

end

Example continued. Suppose we used the mirror poset shown in Figure 1 as the input to the
algorithm with σi corresponding to ρi and σ̄i corresponding to ρ̄i for i = 1, . . . , 5. The result after
iteration n is a table identical to the phase-1 table T0 with the following correspondence:

p(σ̄6, σ̄5): p1

p(σ̄6, σ̄4): p2

p(σ̄6, σ̄3): p3

p(σ̄6, σ̄2): p4

p(σ̄5, σ̄1): p5

p(σ̄5, σ4): p6

p(σ̄4, σ̄1): p7

p(σ̄4, σ5): p8

p(σ̄3, σ2): p9

p(σ̄3, σ1): p10

p(σ̄2, σ3): p11

p(σ̄2, σ1): p12

p(σ̄1, σ2): p13

p(σ̄1, σ3): p14

p(σ1, σ4): p15

p(σ1, σ5): p16

p(σ2, σ6): p17

p(σ3, σ6): p18

p(σ4, σ6): p19

p(σ5, σ6): p20

Lemma 9 In construct-instance, let Ai be the preference table at the end of iteration i, for i =
0, . . . , n+1. Let ρi = (xi

0, y
i
0), (x

i
1, y

i
1), . . . , (x

i
r−1, y

i
r−1) so that ρ̄i = (yi

0, x
i
r−1), (y

i
1, x

i
0), . . . , (y

i
r−1, x

i
r−2)

for i = 1, . . . , n. Suppose we use Irving’s algorithm to find a stable matching of I(P). Then

a. An is the phase-1 table,
b. ρ̄i is an exposed rotation of Ai and Ai−1 = Ai/ρ̄i, for i = 1, . . . , n,
c. {ρ̄1, ρ̄2, . . . , ρ̄n} contains all the singular rotations and exactly one of each dual pair of non-

singular rotations of I(P).
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Proof Notice that construct-instance always maintained the property that y = lAi(x) if and
only if x = fAi(y), for i = 0, . . . , n. Since An+1 was created from An by simply completing the
preference lists of the participants, when y is considered during phase 1 of Irving’s algorithm, all
participants that were appended to the end of the list of x = fAn(y) will be removed. Thus, An

is the phase-1 table. Furthermore, it is easy to verify that by the way Ai was created from Ai−1,
ρ̄i is an exposed rotation in Ai and Ai−1 = Ai/ρ̄i. Thus A0 = An/{ρ̄n, ρ̄n−1, . . . , ρ̄1}. Since A0

has no empty lists, it corresponds to a stable matching of I(P). According to Theorem 4, every
singular rotation of I(P), and exactly one of each dual pair of non-singular rotations of I(P) had
to be eliminated from An to obtain A0. The third part of the theorem follows. 2

Even though we have not yet established that the ordered lists ρi, i = 1, . . . , n, are rotations,
we will still say that the X-set and Y -set of each ρi are {xi

0, x
i
1, . . . , x

i
r−1} and {yi

0, y
i
1, . . . , y

i
r−1}

respectively. For φ = ρi or ρ̄i, i = 1, . . . , n, let X(φ) and Y (φ) denote the X-set and Y -set of
φ respectively. For each participant z of I(P), the next lemmas describe when z ∈ X(φ) and
z ∈ Y (φ), enabling us to understand later the relationship between the σi’s and the ρi’s, and the
σ̄i’s and the ρ̄i’s. The lemmas make use of the fact that in H(P ′) if there are edges from σ̄j to σ̄i

and from σi to σj then j > i, and if there are edges from σ̄i to σj and from σ̄j to σi then i 6= j.

Lemma 10 (The X-sets.) Let 1 ≤ i < j ≤ n + 1.

a. Suppose 〈σi, σj〉 is an edge in H(P ′). Then p(σi, σj) ∈ X(ρk) if and only if k = i or k = j ≤ n.

b. Suppose 〈σ̄j , σ̄i〉 is an edge in H(P ′). Then p(σ̄j , σ̄i) 6∈ X(ρk) for any k.
c. Suppose 〈σ̄j , σi〉 is an edge in H(P ′). Then p(σ̄j , σi) ∈ X(ρk) if and only if k = i.
d. Suppose 〈σ̄i, σj〉 is an edge in H(P ′). Then p(σ̄i, σj) ∈ X(ρk) if and only if k = j ≤ n.

Proof The lemma follows directly from the observation that the X-set of ρk consists of participants
p(σk, α) where α is a neighbor of σk, and 1 ≤ k ≤ n. 2

Lemma 11 (The Y -sets.) Let 1 ≤ i < j ≤ n + 1.
a. Suppose 〈σi, σj〉 is an edge in H(P ′). Then p(σi, σj) 6∈ Y (ρk) for any k.
b. Suppose 〈σ̄j , σ̄i〉 is an edge in H(P ′). Then p(σ̄j , σ̄i) is in the Y -set of one or more of the

ρk’s. Moreover, these ordered lists can be arranged as ρk0 , ρk1 , . . . , ρkīj̄
so that ρk0 = ρi, and

σk0 , σk1 , . . . , σkīj̄
is a directed path in H(P).

c. Suppose 〈σ̄j , σi〉 is an edge in H(P ′). If j = n + 1, p(σ̄j , σi) 6∈ Y (ρk) for any k. If j ≤ n,
p(σ̄j , σi) is in the Y -set of one or more of the ρk’s. Moreover, these ordered lists can be
arranged as ρk0 , ρk1 , . . . , ρkij̄

so that ρk0 = ρj, and σk0 , σk1 , . . . , σkij̄
is a directed path in

H(P).
d. Suppose 〈σ̄i, σj〉 is an edge in H(P ′). Then p(σ̄i, σj) is in the Y -set of one or more of the

ρk’s. Moreover, these ordered lists can be arranged as ρk0 , ρk1 , . . . , ρkīj
so that ρk0 = ρi, and

σk0 , σk1 , . . . , σkīj
is a directed path in H(P).

Proof First, we note that p(σi, σj) is never last in the list of any p(σk, ψ), ψ a neighbor of σk, in
tables A0, . . . , An. Hence, p(σi, σj) 6∈ Y (ρk) for any k. By the same reasoning, when j = n + 1
p(σ̄j , σi) 6∈ Y (ρk) for any k. On the other hand, the smallest index k for which p(σ̄j , σ̄i) ∈ Y (ρk) is
when k = i. Similarly, the smallest index k for which p(σ̄j , σi) ∈ Y (ρk), j ≤ n, is when k = j, and
for which p(σ̄i, σj) ∈ Y (ρk), is when k = i.
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A participant z belongs to Y (ρk) if and only if z is the last person in some p(σk, ψ)’s list, ψ a
neighbor of σk, at the beginning of the kth iteration. After the kth iteration, z is again the last
person in some p(σk, α)’s list, α a neighbor of σk. If α = σ̄t for some t, α = σm for some m < k,
or α = σn+1, then z will stay as the last person on p(σk, α)’s list until the end of the nth iteration
because p(σk, α) will not be part of E(r), r > k. Hence, z 6∈ Y (ρr), r > k. On the other hand, if
α = σm, k < m ≤ n, z will stay at the end of p(σk, α)’s list from the kth to the (m− 1)st iteration.
At the mth iteration, p(σk, σm) will be part of E(m) since σk is a neighbor of σm, and z ∈ Y (ρm).
And since k < m, it must be the case that 〈σk, σm〉 is an edge of H(P).

We have shown that if z ∈ Y (ρk) and m is the next largest index after k such that z ∈ Y (ρm),
〈σk, σm〉 is an edge of H(P). Parts (b), (c) and (d) follow. 2

Lemma 12 Let 1 ≤ i < j ≤ n. If 〈σ̄j , σ̄i〉 is an edge of H(P), then ρ̄j precedes ρ̄i. Similarly, if
〈σ̄j , σi〉 is an edge of H(P) and ρi is a rotation, then ρ̄j also precedes ρi.

Proof If 〈σ̄j , σ̄i〉 is an edge of H(P), 〈σi, σj〉 is also an edge of H(P). According to Lemma 10,
p(σi, σj) ∈ X(ρi)∩X(ρj) = Y (ρ̄i)∩Y (ρ̄j). Thus, during the ith iteration, there is some participant
y that was placed at the end of p(σi, σj)’s list so that (y, p(σi, σj)) belongs to ρ̄i. Later, during the
jth iteration, there is another participant y′ that was placed at the end of p(σi, σj)’s list so that
(y′, p(σi, σj)) belongs to ρ̄j . Now, in order for ρ̄i to be exposed, y has to be at the end of p(σi, σj)’s
list. In particular, y′ has to be removed. Since the pair (p(σi, σj), y′) is part of only one rotation of
I(P), ρ̄j has to be eliminated first.

Suppose 〈σ̄j , σi〉 is an edge of H(P). According to Lemmas 10 and 11, p(σ̄j , σi) ∈ X(ρi) ∩
Y (ρj) = X(ρi) ∩ X(ρ̄j). Let (p(σ̄j , σi), y) be in ρi; i.e., y is at the end of p(σ̄j , σi)’s list at the
beginning of iteration i. During the jth iteration, there is some participant x that was placed in
front p(σ̄j , σi)’s list so that (p(σ̄j , σi), x) belongs to ρ̄j . If ρi is a rotation, all the participants in
front of y in p(σ̄j , σi)’s list have to be removed in order for it to be exposed. Since x is in front of
y and (p(σ̄j , σi), x) is part of only one rotation, ρ̄j has to be eliminated first. 2

We are now ready to prove that each ρi, i = 1, . . . , n is a rotation of I(P). In other words, I(P)
has no singular rotations so R(I(P)) = R′(I(P)) = {ρ̄1, . . . , ρ̄n, ρ1, . . . , ρn}. Furthermore, we will
show that there is an isomorphism from R′(I(P)) to P. We will prove these two important results
simultaneously using induction. We were unable to split them apart because they depend on each
other.

Theorem 8 Define Rk = {ρi, ρ̄i, 1 ≤ i ≤ k} and Pk = {σi, σ̄i, 1 ≤ i ≤ k} for k = 1, . . . , n. Let
fk : Rk → Pk be the mapping where fk(ρi) = σi and fk(ρ̄i) = σ̄i, i = 1, . . . , k. For k = 1, . . . , n,

a. ρk is a rotation and
b. fk is an isomorphism from Rk to Pk where Rk is the subposet of R′(I(P)) induced by Rk and
Pk is the subposet of P induced by Pk.

Proof When k = 1, it is easy to verify that both ρ̄1 and ρ1 are exposed in the table A1 and are
not comparable – which is the case with σ̄1 and σ1. So suppose the theorem is true for indices
1, . . . , k − 1. Let us now prove it for index k. Our proof will consist of three steps. Let Rk − {ρk}
be the subposet of Rk when ρk is removed, and let Pk − {σk} be the subposest of Pk when σk is
removed. First, we will show that Rk − {ρk} is isomorphic to Pk − {σk}. Next, we will argue that
ρk is a rotation of I(P). Finally, we will prove that Rk is isomorphic to Pk.
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Step 1. Since by our induction hypothesis Rk−1 and Pk−1 are isomorphic, we simply need to prove
that ρ̄k is an immediate predecessor of φ, φ ∈ Rk−1, if and only if σ̄k is an immediate predecessor
of fk−1(φ) (i.e., 〈σ̄k, fk−1(φ)〉 is an edge in H(P)). We consider two cases.

Case 1: φ = ρ̄j for some j < k.
If ρ̄k is an immediate predecessor of ρ̄j , then X(ρ̄k) ∩ X(ρ̄j) = Y (ρk) ∩ Y (ρj) 6= ∅. That is,

there is a participant that lies in Y (ρk) and Y (ρj). By Lemma 11, this means that there is a
directed path from σj to σk in H(P). Since P is a mirror poset, there is also a directed path from
σ̄k to σ̄j . Suppose σ̄k is not an immediate predecessor of σ̄j so there exists some σ̄t, j < t < k, so
that 〈σ̄k, σ̄t〉 is an edge of H(P), and σ̄t < σ̄j . By Lemma 12, ρ̄k precedes ρ̄t. By the induction
hypothesis, ρ̄t precedes ρ̄j . These two statements imply that ρ̄k is not an immediate predecessor of
ρ̄j , a contradiction. Thus, 〈σ̄k, σ̄j〉 is an edge in H(P).

On the other hand, suppose 〈σ̄k, σ̄j〉 is an edge of H(P). From Lemma 12, ρ̄k precedes ρ̄j . If
ρ̄k is not an immediate predecessor of ρ̄j , then there exists a ρ̄t, j < t < k, so that ρ̄k immediately
precedes ρ̄t which precedes ρ̄j . From the previous paragraph, 〈σ̄k, σ̄t〉 is an edge of H(P). From
the induction hypothesis, σ̄t precedes σ̄j . Again, these two statements imply that σ̄k is not an
immediate predecessor of σ̄j , a contradiction. So ρ̄k is an immediate predecessor of ρ̄j .
Case 2: φ = ρj for some j < k.

Assume ρ̄k is an immediate predecessor of ρj . Then X(ρ̄k) ∩ X(ρj) = Y (ρk) ∩ X(ρj) 6= ∅.
According to the definition of the X-set of ρj and to Lemma 11, every participant in Y (ρk)∩X(ρj)
has to be of the form p(σj , σ̄t), where σ̄t is a neighbor of σj . Additionally, there is a directed path
from σt to σk in H(P) so t ≤ k. If p(σj , σ̄k) ∈ Y (ρk) ∩ X(ρj), we are done as this immediately
implies that 〈σ̄k, σj〉 is an edge of H(P). Otherwise, since H(P) is a mirror poset, there is a
directed path from σ̄k to σ̄t. From Case 1, this implies that ρ̄k precedes ρ̄t. Since 〈σ̄t, σj〉 is an
edge of H(P), by Lemma 12 ρ̄t precedes ρj . Thus, ρ̄k is not an immediate predecessor of ρj , a
contradiction. Hence, it has to be the case that σ̄k is an immediate predecessor of σj .

Suppose 〈σ̄k, σj〉 is an edge of H(P). By Lemma 12, ρ̄k precedes ρj . If ρ̄k is not an immediate
predecessor of ρj , then, as in Case 1, there is a rotation η so that ρ̄k immediately precedes η which
precedes ρj . If η = ρt, t < k, 〈σ̄k, σt〉 is an edge of H(P) from the previous paragraph. If η = ρ̄t,
t < k, 〈σ̄k, σ̄t〉 is an edge of H(P) from Case 1. Furthermore, from the induction hypothesis, η
is a predecessor of σj whether η = ρt or ρ̄t. Since this contradicts our assumption that σ̄k is an
immediate predecessor of σj , η must not exist and ρ̄k is an immediate precedessor ρj .

Step 2. From Lemma 9, Ak = An/{ρ̄n, ρ̄n−1, . . . , ρ̄k+1}. Suppose Φk consists of all rotations
φ ∈ Rk − {ρk} such that fk(φ) is a predecessor of σk. Let a topological ordering of the elements
in Φk be φ1, φ2, . . . , φik . For each φj ∈ Φk, notice that a predecessor of φj either belongs to
{ρ̄n, ρ̄n−1, . . . , ρ̄k+1} or to {φ1, . . . , φj−1} because there is an isomorphism between Rk − {ρk} and
Pk−{σk}. Furthermore, ρ̄k 6∈ Φk since it would mean that σ̄k precedes σk. Thus, we can eliminate
the elements of Φk from Ak starting from φ1 all the way to φik . Let A′k be the resulting table; i.e.,
A′k = Ak/Φk. Let us now show that ρk is exposed in A′k.

Consider any two consecutive pairs in ρk. Assume they are (p(σk, α), y) and (p(σk, α
′), y′) where

both α and α′ are neighbors of σk. Thus, the last two persons in p(σk, α)’s list in Ak are y followed
by y′, and (y′, p(σk, α)) belongs to ρ̄k. Here are the different possibilities for α and p(σk, α)’s list
in A′k.

Case 1: α = σt or σ̄t, t > k. For both possibilities, p(σk, α) had only one person in his list prior
to iteration k of construct-instance: p(σ̄k, ᾱ). During iteration k, another person was placed at
the end of his list. Hence, p(σk, α)’s list in Ak consists of y = p(σ̄k, ᾱ) followed by y′, the person
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added during iteration k. Since neither ρ̄k nor ρk was eliminated from A′k, the list of p(σk, α) in
A′k still consists only of y followed by y′.
Case 2: α = σt, t < k. Building on Case 1, it is easy to verify that the list of p(σk, α) in Ak

consists of p(σ̄k, ᾱ) followed by y and then by y′, where y was added during iteration t and y′

during iteration k. Furthermore, (p(σk, α), p(σ̄k, ᾱ)) belongs to ρt. By assumption, α = σt is a
neighbor of σk. Since t < k, σt must also precede σk so ρt ∈ Φk. Hence, ρt has been eliminated
prior to the creation of A′k, and the list of p(σk, α) in A′k just consists of y followed by y′.
Case 3: α = σ̄t, t < k. Prior to iteration t, p(σk, α) had only p(σ̄k, ᾱ) is his list. Between iterations
t and k − 1, several other persons may have been added to the front of the list because p(σk, α)
belonged to some of the Y -sets of rotations in {ρt, ρt+1, . . . , ρk−1}. Then during iteration k, another
person was added to the end of the list. Hence, y = p(σ̄k, ᾱ), and y′ is this last person added to
the list. Let p(σk, α)’s list in Ak consist of zs+1, zs, . . . , z2, z1 = y, y′. Let (zi, p(σk, α)) belong to ρji

so (p(σk, α), zi+1) belongs to ρ̄ji for i = 1, . . . , s. According to Lemma 11, σj1 , σj2 , . . . , σjs forms
a directed path in H(P), and σj1 = σt. Therefore, σ̄js , . . . , σ̄j2 , σ̄j1 = σ̄t is also a directed path in
H(P). Since α = σ̄t is a neighbor of σk, σ̄t must precede σk. It follows that ρ̄js , . . . , ρ̄j2 , ρ̄j1 = ρ̄t

all belong to Φk, and all have been eliminated prior to the construction of A′k. Once again, the list
of p(σk, α) in A′k just consists of y followed by y′.

We have shown that for all possibilities of α, p(σk, α)’s list in A′k consists only of y and y′. Since
α was chosen arbitrarily, ρk is exposed in A′k.

Step 3. To prove that Rk is isomorphic to Pk, we now have to show that for every φ ∈ Rk −{ρk},
φ is an immediate predecessor of ρk if and only if fr(φ) is an immediate predecessor of σk.

Since ρk is a rotation of I(P) by step 2, according to Lemma 3 Rk is a mirror poset. Thus, φ is
an immediate predecessor of ρk if and only if ρ̄k is an immediate predecessor of φ̄. By step 1, the
latter is true if and only if σ̄k is an immediate predecessor of fr(φ̄). But since Pk is a mirror poset,
the previous statement is true if and only if fr(φ) is an immediate predecessor of σk.

By induction, we have now shown that the theorem is true. 2

Theorem 9 Let P be a mirror poset with 2n elements. There is an SR instance I(P) with O(n2)
participants such that R′(I(P)) is isomorphic to P. Additionally, when the dual of each element in
P is given, I(P) can be constructed in O(n2) time.

Proof Since R′(I(P)) = Rn and P = Pn in Theorem 8, it follows that R′(I(P)) is isomorphic to
P. The number of participants in I(P) equals the number of edges in H(P) and so is O(n2).

Prior to construct-instance, a complete closed subset S of P is needed. This can be done as
follows. First, do a topological ordering of the elements of P . Suppose the result is τ1, τ2, . . . , τ2n.
Initialize S to the empty set. Then greedily add elements into S; that is, for i = 1 to 2n if the
dual of τi is not in S, add τi to S. Clearly, at the end of 2n iterations S is a complete subset of
P. To verify that it is also closed, suppose τi is a predecessor of τj ∈ S. This means that τi occurs
before τj in the topolgocial ordering. If τi 6∈ S, τ̄i ∈ S and occurs before τi in the topological
ordering. And since P is a mirror poset, τ̄j is a predecessor of τ̄i and so must occur before it in the
topological ordering. Hence, the dual of τj occurs before τj in the topological ordering and should
have been added to S, not τj – a contradiction. It follows that τi ∈ S. The topological ordering
of the elements of P takes O(n2) time. When the dual of each element in P is given, the greedy
method described above takes O(n) time. Hence, finding a complete closed subset of P takes O(n2)
time.
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Finally, iteration 0 of construct instance takes O(n2) time. For i = 1, . . . , n, iteration i takes
O(|N(i)|) time, and iteration n + 1 takes O(n2) time. Since

∑n
i=1 |N(i)| = O(n2), it follows that

constructing I(P) when the dual of each element in P is known takes O(n2) time. 2

6 Putting it all together

In Section 3, we showed that mirror posets give rise to median graphs. We will now prove that
median graphs also give rise to mirror posets. Combining this result with Theorem 9, we will then
establish the duality between median graphs and SR stable matchings.

Recall that the interval between u and v in a graph G = (V, E) is the set I(u, v) = {t ∈ V :
d(u, v) = d(u, t) + d(t, v)}. For each u ∈ V , define the canonical order ≤u as follows: for any
a, b ∈ V , a ≤u b if a ∈ I(u, b). The poset (V,≤u) can then be thought as u’s view of the graph G.
There is a structure that is intimately related with median graphs.

Definition 4 A median semilattice Q = (Q,≤) is a meet semilattice (i.e., the greatest lower bound
of any two elements always exists) so that (i) for any ρ ∈ Q, {σ ∈ Q : σ ≤ ρ} is a distributive
lattice, and (ii) any three elements have a unique least upper bound whenever every pair does.

In a poset P = (P,≤), ρ covers σ if for any τ such that σ ≤ τ ≤ ρ, τ = σ or ρ. In the covering
graph of P, P is the set of vertices and two elements σ and ρ are adjacent if and only if σ covers ρ
or vice versa. Equivalently, the covering graph of P is the undirected Hasse diagram of P.

Theorem 10 (Avann [3]) The covering graph of any median semilattice is a median graph. Con-
versely, every median graph gives rise to a median semilattice with respect to any canonical order
≤u, where u is a vertex of the graph.

Thus, when I is an SR instance, instead of the graph G(M(I)), we can use (M(I),≤µ), µ ∈
M(I), as the ordered structure underlying the stable matchings of I. Interestingly, if I is also an SM
instance and µ = µM , the man-optimal stable matching of I, (M(I),≤µM ) becomes a distributive
lattice because the woman-optimal stable matching of I is the unique stable matching that is
farthest from µM in G(M(I)). In fact, (M(I),≤µM ) is the distributive lattice that we referred to
in the introduction of the paper. A similar observation was made in [14] except that the elements
of the semilattice were modifications of the matchings in M(I).

We also note the following property of median graphs and semilattices.

Lemma 13 Suppose G = (V, E) is a median graph and u ∈ V . The covering graph of the median
semilattice (V,≤u) is G.

Proof The lemma stems from the observation that if d(u, v) = d(u,w) then (v, w) 6∈ E. To see
this, let P1 and P2 be shortest paths from u to v and u to w respectively. Let z be the last node in
P1 that is also in P2. Notice that the u − z subpaths in P1 and in P2 must have the same length
because otherwise P1 and P2 are not shortest paths. Hence, the z − v subpath in P1 has the same
length as the z−w subpath in P2. If (v, w) exists, then this edge together with the z− v and z−w
subpaths form an odd cycle in G. But G is bipartite because it is a median graph. Thus, (v, w)
does not exist.

The above observation implies that if (v, w) ∈ E, either v is closer to u than w or vice versa. If
it is the former, w covers v since a shortest path from u to v together with (v, w) is a shortest path
from u to w. If it is the latter, v covers w for the same reason. Hence, (v, w) is in the covering
graph of (V,≤u). 2
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An element of a poset is join-irreducible if it covers exactly one element of the poset. The next
lemma shows how mirror posets can be derived from median graphs.

Lemma 14 Let G = (V, E) be a median graph and u ∈ V . In the median semilattice (V,≤u), let
J be the set of join-irreducible elements. Let J̄ = {v̄|v ∈ J}. For each v ∈ J , let v and v̄ be duals
of each other. Define the relation ≤′ on J ∪ J̄ as follows:

(i) for any pair v, w ∈ J , if v ≤u w let v ≤′ w and w̄ ≤′ v̄, and
(ii) for any pair v, w ∈ J , if v and w do not have an upper bound in (V,≤u) let v̄ ≤′ w and

w̄ ≤′ v.
The relation ≤′ is a partial order and (J ∪ J̄ ,≤′) is a mirror poset.

Proof For each v ∈ J , since the dual of v̄ is v, we define ¯̄v = v. Note that (1) ≤u is also a partial
order, and (2) in the ordered relation ≤′, elements from J are never related to elements in J̄ ; only
elements from J̄ are related to elements in J . Since ≤u is reflexive, ≤′ is also reflexive. Facts (1)
and (2) also imply that if a ≤′ b and b ≤′ a for any two elements a, b ∈ J ∪ J̄ , a = b; that is, ≤′
is anti-symmetric. Finally, suppose a ≤′ b and b ≤′ c. If b ∈ J , c ∈ J by fact (2). If, additionally,
a ∈ J , then a ≤′ c since ≤u is also transitive. If a ∈ J̄ , a ≤′ b means that a’s corresponding element
ā ∈ J and b have no upper bound in (V,≤u). Since b ≤u c, ā and c cannot have an upper bound
in (V,≤u) either. Thus, a ≤′ c. The case when b ∈ J̄ is proved similarly. Hence, ≤′ is transitive.
Since ≤′ is reflexive, anti-symmetric, and transitive, ≤′ is a partial order.

We also note that v 6≤′ v̄ because of Fact 2, and v̄ 6≤′ v because the negation of this will imply
that v and v have no upper bound – an obvious contradiction. By construction, (J ∪ J̄ ,≤′) also
has the property that whenever a, b ∈ J ∪ J̄ and a ≤′ b, it follows that b̄ ≤′ ā. Hence, (J ∪ J̄ ,≤′) is
a mirror poset. 2

Example continued. Suppose we start with the median graph shown in Figure 2. Set u = ui, for
some 1 ≤ i ≤ 6, so that (V,≤u) is a median semilattice. All other nodes in V are join-irreducible
elements of (V,≤u). We leave it up to the reader to verify that (J ∪ J̄ ,≤′) is a mirror poset that
is isomorphic to the one shown in Figure 1.

According to Corollary 1, the graph induced by the complete closed subsets of (J ∪ J̄ ,≤′),
G(S(J∪J̄ ,≤′)), is also a median graph. What we would like to prove next is that this graph is in fact
isomorphic to G. Instead of arguing it from scratch, however, we make use of a duality result by
Barthélemy and Constantin [6].

Let Q be a median semilattice. Again, denote its set of join-irreducible elements by J . Let
(J,≤, EQ) be the triple where (J,≤) is the subposet of Q induced by J , and (J,EQ) is the graph
where two elements of J are adjacent if and only if they have no upper bound in Q. Let T(J,≤,EQ)

consist of all subsets of J that are closed under (J,≤) and form an independent set in (J,EQ) (i.e.,
no two elements of the set are adjacent in (J,EQ)).

Theorem 11 (Barthélemy and Constantin [6]) Let Q = (Q,≤) be a median semilattice and J its
set of join-irreducible elements. Then (T(J,≤,EQ),⊆) is a median semilattice that is isomorphic to
Q. Additionally, in the covering graph of (T(J,≤,EQ),⊆), two subsets are adjacent if and only if they
differ by one element.
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Birkhoff’s representation theorem for distributive lattices [7] states that given a distributive
lattice D, the closed subsets of the poset induced by its join-irreducible elements form a distribu-
tive lattice that is isomorphic to D. Barthélemy and Constantin showed that the join-irreducible
elements of a median semilattice Q play a similar but more complicated role.

Theorem 12 Let G = (V, E) be a median graph and u ∈ V . In the median semilattice (V,≤u), let
J be the set of join-irreducible elements. Define the mirror poset (J ∪ J̄ ,≤′) as in Lemma 14. The
graph G(S(J∪J̄ ,≤′)) is isomorphic to G.

Proof Let Q = (V,≤u). Since Q is a median semilattice, the set T(J,≤u,EQ) is well defined. Let’s
begin by proving the following claim.

Claim: There is a one-to-one correspondence between the subsets in T(J,≤,EQ) and the subsets in
S(J∪J̄ ,≤′).
Proof of claim: Let f be a function from T(J,≤u,EQ) to S(J∪J̄ ,≤′) such that for each T ∈ T(J,≤u,EQ),
f(T ) = S where S = T ∪ {t̄ ∈ J̄ : t 6∈ T}. First, we need to verify that S indeed belongs to
S(J∪J̄ ,≤′). Notice that S is a complete subset of (J ∪ J̄ ,≤′) since every element of J or its dual is
in S. Let us prove that S is closed as well. Let v ∈ J . Suppose v ∈ T and w ≤′ v. If w ∈ J , then
w ∈ T because T is a closed subset of (J,≤u). If w ∈ J̄ , then w̄ ∈ J and v have no upper bound in
Q. This means that w̄ and v share an edge in (J,EQ). Thus, w̄ 6∈ T so w ∈ S. On the other hand,
suppose v 6∈ T so that v̄ ∈ S and x ≤′ v̄. Clearly, x ∈ J̄ . Since (J ∪ J̄ ,≤′) is a mirror poset, v ≤′ x̄.
But v 6∈ T and T is a closed subset of (J,≤u) so x̄ 6∈ T as well. Consequently, x ∈ S.

Now, for each S ∈ S(J∪J̄ ,≤′), the set S ∩ J is a closed subset of (J,≤u) because S is a closed
subset of (J∪ J̄ ,≤′). Additionally, if v, w ∈ J do not have an upper bound in Q, v̄ ≤′ w and w̄ ≤′ v.
Since S is a complete subset of (J ∪ J̄ ,≤′), both v and w cannot belong to S. Thus, S ∩ J is also
an independent subset of (J,EQ) so S ∩ J ∈ T(J,≤u,EQ). This implies that f is onto since S ∩ J is
a pre-image of S under f . It is also 1-1 because whenever T 6= T ′, f(T ) 6= f(T ′). It follows that f
is a bijection from T(J,≤u,EQ) to S(J∪J̄ ,≤′).

Let G(T(J,≤u,EQ)) denote the graph induced by the independent closed subsets of (J,≤u, EQ)
where two subsets are adjacent if and only if they differ by one element. Notice that G(T(J,≤u,EQ))
is the covering graph of the median semilattice (T(J,≤u,EQ),⊆). Furthermore, in the proof of the
claim above two subsets T and T ′ differ by one element if and only if f(T ) and f(T ′) differ in one
dual element so G(T(J,≤u,EQ)) is isomorphic to G(S(J∪J̄ ,≤′)).

According to Theorem 11, Q is isomorphic to (T(J,≤u,EQ),⊆) so their respective covering graphs
must also be isomorphic to each other. Since they are G and G(T(J,≤u,EQ)) respectively, it follows
that G and G(S(J∪J̄ ,≤′)) are also isomorphic. 2

Theorem 13 Let G = (V, E) be a median graph. There is an SR instance I(G) so that the graph
of its stable matchings is isomorphic to G.

Proof Pick an arbitrary vertex u ∈ V . Let PG = (J ∪ J̄ ,≤′) be the mirror poset defined in
Lemma 14. Construct the SR instance I(PG) using construct-instance in Section 5. According
to Theorem 9, its reduced rotation poset R′(I(PG)) is isomorphic to PG. Now both of these posets
are mirror posets so the graphs that arise from their complete closed subsets are also isomorphic.
For R′(I(PG)), the said graph is isomorphic to the graph of stable matchings of I(PG) by definition.
For PG, the said graph is isomorphic to G according to Theorem 12. Thus, if we let I(G) = I(PG),
then G(M(I(G))) is isomorphic to G. 2
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7 Conclusion

We have shown that the local/global median phenomenon that was first observed in SM instances
also occurs for solvable SR instances by proving that the underlying structure that governs SR
stable matchings is a median graph. Earlier results on medians in median graphs also imply
that these median stable matchings have many other nice properties. Unfortunately, finding a
median stable matching of an SM instance is #P-hard [8, 9]. Interesting research directions include
characterizing SM and SR instances where the search problem is easy or developing algorithms
that find stable matchings that approximate the median stable matchings. Some work has been
done for SM instances [9, 17]; a lot more seems possible since our characterization suggests two
interpretations of the median stable matchings.

We also showed that three structures – SR stable matchings, mirror posets, and median graphs
are pairwise duals of each other. These results can also be inferred from Feder’s work [10, 11, 12].
However, our constructions and proofs are smooth generalizations of the ones used for SM, which
makes them easier to follow.

References

[1] A. Abdulkadiroglu, P. Pathak, and A. Roth. The New York City high school match. American
Economic Review, Papers and Proceedings, 95:364–367, 2005.

[2] A. Abdulkadiroglu, P. Pathak, A. Roth, and T. Sönmez. The Boston public school match.
American Economic Review, Papers and Proceedings, 95:368–371, 2005.

[3] S. Avann. Metric ternary distributive semi-lattices. Proceedings of the American Mathematical
Society, 12:407–414, 1961.
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[23] L. Nebeský. Median graphs. Commentationes Mathematicae Universitatis Carolinae, 12:317–
325, 1971.

[24] A. Roth and E. Peranson. The redesign of the matching market of American physicians: Some
engineering aspects of economic design. American Economic Review, 89:748–780, 1999.

[25] A. Roth and M. Sotomayor. Two-sided matching: a study in game-theoretic modeling and
analysis. Cambridge University Press, 1990.

[26] A. Subramanian. A new approach to stable matching problems. SIAM Journal on Computing,
23:671–701, 1994.

[27] C.-P. Teo and J. Sethuraman. The geometry of fractional stable matchings and its applications.
Mathematics of Operations Research, 23:874–891, 1998.

25


