Multi-Level Variable Ordering Heuristics for the
Constraint Satisfaction Problem

Christian Bessiére!, Assef Chmeiss?, and Lakhdar Sais?

1 Member of the CocONUT group
LIRMM-CNRS (UMR 5506), 161, rue Ada,
34392 Montpellier Cedex 5, France
bessiere@lirmm.fr
? CRIL - Université d’Artois - TUT de Lens
Rue de 'université - SP 16
62307 LENS Cedex, France

{chmeiss, sais}@cril.univ-artois.fr

Abstract. The usual way for solving constraint satisfaction problems is
to use a backtracking algorithm. One of the key factors in its efficiency is
the rule it will use to decide on which variable to branch next (namely,
the variable ordering heuristics). In this paper, we attempt to give a
general formulation of dynamic variable ordering heuristics that take into
account the properties of the neighborhood of the variable. An empirical
evaluation on random CSPs and a sample of real instances shows that
the obtained heuristics can improve significantly the current best ones.

1 Introduction

Constraint satisfaction problems (CSPs) are widely used to solve combinatorial
problems appearing in a variety of application domains. They involve finding
solution in a constraint network, i.e., finding values for network variables subject
to constraints on which combinations are acceptable.

The usual technique to solve CSPs is systematic backtracking. It repeatedly
chooses a variable, attempts to assign it one of its values, and then goes to the
next variable, or backtracks in case of failure. This technique is at the basis
of almost all the CSP solving engines. But if we want to tackle highly combi-
natorial problems, we need to enhance this basic search procedure with clever
improvements.

A crucial improvement to be added is look-ahead value filtering, which con-
sists in removing in future domains values that cannot belong to a solution
extending the current partial instantiation. Many works have studied the dif-
ferent levels of filtering that can be applied at each node of the search tree.
In the following, we will use maintaining arc consistency (MAC) as our search
algorithm [13, 1].

Another improvement that has shown to be of major importance is the or-
dering of the variables, namely, the criterion under which we decide which vari-
able will be the next to be instantiated. Many variable ordering heuristics for

2 Christian Bessiére et al.

solving CSPs have been proposed over the years. However, the criteria used in
those heuristics to order the variables are often quite simple, and concentrate on
characteristics inherent to the variable to be ordered, and not too much on the
influence its neighborhood could have. Those that use more complex criteria,
essentially based on the constrainedness or the solution density of the remaining
subproblem, need to evaluate the tightness of the constraints, and so, need to
perform many constraint checks.

The goal of this paper is to propose heuristics that take into account proper-
ties of the neighborhood in the criterion of choice of a variable, while remaining
free of any constraint check. After a recall on the existing variable ordering
heuristics for the CSP, and a brief discussion on their efficiency, we take a look
at the branching rules used in SAT. Then, following the ideas developed for
SAT, we define a general criterion that can be used on CSPs. We give instan-
tiations of this general criterion, which depend on the choice of some operators
and parameters to approximate the constrainedness of variables and constraints.
Finally, we take some simple cases for that criteria (fixing the parameters), that
we experiment and compare to existing heuristics.

The rest of the paper is organized as follows. Section 2 gives the necessary
definitions and notations. It summarizes existing work on this topic, and shows
experimentally how the best already known heuristics relate to each other. Sec-
tion 3 presents our multi-level heuristics. In Section 4, we compare the best
existing heuristics to some of those proposed in Section 3. Sections 5 and 6
discuss possible future work, and conclude the paper.

2 Preamble

2.1 Definitions and notations

A constraint network is defined by a set of variables, each taking values in its
finite domain, and a set of constraints restricting the possible combinations of
values between variables. For simplicity we restrict our attention here to binary
constraint networks, where the constraints involve two variables.! Binary con-
straints are binary relations. If a variable X; has a domain of possible values
D(X;) and a variable X; has a domain D(X}), the constraint on X; and Xj,
R;;, which specifies the allowed pairs of values for (X;, X;), is a subset of the
Cartesian product D(X;) x D(X;). Asking whether a pair of values is allowed
by a constraint is called a constraint check.

Any constraint network can be associated with a constraint graph in which the
nodes are the variables of the network, and an edge links a pair of nodes if and
only if there is a constraint on the corresponding variables. I5,;:(X;) denotes
the set of nodes sharing an edge with the node X; (its initial neighbors). We
define the set I'(X;) as the current neighborhood of X;, namely, the neighbors
remaining uninstantiated once a backtracking search procedure has instantiated

! However, the techniques presented in the following of this paper can easily be ex-
tended to general non-binary constraint networks.

Lecture Notes in Computer Science 3

the set Y = {X,,,..., X;, } of variables, i.e., I'(X;) = Init(X;) \ Y. The size of
I'(X;) (resp. Linit(X;)) is called the degree (resp. initial degree) of X;.

2.2 Overview on the existing variable orderings

Ordering variables prior to or during search of solution in a CSP has been un-
derstood of prime importance for a long time. The first kind of criteria used for
ordering variables are based on the structure of the network. Since in classical
search procedures the structure of the network does not change during search,
these variable orderings (VOs) keep the same ordering of the variables during
the whole search. They are called static VOs (SVOs), and simply replace the
lexicographic ordering by something more appropriate to the structure of the
network before starting search. Some examples of these heuristics are minwidth,
which chooses an ordering minimizing the width of the constraint network [5],
maxdeg, which orders the variables in decreasing size of their neighborhood [4],
bandwidth, which minimizes the bandwidth of the constraint graph [16], etc.

The second type of VOs, adapted to the technique of look ahead value prun-
ing, takes into account the size of the domains to choose the next variable to
be instantiated. As soon as we put some filtering into a search procedure, the
domains have no reason to keep the same size from one branch to another. So,
heuristics keeping the size of the domains as a criterion of selection have no
reasons to take the variables in the same order from one branch to the other.
This is why this kind of orderings, introduced by Haralick and Elliott in 1980
are called dynamic VOs (DVOs). The one introduced by Haralick and Elliott
in [9] is dom, the heuristic choosing as next variable the one with the smallest
remaining domain.

Since dom can be completely fooled by the structure, especially at the be-
ginning of the search, when domains have more chances to be of equal size,
dom+deg has been proposed, which breaks ties in dom by preferring the variable
with the highest initial degree [6]. Another heuristic, close to dom+deg, is the one
derived from the Brélaz heuristic (proposed for graph coloring) [2]. We note it
dom+futdeg. It breaks ties in dom by preferring the variable with highest future
degree [15]. Smith also improved dom+futdeg by adding to it a second and a
third tie breakers, namely, the size of the smallest neighbor, and the number of
triangles in which the first chosen variable is involved. She called this DVO BZ3.

However, both dom+deg, dom+futdeg, and BZ3 use the domain size as the
main criterion. The degree of the variables is considered only in case of ties.
Imagine a case where a variable X; has a domain size of 20 and a degree of
one, while X; has a domain size of 21 and a degree of 10. dom+futdeg or BZ3
will prefer X; to X; while there are many chances that X; would have been
a better choice. This is why combined heuristics were proposed ([1]), which do
not give priority to the domain size or degree of variables, but use them equally
in the criterion. dom/deg chooses as the next variable, the variable X; minimiz-
ing the ratio |D(X;)|/|nit(X;:)|, while dom/futdeg minimizes |D(X;)|/|I'(X;)].
dom/futdeg has extensively been studied in [14] under the name DD.

4 Christian Bessiére et al.

Finally, there is another kind of DVOs which it is worth mentioning: those
taking into account the tightness of the constraints. They look how much a
given constraint restricts the remaining of the problem instead of considering all
of them as equivalent. Examples of such heuristics can be found in [11,7, 8]. The
drawback of these heuristics is the need of checking the tightness of a constraint,
which is very constraint checks consuming (and thus in cpu time also). None
of these heuristics has been shown as better than those dealing only with the
constraint graph structure.

2.3 A few words about experiments

In the following of this paper, the performances of the different heuristics are
evaluated both on real instances and on uniform random CSPs generated accord-
ing to the model B [12]. Such a generator admits four parameters: the number
N of variables, the common size of the initial domains D, the proportion pl of
constraints in the network (or the number C = pl« N - (N —1)/2 of constraints),
and the proportion p2 of forbidden pairs of values in a constraint (or the number
T = p2x D% D of forbidden pairs). In the following, we will use C' and T instead
of pl and p2. C is called the density of the constraint graph and T the tightness
of the constraints. The real instances are taken from the FullRLFAP archive,?
which contains instances of radio link frequency assignment problems (RLFAPs).
They are described in [3]. In all our experiments, we stop search after the first
solution is found. The search procedure used is MAC.

2.4 Observations

The strong relationship between the instantiation ordering of variables and the
size of the search tree has motivated many works on the design of “good” heuris-
tics. However, an empirical comparison of such heuristics is not an obvious task.
When comparing variable orderings on a sample of instances of CSPs, it can arise
that we see little difference between two given VOs, giving us the temptation
to select the simplest one. However, what is important to see is the evolution of
their differences when problems become larger and harder. Indeed, a small dif-
ference on problems of small size can become huge when the size of the problems
increases.

To give an insight into the state of the art, we present in Figure 1 results for
several well-known heuristics: dom is the oldest and most well known DVO, and
dom/futdeg and BZ3 can be considered as the best current VOs for CSPs [14,
15]. In this experiment, we consider random CSPs < N,D,C,T >, where the
number of variables N grows from 20 to 200, while the domain size and the
average degree of the variables are kept constant (|D| = 10, and 2 - C/N = 5).
The tightness remains at the cross-over point (T' = T,r;), which remains stable

? We thank the Centre d’Electronique de ’Armement (France).
% For dom (resp. BZ3) N grows until 140 (resp. 190), because of the huge time needed
to find a solution.

Lecture Notes in Computer Science 5

at the value 55 since the networks generated all have the same average degree
for their variables.

We see that on small sizes, dom is already significantly worse than BZ3 and
dom/futdeg. These two last have very close performances until 60 variables.
When N becomes greater than 60, the benefit of dom/futdeg becomes bigger
and bigger, exceeding one order of magnitude for NV > 150.

10000

1000 BZ3 % %
dom/futdeg ---%---
_-/’X/’

. e
o LK
,Xx/r
0.1 g

e
Pt

o

\

CPU time (sec.)

0.01
20 40 60 80 100 120 140 160 180 200
number of variables

Fig.1. < N,D =10,C =5 %« N/2,Tcr;; >: cpu time needed (log scale).

3 Multi-level DVOs

One of the key features for the efficiency of a backtrack search method lies in its
branching (or splitting) strategy. At each step of the search process, a problem
P is reduced into a finite number of sub-problems (P, P, ..., Pip(x;)|), where
X; is the chosen variable. As stated by Hooker and Vinay [10] in the context
of satisfiability problems (SAT): “a branching rule works better when it creates
simpler subproblems”.* The performance of branching rules is better explained by
the previous simplification hypothesis. Following this idea, and since contrary to
SAT problems the domains are not all binary, we think that a good DVO should
reduce both the number and the difficulty of such subproblems. In other words,
a branching rule performs well when it creates less and simpler subproblems.
Indeed, choosing the variable with minimum domain (resp. with maximum
degree) reduces the number (resp. difficulty) of such subproblems, whereas com-
bining both, such as dom/futdeg does, tends to satisfy both objectives. This

% called a simplification hypothesis

6 Christian Bessiére et al.

explains the importance of these two syntactical parameters on the design of
good heuristics.

To go further in that direction, we propose a general formulation of DVOs
which integrates in the selection function a measure of the constrainedness of the
given variable. The constrainedness of a variable can be defined as a function of
the constraints involving the variable. One could choose semantical constraints-
based measures (e.g., number of allowed tuples) or syntactical ones (e.g., size
of the Cartesian product of the domains). Choosing the most constrained vari-
able should have a great impact on the search space, leading the search to the
most constrained parts of the CSP, and thus provoking early detection of local
inconsistencies.

As recalled in Section 2.2, this is not a new idea in CSPs, but what we
propose below is a new and general formulation of DVOs, which remains free of
any constraint check.

3.1 A general criterion free of constraint checks
Let us first define W (R;;) as the weight of the constraint R;; and,

Zx-gr(xi) W(Rij)
(1) W) = ="
as the mean weight of the constraints involving X;. In order to maximize the
number of constraints involving a given variable and to minimize the mean weight
of such constraints, the next variable to branch on should be chosen according
to the minimum value of

W(X;
(2) H(X:) = [
over all uninstantiated variables (numerator to minimize the weight, and denom-
inator to maximize the number of constraints).

For complexity reasons we already mentioned above, the weight we will asso-

ciate to a constraint must be something cheap to compute (e.g., free of constraint
checks). It can be defined by W (R;;) = a(X;) ® a(X;), where a(X;) is instanti-

ated to a simple syntactical property of the variable such as |D(X;)| or l\?(())g;\l’

and ® € {+, x}. For a(X;) = |D(X;)|, and ® = X, the weight associated to a
given constraint R;; represents an upper bound of the number of tuples allowed
We obtain the new formulation of (2):

_ Exjeri (@(X) ©a(X;)
- [T(X:)]2

(3) HY(X:)

3.2 Multi-level generalization

In the formulation of the DVOs presented above, the evaluation function H(X;)
considers only the variables at distance one from X; (first level or neighborhood).
However, when arc consistency is maintained (MAC), the instantiation of a value

Lecture Notes in Computer Science 7

to a given variable X; could have an immediate effect not only on the variables
of the first level, but also on those at distance greater than one.

To maximize the effect of such a propagation process on the CSP, and con-
sequently to reduce the difficulty of the subproblems, we propose a generaliza-
tion of the DVO H® such that variables at distance k from X; are taken into
account. This gives what we call a “multi-level DVO”, H (62)" To obtain this
multi-level DVO, we simply replace a(X;) in formula (3) by a recursive call to
H(%fl’a) (X;). This means that to compute H(k) ON @ given variable, we need
to compute H(kfl,a) on all its neighbors, and so on. The recursion terminates

with H® . equal to a. This is formally stated as follows:

(0,0)
(1) HS,, (1) = a(X)

ZX r(x;)(a(X)@Hk 1,a (X))
(5) Hijo)(Xi) = = —="qrryp—

3.3 Some instantiations of the multi-level formula

We show now some of the different DVOs we can obtain from H ((2 o) by instan-
tiating ® to + or x, a(X;) to |D(X;)| or DXl “and k to 0 or 1:5

L)
1. For ® = +:

— and a(i) = |D(X;)| we obtain:

©) iy, 05 = DN
X ij [‘(Xl-)lD(Xj)‘

(7) H{ gom)(Xi) =)‘ + TP

— and a(X;) = ﬂ?(x)l we obtaln :

D(X;
(8) H(O dom/ futdeg) (X) l\F((X ;“ DX
IDCX)| + X xerox;) TrexT 1l
. (9) H(1 dom/futdeg)(X) - [C(X;)[?
. bor © = X:

— and a(X;) = |D(X;)| we obtain:

(10) H(O dom)(Z) = |D(Xl)| = H(—i(_),dom)(Xi)’
|D(Xi)‘><zxj F(xi)‘D(XJ')l

(11) H(l dom)(Xi) = |F(;i)|2

— and a(X;) = ‘?((Xl)‘ we obtain :

D(X:)| _
(12) H(O dom/futdeg)(X)= % o H(J(r) dom/flgt(ﬂ)lfg))l (X2),
|D(X:)| x Zx er(x;) Trx[i

(13) H(l dom/futdeg)(X) = ‘F(X)3

In the following, H(%’dom)

cal name, dom and dom/futdeg, respectively. H(k dom) and H®
denoted by H_k_dom_® and H_k_dom/futdeg_®o respectively.

and H(0 dom/futdeg) are denoted by their classi-

(k,dom/ futdeg) are

5 In the same way, other instantiation can be obtained for k > 1.

8 Christian Bessiére et al.
4 Experiments

We will now compare experimentally the behavior of the new DVOs defined
above on several classes of random CSPs (Section 4.1). In Section 4.2 results on
real instances from the FullRLFAP archive are presented. To show the feasibility
of the multi-level approach, we present experiments obtained with the second
level instantiations (k > 1) on a sample of random CSPs (Section 4.3).

We compare our DVO heuristics with the most efficient one previously known,
dom/futdeg (see Section 2.4). In our tests we have used different kinds of mea-
sures of performance for the DVOs tested: cpu time in seconds (time),5 number
of constraint checks (#ccks), and number of visited nodes (#nodes). The differ-
ent curves obtained using these different measures are very similar, so we just
present those with cpu time. When necessary, the other measures (#ccks and
#nodes) are also given.

4.1 Random instances

To get an accurate view of the behavior of the above DVO heuristics on random
CSPs, several classes are considered:

1. the class of CSPs presented and described in Section 2.4, with a number of
variables growing from 60 to 230 (Figure 2).

2. CSPs for which we vary the tightness when N, D, and C are kept constant.
Figures 3 and 4 give results for N = 80, D = 10, and three different densities:
C =200 (Figure 3), C = 400 (Figure 4), and C = 800 (Table 1).

3. CSPs with a greater number of variables and/or a greater domain size. The
results are summarized in Table 2. They are all at the crossover point.

We present the performance of the first level DVOs (H_1_dom_® and H_1_dom/futdeg_®)
with respect to the most efficient DVO previously known, dom/futdeg. Each
point in the curves represents the average time for 100 generated problems.
In Figure 2, N grows, while the domain size and the average degree remain
constant. The tightness is always at the cross-over point. As we can see, ex-
cept for H_1_dom_x, all the first-level DVOs outperform the best known DVO
dom/futdeg on this class of CSPs. H1_dom/futdeg_+ has the best performance.
It is interesting to note that the gain increases as the number of variables in-
creases.
Figures 3 and 4 confirm the improvements obtained with the first-level in-
stantiations. As we can see in Figure 4, when density grows (C' = 400, i.e., aver-
age degree equal to 10), H_1_dom_x becomes slightly better than dom/futdeg,
and H_1_dom/futdeg_x becomes better than H_1_dom/futdeg_+. The instanti-
(Xi

ations obtained with a(X;) = H are more efficient than those with a(X;) =
|D(X5)]-

® Experiments on random (resp. real) instances have been run on a PC Pentium ITI
667 MHz (resp. Pentium II 300MHz) under Linux.

CPU time (sec.)

CPU time (sec.)

Lecture Notes in Computer Science

600 T T T
H_1_dom/futdeg_x —+—
_1_dom_x —x—
_1_dom_.
500 | dom/futdeg - /]
400
300
200
100
0 - k- k- o
60 80 100 120 140 160
number of variables
Fig.2. < N,D =10,C =5 % N/2,T;;;t >: cpu time.
0.14 T
H_1_dom/futdeg_x
H_1_dom_x
H_1_dom/futdeg_+
_1_dom_+
0.12 i dom/futdeg T
/x4
01 [g
0.08 ‘w‘>‘<”l," P ,
i '
i |
I *
[\
0.04 |] E
002 | g
0 % L L
40 45 50 55 60 65 70
Tightness

Fig.3. < N =80,D =10,C = 200,T >: cpu time.

10 Christian Bessiére et al.

45

T
H_1_dom/futdeg_x —+—
_1_dom_x ——
H_1_dom/futdeg_+ ---+--
1_dom_+ ---x---

dom/futdeg ---%---

40 |

35

30

25 |

20 |

CPU time(sec.)

45

35
Tightness

Fig.4. < N =80,D = 10,C = 400,T >: cpu time.

Table 1 shows additional results on denser and harder CSPs with 20 as the
average degree: < N = 80, D = 10,C = 800,T >. Because of the huge execution
time, only 10 instances were tested. They are generated at the cross-over point
(Terit = 20). On these dense CSPs, all the first level DVOs noticeably outper-
form dom/futdeg. And, H_1_dom/futdeg_x confirms that it becomes better and
better when density grows.

Table 1. < N = 80,D = 10,C = 800, Tcri+ = 20 > at the cross-over point : checks,
visited nodes and cpu time

#ccks (million) #nodes (million) time (sec.)

dom/futdeg 160,338 54.10 20,713.78
H_1_dom/futdeg_+ 141,169 39.38 18,097.21
H_1_dom_+ 121,616 37.27 16,298.56
H_1_dom/futdeg_x 108,978 34.74 14,221.82
H_1_dom_x 145,496 49.17 17,917.18

In its first three first lines, Table 2 gives details on the number of con-
straint checks (#ccks) and cpu time for the cross-over point of some classes
described only by cpu time graphs in Figures 2, 3, and 4. The last four lines
show that if we increase even more the number of variables (< 300, 6,1200, 12 >,
< 100,10,500,35 >), or if we increase the domain size (< 150,15,375,139 >),

Lecture Notes in Computer Science 11

Table 2. A sample of random CSPs at the cross-over point : checks & cpu time

dom/futdeg H_1_dom_+ H_1_dom/futdeg_+ H_1_dom_x H_1_dom/futdeg_x
Problems Focks time| #ccks time| Fccks time| #ccks time| #ccks time
< N,D,C,T > (million) (sec.)|(million) (sec.)|(million) (sec.)|(million) (sec.)|(million) (sec.)
< 80, 10, 200, 55 > 0.79 0.12 0.71__ 0.11 0.67 _ 0.10 0.81 0.12 0.63__ 0.10
< 80, 10, 400, 35 > 404.45 ___41.11| 256.08 20.00] 255.06 27.78| B67.80 _ 40.40| 222.20 25.18
< 200, 10, 500, 55 > 380.25 48.62| 232.07 24.68| 136.68 14.68] 720.64 74.07] 171.89 18.60
< 100, 10, 250, 55 > 2.62 0.36 1.86 0.27 1.45 0.23 2.7 0.39 1.36 0.22
< 100, 10, 500,35 > | 3,713.87___300.37| 2,105.44 230.71] 2,240.78 253.08| 3,340.33 _ 862.12] 1,016.73 216.86
< 150, 15,375, 130 >| 2,267.35 __204.22| 039.08 87.65] 516.72 48.85| 2,830.49 260.51| 825.07 78.35
< 300, 6, 1200, 12 > | 0,158.42 1,351.30] 3,080.83 626.06] 4,338.20 700.32| 7,088.12 1,243.61] 2,068.28 405.35

the gain of the H_1 heuristics continue to grow compared to dom/futdeg. These
are promising observations.

As a synthesis of the results on different classes of random CSPs, we can say
that, except H_1_dom_x, the first level DVOs improve significantly the well known
DVO dom/futdeg. Furthermore, in general, H_1_dom/futdeg_® are better than
H_1_dom_@. This is not surprising because the former take into account the con-
nectivity of the neighborhood of the chosen variable. Finally, H_1_dom/futdeg_x
is more efficient than H_1_dom/futdeg_+ on CSPs with higher densities. On the
contrary, H_1_dom/futdeg_+ is more efficient on sparse ones.

4.2 Real instances

In this subsection, we compare the behavior of the DVOs used in Section 4.1 on
the real instances of the FullRLFAP archive. It contains 11 real instances, scen01
to scenll, and 14 artificially generated instances, graphO1 to graphl4. These
instances all contain an optimization criterion, and so, are not pure satisfiability
problems. The consequence is that most of these instances (except scenll and
graph10) are trivially solved by MAC with any of the discussed DVOs, finding a
solution (not necessarily optimal!), or detecting inconsistency easily. To produce
harder instances, we took the 5 trivially satisfiable real instances, scenO1 to
scen05, and reduced the available frequencies step by step, leading to a series
of problems scenXX-k, where k is the number of frequencies removed from the
problem (starting from the largest frequency to the smaller ones). There always
exists a value kg for which scenXX-kq is satisfiable, and scenXX-(kg + 1) is
inconsistent.

For the real instances scen06 to scen10, which are trivially inconsistent, the
constraints are partitioned into 5 sets, depending on their importance in the
problem. The set #0 contains the hard constraints, the set #4 contains the least
important constraints. We used that to produce a series of five different problems
from a scenXX. For instance, scenXX-012 denotes the instance containing the
constraints at levels 0, 1, and 2. Here again, for a given scenXX, we can go
from an over-constrained problem (scenXX-01234) to an under-constrained one
(scenXX-0) by removing levels of constraints.

These two protocols do not respect exactly the optimization criteria defined
in the archive, but permit us to build hard instances around the satisfiability

12 Christian Bessiére et al.

limit. Even with these protocols, many instances generated are either easy (less
than 2 seconds of cpu time), or too difficult (more than one hour of cpu time).
In Table 3, we report results for those instances on which a significant difference
has been observed among the DVOs tested. The cpu time limit was put to one
hour.

Table 3. A sample of RLFAPs solved on a PC PentiumII 300MHz under Linux.

scen11-01234 (sat)[scen06-012 (unsat)| scen02-24 (sat) [scen02-25 (unsat)

#nodes time|[#nodes time #nodes time[#nodes time
dom/futdeg 6,019 8.43 p— > 1 h.|31,308,876 2,296.61 — >1nh.
H_1_dom_+ 21,156 29.68 41 0.40 663 0.32 — > 1 h.
H_1_dom/futdeg_+ — > 1 h. 41 0.41 —— >1h. 11,668 10.18
H_1_dom_x 12,517 16.99 —_— >1 h. 677 0.32 — > 1 h.
H_1_dom/futdeg_x|226,011 337.55 41 0.41 —— > 1h. 8,529 6.99

The two non trivial original instances are graph10 and scenll. On scenll, we
can see that H1_dom/futdeg_+ and H_1_dom/futdeg_x do not perform as well
as the others, especially H1_dom/futdeg_+, which does not solve the problem
under the time limit. None of the five tested DVOs could solve graph10 in one
hour. It can be pointed out that dom/deg could solve it in 2.84 seconds.

If we take a look at the instances derived from scen01 to scenl0O, we can
find three of them on which significant differences can be observed. scen06-012,
which is inconsistent, is almost trivially solved by three of the H_1 heuristics.
dom/futdeg and H_1_dom_x could not solve it in one hour. Interestingly, we
could find and prove the optimal number of frequencies that can be removed in
scen02. Indeed, scen02-24 was found satisfiable, and scen02-25 inconsistent. On
scen02-24, H_1_dom_+ and H_1_dom_x quickly find a solution, while the others
are very slow or out of the limit. On scen02-25, this is exactly the opposite
since H1_dom/futdeg_+ and H_1_dom/futdeg_x are the only two able to prove
inconsistency in the allowed time.

If no conclusion can be drawn on a so small number of pertinent instances,
we can at least give some observations. First, we see that dom/futdeg is signifi-
cantly outperformed on those real problems. This confirms results of Section 4.1.
Second, it seems that H1_dom/futdeg_+ and H_1_dom/futdeg_x are better on
inconsistent problems, and H_1_dom_+ and H_1_dom_Xx on satisfiable ones. But,
more extensive tests should be run to draw definite conclusions since this last
fact doesn’t appear as clearly as that on our experiments on random CSPs.

4.3 What about the second level?

To get an idea on the behavior of the second level instantiations (H_2), we have
conducted experiments on the class presented in Figure 2. In Figure 5, we show
the results of the first and the second level DVOs using (H_1_dom/futdeg_x and
H_2_dom/futdeg_x). The other instantiations have a similar behavior. We can

Lecture Notes in Computer Science 13

see that the second level DVO improves the first one with respect to constraint
checks (right hand curve). Regarding cpu time (left hand curve), the first level
is slightly better than the second for instances with NV < 220. When the number
of variables is greater (N = 230), the second level DVO also becomes better wrt
cpu time. These results are promising and show the feasibility of the multi-level
approach with £ > 1.

100 90408

11_1_dom/futdeg_x —i— H_1_dom/futdeg_x —i—
H 2 dom/futdeg x —x— H 2 dom/futdeg x —x—

90 - } 80408 |

80 7e+08

70 -
60408 -
60
50408 [
50 b

CPU time(sec.)

4e+08

3e+08 [
30 b

20l 20408 |-

16408 -

L L L n " L L L
180 200 220 60 80 100 120 180 200 220

n L
60 80 100 120 140 160
number of variables

140 160
number of variables

Fig.5. < N,D =10,C =5 % N/2,Tcrjy >: cpu time & number of constraint checks.

5 Future Work

This work opens some perspectives on solving hard constraint satisfaction prob-
lems. As a future work, we plan to address the following directions:

— In the formulation given above, the weight associated with each constraint
is based on simple syntactical properties of the variables which require a low
computational cost. It would be interesting to investigate how constraint se-
mantics can be integrated. Indeed, whereas the tightness of the constraint is
very expensive to evaluate in random CSPs (many constraint checks to per-
form), it can sometimes be estimated cheaply in real-world problems where
we have knowledge about the semantics. For example, it is known without
any computation that if a constraint R;; sets that X; and X; are bound by
the relation “=") it will be much tighter than if it sets that they are bound
by the relation “#£”.

— The results obtained on the second level instantiations are very promising
and need to be systematically investigated. We believe that on larger and
harder CSPs, greater levels DVOs might pay off.

14

6

Christian Bessiére et al.

Conclusion

The contribution of this paper is twofold. On the one hand, a general formulation
of dynamic variable ordering heuristics has been proposed. It admits numerous
advantages,

the constrainedness of a given variable is computed without any constraint
check, thanks to simple syntactical properties,

it takes advantage of the neighborhood of the variable, with the notion of
distance as a parameter,

it can be instantiated to different known variable ordering heuristics,

it is possible to use other functions to measure the weight of a given con-
straint.

On the other hand, we have shown that when instantiating the general for-

mula with known VOs (dom and dom/futdeg), and a distance 1 for the neighbor-
hood involved, we obtain significant improvements over the most efficient known
DVOs.

References

1.

10.

11.

12.

C. Bessiére and J.C. Régin. MAC and combined heuristics: two reasons to forsake
FC (and CBJ?) on hard problems. In Proceedings CP’96, pages 61-75, Cambridge
MA, 1996.

. D. Brélaz. New methods to color the vertices of a graph. Communications of the

ACM, 22:251-256, 1979.
C. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J.P. Warners. Radio link fre-
quency assignment. Constraints, 4:79-89, 1999.

. R. Dechter and I. Meiri. Experimental evaluation of preprocessing techniques in

constraint satisfaction problems. In Proceedings IJCAI’89, pages 271-277, Detroit
MI, 1989.

E.C. Freuder. A sufficient condition for backtrack-free search. Journal of the ACM,
29(1):24-32, Jan. 1982.

D. Frost and R. Dechter. Look-ahead value ordering for constraint satisfaction
problems. In Proceedings IJCAI’95, pages 572-578, Montréal, Canada, 1995.
P.A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction problems.
In Proceedings ECAI’92, pages 31-35, Vienna, Austria, 1992.

L.P. Gent, E. MacIntyre, P. Prosser, B. Smith, and T. Walsh. An empirical study
of dynamic variable ordering heuristics for the constraint satisfaction problem. In
Proceedings CP’96, pages 179-193, Cambridge MA, 1996.

R.M. Haralick and G.L. Elliott. Increasing tree seach efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263-313, 1980.

J.N. Hooker and V. Vinay. Branching rules for satisfiability. Journal of Automated
Reasoning, 15:359-383, 1995.

B. Nudel. Consistent-labelling problems and their algorithms: Expected-
complexities and theory-based heuristics. Artificial Intelligence, 21:135-178, 1983.
P. Prosser. An empirical study of phase transition in binary constraint satisfaction
problems. Artificial Intelligence, 81:81-109, 1996.

13.

14.

15.

16.

Lecture Notes in Computer Science 15

D. Sabin and E.C. Freuder. Contradicting conventional wisdom in constraint sat-
isfaction. In Proceedings PPCP’94, Seattle WA, 1994.

B. Smith and S.A. Grant. Trying harder to fail first. In Proceedings ECAI’98,
pages 249-253, Brighton, UK, 1998.

B.M. Smith. The Brélaz heuristic and optimal static orderings. In Proceedings
CP’99, pages 405-418, Alexandria VA, 1999.

R. Zabih. Some applications of graph bandwith to constraint satisfaction problems.
In Proceedings AAAI’90, pages 46-51, Boston MA, 1990.

