
Multi�Level Variable Ordering Heuristics for the

Constraint Satisfaction Problem

Christian Bessi�re�� Assef Chmeiss�� and Lakhdar Sa�s�

� Member of the Coconut group
LIRMM�CNRS �UMR ������ ���� rue Ada�

�	�
� Montpellier Cedex �� France
bessiere�lirmm�fr

� CRIL � Universit� dArtois � IUT de Lens
Rue de luniversit� � SP ��
����� LENS Cedex� France

�chmeiss� sais��cril�univ�artois�fr

Abstract� The usual way for solving constraint satisfaction problems is
to use a backtracking algorithm� One of the key factors in its e�ciency is
the rule it will use to decide on which variable to branch next �namely�
the variable ordering heuristics�� In this paper� we attempt to give a
general formulation of dynamic variable ordering heuristics that take into
account the properties of the neighborhood of the variable� An empirical
evaluation on random CSPs and a sample of real instances shows that
the obtained heuristics can improve signi�cantly the current best ones�

� Introduction

Constraint satisfaction problems �CSPs� are widely used to solve combinatorial
problems appearing in a variety of application domains� They involve �nding
solution in a constraint network� i�e�� �nding values for network variables subject
to constraints on which combinations are acceptable�

The usual technique to solve CSPs is systematic backtracking� It repeatedly
chooses a variable� attempts to assign it one of its values� and then goes to the
next variable� or backtracks in case of failure� This technique is at the basis
of almost all the CSP solving engines� But if we want to tackle highly combi�
natorial problems� we need to enhance this basic search procedure with clever
improvements�

A crucial improvement to be added is look�ahead value �ltering� which con�
sists in removing in future domains values that cannot belong to a solution
extending the current partial instantiation� Many works have studied the dif�
ferent levels of �ltering that can be applied at each node of the search tree�
In the following� we will use maintaining arc consistency �MAC� as our search
algorithm �	
� 	��

Another improvement that has shown to be of major importance is the or�
dering of the variables� namely� the criterion under which we decide which vari�
able will be the next to be instantiated� Many variable ordering heuristics for



� Christian Bessi�re et al�

solving CSPs have been proposed over the years� However� the criteria used in
those heuristics to order the variables are often quite simple� and concentrate on
characteristics inherent to the variable to be ordered� and not too much on the
in�uence its neighborhood could have� Those that use more complex criteria�
essentially based on the constrainedness or the solution density of the remaining
subproblem� need to evaluate the tightness of the constraints� and so� need to
perform many constraint checks�

The goal of this paper is to propose heuristics that take into account proper�
ties of the neighborhood in the criterion of choice of a variable� while remaining
free of any constraint check� After a recall on the existing variable ordering
heuristics for the CSP� and a brief discussion on their eciency� we take a look
at the branching rules used in SAT� Then� following the ideas developed for
SAT� we de�ne a general criterion that can be used on CSPs� We give instan�
tiations of this general criterion� which depend on the choice of some operators
and parameters to approximate the constrainedness of variables and constraints�
Finally� we take some simple cases for that criteria ��xing the parameters�� that
we experiment and compare to existing heuristics�

The rest of the paper is organized as follows� Section � gives the necessary
de�nitions and notations� It summarizes existing work on this topic� and shows
experimentally how the best already known heuristics relate to each other� Sec�
tion 
 presents our multi�level heuristics� In Section �� we compare the best
existing heuristics to some of those proposed in Section 
� Sections � and �
discuss possible future work� and conclude the paper�

� Preamble

��� De�nitions and notations

A constraint network is de�ned by a set of variables� each taking values in its
�nite domain� and a set of constraints restricting the possible combinations of
values between variables� For simplicity we restrict our attention here to binary

constraint networks� where the constraints involve two variables�� Binary con�
straints are binary relations� If a variable Xi has a domain of possible values
D�Xi� and a variable Xj has a domain D�Xj�� the constraint on Xi and Xj �
Rij � which speci�es the allowed pairs of values for �Xi� Xj�� is a subset of the
Cartesian product D�Xi� �D�Xj�� Asking whether a pair of values is allowed
by a constraint is called a constraint check�

Any constraint network can be associated with a constraint graph in which the
nodes are the variables of the network� and an edge links a pair of nodes if and
only if there is a constraint on the corresponding variables� �init�Xi� denotes
the set of nodes sharing an edge with the node Xi �its initial neighbors�� We
de�ne the set � �Xi� as the current neighborhood of Xi� namely� the neighbors
remaining uninstantiated once a backtracking search procedure has instantiated

� However� the techniques presented in the following of this paper can easily be ex�
tended to general non�binary constraint networks�



Lecture Notes in Computer Science �

the set Y � fXi� � � � � � Xikg of variables� i�e�� � �Xi� � �init�Xi� n Y � The size of
� �Xi� �resp� �init�Xi�� is called the degree �resp� initial degree� of Xi�

��� Overview on the existing variable orderings

Ordering variables prior to or during search of solution in a CSP has been un�
derstood of prime importance for a long time� The �rst kind of criteria used for
ordering variables are based on the structure of the network� Since in classical
search procedures the structure of the network does not change during search�
these variable orderings �VOs� keep the same ordering of the variables during
the whole search� They are called static VOs �SVOs�� and simply replace the
lexicographic ordering by something more appropriate to the structure of the
network before starting search� Some examples of these heuristics are minwidth�
which chooses an ordering minimizing the width of the constraint network ����
maxdeg� which orders the variables in decreasing size of their neighborhood ����
bandwidth� which minimizes the bandwidth of the constraint graph �	��� etc�

The second type of VOs� adapted to the technique of look ahead value prun�
ing� takes into account the size of the domains to choose the next variable to
be instantiated� As soon as we put some �ltering into a search procedure� the
domains have no reason to keep the same size from one branch to another� So�
heuristics keeping the size of the domains as a criterion of selection have no
reasons to take the variables in the same order from one branch to the other�
This is why this kind of orderings� introduced by Haralick and Elliott in 	���
are called dynamic VOs �DVOs�� The one introduced by Haralick and Elliott
in ��� is dom� the heuristic choosing as next variable the one with the smallest
remaining domain�

Since dom can be completely fooled by the structure� especially at the be�
ginning of the search� when domains have more chances to be of equal size�
dom�deg has been proposed� which breaks ties in dom by preferring the variable
with the highest initial degree ���� Another heuristic� close to dom�deg� is the one
derived from the Br�laz heuristic �proposed for graph coloring� ���� We note it
dom�futdeg� It breaks ties in dom by preferring the variable with highest future
degree �	��� Smith also improved dom�futdeg by adding to it a second and a
third tie breakers� namely� the size of the smallest neighbor� and the number of
triangles in which the �rst chosen variable is involved� She called this DVO BZ��

However� both dom�deg� dom�futdeg� and BZ� use the domain size as the
main criterion� The degree of the variables is considered only in case of ties�
Imagine a case where a variable Xi has a domain size of �� and a degree of
one� while Xj has a domain size of �	 and a degree of 	�� dom�futdeg or BZ�
will prefer Xi to Xj while there are many chances that Xj would have been
a better choice� This is why combined heuristics were proposed ��	��� which do
not give priority to the domain size or degree of variables� but use them equally
in the criterion� dom�deg chooses as the next variable� the variable Xi minimiz�
ing the ratio jD�Xi�j�j�init�Xi�j� while dom�futdegminimizes jD�Xi�j�j� �Xi�j�
dom�futdeg has extensively been studied in �	�� under the name DD�



	 Christian Bessi�re et al�

Finally� there is another kind of DVOs which it is worth mentioning� those
taking into account the tightness of the constraints� They look how much a
given constraint restricts the remaining of the problem instead of considering all
of them as equivalent� Examples of such heuristics can be found in �		� �� ��� The
drawback of these heuristics is the need of checking the tightness of a constraint�
which is very constraint checks consuming �and thus in cpu time also�� None
of these heuristics has been shown as better than those dealing only with the
constraint graph structure�

��� A few words about experiments

In the following of this paper� the performances of the di�erent heuristics are
evaluated both on real instances and on uniform random CSPs generated accord�
ing to the model B �	��� Such a generator admits four parameters� the number
N of variables� the common size of the initial domains D� the proportion p� of
constraints in the network �or the number C � p��N � �N����� of constraints��
and the proportion p� of forbidden pairs of values in a constraint �or the number
T � p��D �D of forbidden pairs�� In the following� we will use C and T instead
of p� and p�� C is called the density of the constraint graph and T the tightness
of the constraints� The real instances are taken from the FullRLFAP archive��

which contains instances of radio link frequency assignment problems �RLFAPs��
They are described in �
�� In all our experiments� we stop search after the �rst
solution is found� The search procedure used is MAC�

��� Observations

The strong relationship between the instantiation ordering of variables and the
size of the search tree has motivated many works on the design of �good� heuris�
tics� However� an empirical comparison of such heuristics is not an obvious task�
When comparing variable orderings on a sample of instances of CSPs� it can arise
that we see little di�erence between two given VOs� giving us the temptation
to select the simplest one� However� what is important to see is the evolution of
their di�erences when problems become larger and harder� Indeed� a small dif�
ference on problems of small size can become huge when the size of the problems
increases�

To give an insight into the state of the art� we present in Figure 	 results for
several well�known heuristics� dom is the oldest and most well known DVO� and
dom�futdeg and BZ� can be considered as the best current VOs for CSPs �	��
	��� In this experiment� we consider random CSPs � N�D�C� T �� where the
number of variables N grows from �� to ����� while the domain size and the
average degree of the variables are kept constant �jDj � ��� and � � C�N � ���
The tightness remains at the cross�over point �T � Tcrit�� which remains stable

� We thank the Centre dElectronique de lArmement �France��
� For dom �resp� BZ�� N grows until ��� �resp� ����� because of the huge time needed
to �nd a solution�



Lecture Notes in Computer Science �

at the value �� since the networks generated all have the same average degree
for their variables�

We see that on small sizes� dom is already signi�cantly worse than BZ� and
dom�futdeg� These two last have very close performances until �� variables�
When N becomes greater than ��� the bene�t of dom�futdeg becomes bigger
and bigger� exceeding one order of magnitude for N � ����

0.01

0.1

1

10

100

1000

10000

20 40 60 80 100 120 140 160 180 200

C
P

U
 ti

m
e 

(s
ec

.)

number of variables

dom
BZ3

dom/futdeg

Fig� �� � N�D � ��� C � � �N��� Tcrit �� cpu time needed �log scale��

� Multi�level DVOs

One of the key features for the eciency of a backtrack search method lies in its
branching �or splitting� strategy� At each step of the search process� a problem
P is reduced into a �nite number of sub�problems �P�� P�� � � � � PjD�Xi�j�� where
Xi is the chosen variable� As stated by Hooker and Vinay �	�� in the context
of satis�ability problems �SAT�� �a branching rule works better when it creates
simpler subproblems��� The performance of branching rules is better explained by
the previous simpli�cation hypothesis� Following this idea� and since contrary to
SAT problems the domains are not all binary� we think that a good DVO should
reduce both the number and the di�culty of such subproblems� In other words�
a branching rule performs well when it creates less and simpler subproblems�

Indeed� choosing the variable with minimum domain �resp� with maximum
degree� reduces the number �resp� diculty� of such subproblems� whereas com�
bining both� such as dom�futdeg does� tends to satisfy both objectives� This

� called a simpli�cation hypothesis



� Christian Bessi�re et al�

explains the importance of these two syntactical parameters on the design of
good heuristics�

To go further in that direction� we propose a general formulation of DVOs
which integrates in the selection function a measure of the constrainedness of the
given variable� The constrainedness of a variable can be de�ned as a function of
the constraints involving the variable� One could choose semantical constraints�
based measures �e�g�� number of allowed tuples� or syntactical ones �e�g�� size
of the Cartesian product of the domains�� Choosing the most constrained vari�
able should have a great impact on the search space� leading the search to the
most constrained parts of the CSP� and thus provoking early detection of local
inconsistencies�

As recalled in Section ���� this is not a new idea in CSPs� but what we
propose below is a new and general formulation of DVOs� which remains free of
any constraint check�

��� A general criterion free of constraint checks

Let us �rst de�ne W �Rij� as the weight of the constraint Rij and�

��� W �Xi� �

P
Xj�� �Xi�

W �Rij �

j� �Xi�j

as the mean weight of the constraints involving Xi� In order to maximize the
number of constraints involving a given variable and to minimize the mean weight
of such constraints� the next variable to branch on should be chosen according
to the minimum value of

��� H�Xi� �
W �Xi�
j� �Xi�j

over all uninstantiated variables �numerator to minimize the weight� and denom�
inator to maximize the number of constraints��

For complexity reasons we already mentioned above� the weight we will asso�
ciate to a constraint must be something cheap to compute �e�g�� free of constraint
checks�� It can be de�ned by W �Rij� � ��Xi����Xj�� where ��Xi� is instanti�

ated to a simple syntactical property of the variable such as jD�Xi�j or
jD�Xi�j
j� �Xi�j

�

and � � f���g� For ��Xi� � jD�Xi�j� and � � �� the weight associated to a
given constraint Rij represents an upper bound of the number of tuples allowed
by Rij �

We obtain the new formulation of ����

��� H�� �Xi� �

P
Xj�� �Xi�

���Xi�� ��Xj��

j� �Xi�j�

��� Multi�level generalization

In the formulation of the DVOs presented above� the evaluation function H�Xi�
considers only the variables at distance one from Xi ��rst level or neighborhood��
However� when arc consistency is maintained �MAC�� the instantiation of a value



Lecture Notes in Computer Science �

to a given variable Xi could have an immediate e�ect not only on the variables
of the �rst level� but also on those at distance greater than one�

To maximize the e�ect of such a propagation process on the CSP� and con�
sequently to reduce the diculty of the subproblems� we propose a generaliza�
tion of the DVO H�� such that variables at distance k from Xi are taken into
account� This gives what we call a �multi�level DVO�� H��k���� To obtain this

multi�level DVO� we simply replace ��Xj� in formula �
� by a recursive call to
H��k������Xj�� This means that to compute H��k��� on a given variable� we need

to compute H��k����� on all its neighbors� and so on� The recursion terminates

with H������� equal to �� This is formally stated as follows�

��� H�������Xi� � ��Xi�

�	� H��k����Xi� �

P
Xj�� �Xi�

���Xi� �H�
�k�����

�Xj ��

j� �Xi�j�

��� Some instantiations of the multi�level formula

We show now some of the di�erent DVOs we can obtain from H��k��� by instan�

tiating � to � or �� ��Xi� to jD�Xi�j or
jD�Xi�j
j� �Xi�j

� and k to � or ���

	� For � � ��

 and ��Xi� � jD�Xi�j we obtain�
��� H�

���dom��Xi� � jD�Xi�j�

��� H�
���dom��Xi� �

jD�Xi�j
j� �Xi�j

�

P
Xj�� �Xi�

jD�Xj�j

j� �Xi�j�


 and ��Xi� �
jD�Xi�j
j� �Xi�j

we obtain �

�� H�
���dom�futdeg��Xi� �

jD�Xi�j
j� �Xi�j

�

��� H�
���dom�futdeg��Xi� �

jD�Xi�j�
P
Xj�� �Xi�

jD�Xj �j

j��Xj �j

j� �Xi�j�
�

�� For � � ��

 and ��Xi� � jD�Xi�j we obtain�
���� H�

���dom��Xi� � jD�Xi�j � H�
���dom��Xi��

���� H�
���dom��Xi� �

jD�Xi�j�
P
Xj�� �Xi�

jD�Xj�j

j� �Xi�j�


 and ��Xi� �
jD�Xi�j
j� �Xi�j

we obtain �

���� H�
���dom�futdeg��Xi� �

jD�Xi�j
j� �Xi�j

� H�
���dom�futdeg��Xi��

���� H�
���dom�futdeg��Xi� �

jD�Xi�j �
P
Xj�� �Xi�

jD�Xj �j

j� �Xj �j

j� �Xi�j�
�

In the following� H����dom� and H����dom�futdeg� are denoted by their classi�

cal name� dom and dom�futdeg� respectively� H��k�dom� and H��k�dom�futdeg� are

denoted by H�k�dom�� and H�k�dom�futdeg�� respectively�

� In the same way� other instantiation can be obtained for k � ��



� Christian Bessi�re et al�

� Experiments

We will now compare experimentally the behavior of the new DVOs de�ned
above on several classes of random CSPs �Section ��	�� In Section ��� results on
real instances from the FullRLFAP archive are presented� To show the feasibility
of the multi�level approach� we present experiments obtained with the second
level instantiations �k � �� on a sample of random CSPs �Section ��
��

We compare our DVO heuristics with the most ecient one previously known�
dom�futdeg �see Section ����� In our tests we have used di�erent kinds of mea�
sures of performance for the DVOs tested� cpu time in seconds �time��� number
of constraint checks ��ccks�� and number of visited nodes ��nodes�� The di�er�
ent curves obtained using these di�erent measures are very similar� so we just
present those with cpu time� When necessary� the other measures ��ccks and
�nodes� are also given�

��� Random instances

To get an accurate view of the behavior of the above DVO heuristics on random
CSPs� several classes are considered�

	� the class of CSPs presented and described in Section ���� with a number of
variables growing from �� to �	� �Figure ���

�� CSPs for which we vary the tightness when N � D� and C are kept constant�
Figures 
 and � give results for N � 
�� D � ��� and three di�erent densities�
C � ��� �Figure 
�� C � ��� �Figure ��� and C � 
�� �Table 	��


� CSPs with a greater number of variables and�or a greater domain size� The
results are summarized in Table �� They are all at the crossover point�

We present the performance of the �rst level DVOs �H���dom�� and H���dom�futdeg���
with respect to the most ecient DVO previously known� dom�futdeg� Each
point in the curves represents the average time for ��� generated problems�

In Figure �� N grows� while the domain size and the average degree remain
constant� The tightness is always at the cross�over point� As we can see� ex�
cept for H���dom��� all the �rst�level DVOs outperform the best known DVO
dom�futdeg on this class of CSPs� H��dom�futdeg�� has the best performance�
It is interesting to note that the gain increases as the number of variables in�
creases�

Figures 
 and � con�rm the improvements obtained with the �rst�level in�
stantiations� As we can see in Figure �� when density grows �C � ���� i�e�� aver�
age degree equal to ���� H���dom�� becomes slightly better than dom�futdeg�
and H���dom�futdeg�� becomes better than H���dom�futdeg��� The instanti�

ations obtained with ��Xi� �
jD�Xi�j
j� �Xi�j

are more ecient than those with ��Xi� �

jD�Xi�j�

� Experiments on random �resp� real� instances have been run on a PC Pentium III
��� MHz �resp� Pentium II ���MHz� under Linux�



Lecture Notes in Computer Science 


0

100

200

300

400

500

600

60 80 100 120 140 160 180 200 220

C
P

U
 ti

m
e 

(s
ec

.)

number of variables

H_1_dom/futdeg_x
H_1_dom_x

H_1_dom/futdeg_+
H_1_dom_+
dom/futdeg

Fig� �� � N�D � ��� C � � �N��� Tcrit �� cpu time�

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

40 45 50 55 60 65 70

C
P

U
 ti

m
e 

(s
ec

.)

Tightness

H_1_dom/futdeg_x
H_1_dom_x

H_1_dom/futdeg_+
H_1_dom_+
dom/futdeg

Fig� �� � N � ��� D � ��� C � ���� T �� cpu time�



�� Christian Bessi�re et al�

0

5

10

15

20

25

30

35

40

45

25 30 35 40 45

C
P

U
 ti

m
e(

se
c.

)

Tightness

H_1_dom/futdeg_x
H_1_dom_x

H_1_dom/futdeg_+
H_1_dom_+
dom/futdeg

Fig� �� � N � ��� D � ��� C � ���� T �� cpu time�

Table 	 shows additional results on denser and harder CSPs with �� as the
average degree� � N � 
�� D � ��� C � 
��� T �� Because of the huge execution
time� only �� instances were tested� They are generated at the cross�over point
�Tcrit � ���� On these dense CSPs� all the �rst level DVOs noticeably outper�
form dom�futdeg� And� H���dom�futdeg�� con�rms that it becomes better and
better when density grows�

Table �� � N � ��� D � ��� C � ���� Tcrit � �� � at the cross�over point � checks�
visited nodes and cpu time

�ccks �million� �nodes �million� time �sec��

dom�futdeg ������� �	��� ���������

H�	�dom�futdeg�
 �	����
 �
��� ����
����

H�	�dom�
 ������� ����� ����
����

H�	�dom�futdeg�� ����
�� �	��	 �	�������

H�	�dom�� �	��	
� 	
��� ���
�����

In its �rst three �rst lines� Table � gives details on the number of con�
straint checks ��ccks� and cpu time for the cross�over point of some classes
described only by cpu time graphs in Figures �� 
� and �� The last four lines
show that if we increase even more the number of variables �� ���� �� ����� ����
� ���� ��� ���� 	�� �� or if we increase the domain size �� �����	� 	��� �	 ���



Lecture Notes in Computer Science ��

Table �� A sample of random CSPs at the cross�over point � checks � cpu time

dom�futdeg H���dom�� H���dom�futdeg�� H���dom�x H���dom�futdeg�x

Problems �ccks time �ccks time �ccks time �ccks time �ccks time
� N�D� C� T � �million� �sec�� �million� �sec�� �million� �sec�� �million� �sec�� �million� �sec��

� ��� ��� ���� �� � ���� ���� ���� ���� ��	� ���� ��
� ���� ��	� ����

� ��� ��� ���� �� � ����� ����� �	��
 ����� ���	 ����
 �	��
� ����� ������ ���


� ���� ��� ���� �� � �
��� �
�	� ������ ���	
 ��	�	
 ���	
 ����	� ����� ����
� �
�	�

� ���� ��� ���� �� � ��	� ���	 ��
	 ���� ��� ���� ���� ���� ���	 ����

� ���� ��� ���� �� � ������
� ������ ������� ������ �������
 ����
 �������� �	���� ����	��� ��	�
	

� ���� ��� �	�� ��
 � ���	��� ������ �����
 
��	 �	��� �
�
 ��
����� �	��� 
���� �
��

� ���� �� ����� �� � ���
��� ������� ���
��
� 	�	��	 ����
��� ������ ����
��� ������	� ���	
��
 ����

the gain of the H�� heuristics continue to grow compared to dom�futdeg� These
are promising observations�

As a synthesis of the results on di�erent classes of random CSPs� we can say
that� except H���dom�x� the �rst level DVOs improve signi�cantly the well known
DVO dom�futdeg� Furthermore� in general� H���dom�futdeg�� are better than
H���dom��� This is not surprising because the former take into account the con�
nectivity of the neighborhood of the chosen variable� Finally� H���dom�futdeg��
is more ecient than H���dom�futdeg�� on CSPs with higher densities� On the
contrary� H���dom�futdeg�� is more ecient on sparse ones�

��� Real instances

In this subsection� we compare the behavior of the DVOs used in Section ��	 on
the real instances of the FullRLFAP archive� It contains 		 real instances� scen�	
to scen		� and 	� arti�cially generated instances� graph�	 to graph	�� These
instances all contain an optimization criterion� and so� are not pure satis�ability
problems� The consequence is that most of these instances �except scen		 and
graph	�� are trivially solved by MAC with any of the discussed DVOs� �nding a
solution �not necessarily optimal��� or detecting inconsistency easily� To produce
harder instances� we took the � trivially satis�able real instances� scen�	 to
scen��� and reduced the available frequencies step by step� leading to a series
of problems scenXX�k� where k is the number of frequencies removed from the
problem �starting from the largest frequency to the smaller ones�� There always
exists a value k� for which scenXX�k� is satis�able� and scenXX��k� � �� is
inconsistent�

For the real instances scen�� to scen	�� which are trivially inconsistent� the
constraints are partitioned into � sets� depending on their importance in the
problem� The set �� contains the hard constraints� the set �� contains the least
important constraints� We used that to produce a series of �ve di�erent problems
from a scenXX� For instance� scenXX��	� denotes the instance containing the
constraints at levels �� 	� and �� Here again� for a given scenXX� we can go
from an over�constrained problem �scenXX��	�
�� to an under�constrained one
�scenXX��� by removing levels of constraints�

These two protocols do not respect exactly the optimization criteria de�ned
in the archive� but permit us to build hard instances around the satis�ability



�� Christian Bessi�re et al�

limit� Even with these protocols� many instances generated are either easy �less
than � seconds of cpu time�� or too dicult �more than one hour of cpu time��
In Table 
� we report results for those instances on which a signi�cant di�erence
has been observed among the DVOs tested� The cpu time limit was put to one
hour�

Table �� A sample of RLFAPs solved on a PC PentiumII ���MHz under Linux�

scen�������� �sat	 scen������ �unsat	 scen����� �sat	 scen����� �unsat	

nodes time 
nodes time 
nodes time 
nodes time

dom�futdeg ����� ��� �� � � h� �������� �������� �� � � h�
H���dom�� ������ ���� �� ���� ��� ���� �� � � h�
H���dom�futdeg�� �� � � h� �� ���� �� � � h� ����� ����
H���dom�x ������ ����� �� � � h� ��� ���� �� � � h�
H���dom�futdeg�x ������� ������ �� ���� �� � � h� ���� ����

The two non trivial original instances are graph	� and scen		� On scen		� we
can see that H��dom�futdeg�� and H���dom�futdeg�� do not perform as well
as the others� especially H��dom�futdeg��� which does not solve the problem
under the time limit� None of the �ve tested DVOs could solve graph	� in one
hour� It can be pointed out that dom�deg could solve it in ���� seconds�

If we take a look at the instances derived from scen�	 to scen	�� we can
�nd three of them on which signi�cant di�erences can be observed� scen����	��
which is inconsistent� is almost trivially solved by three of the H�� heuristics�
dom�futdeg and H���dom�� could not solve it in one hour� Interestingly� we
could �nd and prove the optimal number of frequencies that can be removed in
scen��� Indeed� scen����� was found satis�able� and scen����� inconsistent� On
scen������ H���dom�� and H���dom�� quickly �nd a solution� while the others
are very slow or out of the limit� On scen������ this is exactly the opposite
since H��dom�futdeg�� and H���dom�futdeg�� are the only two able to prove
inconsistency in the allowed time�

If no conclusion can be drawn on a so small number of pertinent instances�
we can at least give some observations� First� we see that dom�futdeg is signi��
cantly outperformed on those real problems� This con�rms results of Section ��	�
Second� it seems that H��dom�futdeg�� and H���dom�futdeg�� are better on
inconsistent problems� and H���dom�� and H���dom�� on satis�able ones� But�
more extensive tests should be run to draw de�nite conclusions since this last
fact doesn�t appear as clearly as that on our experiments on random CSPs�

��� What about the second level�

To get an idea on the behavior of the second level instantiations �H���� we have
conducted experiments on the class presented in Figure �� In Figure �� we show
the results of the �rst and the second level DVOs using �H���dom�futdeg�� and
H���dom�futdeg���� The other instantiations have a similar behavior� We can



Lecture Notes in Computer Science ��

see that the second level DVO improves the �rst one with respect to constraint
checks �right hand curve�� Regarding cpu time �left hand curve�� the �rst level
is slightly better than the second for instances with N � ���� When the number
of variables is greater �N � �	��� the second level DVO also becomes better wrt
cpu time� These results are promising and show the feasibility of the multi�level
approach with k � ��

0

10

20

30

40

50

60

70

80

90

100

60 80 100 120 140 160 180 200 220

C
P

U
 ti

m
e(

se
c.

)

number of variables

H_1_dom/futdeg_x
H_2_dom/futdeg_x

0

1e+08

2e+08

3e+08

4e+08

5e+08

6e+08

7e+08

8e+08

9e+08

60 80 100 120 140 160 180 200 220

co
ns

tr
ai

nt
 c

he
ck

s

number of variables

H_1_dom/futdeg_x
H_2_dom/futdeg_x

Fig� �� � N�D � ��� C � � �N��� Tcrit �� cpu time � number of constraint checks�

� Future Work

This work opens some perspectives on solving hard constraint satisfaction prob�
lems� As a future work� we plan to address the following directions�


 In the formulation given above� the weight associated with each constraint
is based on simple syntactical properties of the variables which require a low
computational cost� It would be interesting to investigate how constraint se�
mantics can be integrated� Indeed� whereas the tightness of the constraint is
very expensive to evaluate in random CSPs �many constraint checks to per�
form�� it can sometimes be estimated cheaply in real�world problems where
we have knowledge about the semantics� For example� it is known without
any computation that if a constraint Rij sets that Xi and Xj are bound by
the relation ���� it will be much tighter than if it sets that they are bound
by the relation � ����


 The results obtained on the second level instantiations are very promising
and need to be systematically investigated� We believe that on larger and
harder CSPs� greater levels DVOs might pay o��



�	 Christian Bessi�re et al�

� Conclusion

The contribution of this paper is twofold� On the one hand� a general formulation
of dynamic variable ordering heuristics has been proposed� It admits numerous
advantages�


 the constrainedness of a given variable is computed without any constraint
check� thanks to simple syntactical properties�


 it takes advantage of the neighborhood of the variable� with the notion of
distance as a parameter�


 it can be instantiated to di�erent known variable ordering heuristics�

 it is possible to use other functions to measure the weight of a given con�

straint�

On the other hand� we have shown that when instantiating the general for�
mula with known VOs �dom and dom�futdeg�� and a distance 	 for the neighbor�
hood involved� we obtain signi�cant improvements over the most ecient known
DVOs�

References

�� C� Bessi�re and J�C� R�gin� MAC and combined heuristics� two reasons to forsake
FC �and CBJ�� on hard problems� In Proceedings CP���� pages ������ Cambridge
MA� �

��

�� D� Br�laz� New methods to color the vertices of a graph� Communications of the

ACM� ����������� �
�
�
�� C� Cabon� S� de Givry� L� Lobjois� T� Schiex� and J�P� Warners� Radio link fre�

quency assignment� Constraints� 	��
��
� �


�
	� R� Dechter and I� Meiri� Experimental evaluation of preprocessing techniques in

constraint satisfaction problems� In Proceedings IJCAI���� pages �������� Detroit
MI� �
�
�

�� E�C� Freuder� A su�cient condition for backtrack�free search� Journal of the ACM�
�
�����	���� Jan� �
���

�� D� Frost and R� Dechter� Look�ahead value ordering for constraint satisfaction
problems� In Proceedings IJCAI���� pages �������� Montr�al� Canada� �

��

�� P�A� Geelen� Dual viewpoint heuristics for binary constraint satisfaction problems�
In Proceedings ECAI���� pages ������ Vienna� Austria� �

��

�� I�P� Gent� E� MacIntyre� P� Prosser� B� Smith� and T� Walsh� An empirical study
of dynamic variable ordering heuristics for the constraint satisfaction problem� In
Proceedings CP���� pages ��
��
�� Cambridge MA� �

��


� R�M� Haralick and G�L� Elliott� Increasing tree seach e�ciency for constraint
satisfaction problems� Arti�cial Intelligence� �	��������� �
���

��� J�N� Hooker and V� Vinay� Branching rules for satis�ability� Journal of Automated

Reasoning� �����
����� �

��
��� B� Nudel� Consistent�labelling problems and their algorithms� Expected�

complexities and theory�based heuristics� Arti�cial Intelligence� ����������� �
���
��� P� Prosser� An empirical study of phase transition in binary constraint satisfaction

problems� Arti�cial Intelligence� ��������
� �

��



Lecture Notes in Computer Science ��

��� D� Sabin and E�C� Freuder� Contradicting conventional wisdom in constraint sat�
isfaction� In Proceedings PPCP���� Seattle WA� �

	�

�	� B� Smith and S�A� Grant� Trying harder to fail �rst� In Proceedings ECAI����
pages �	
����� Brighton� UK� �

��

��� B�M� Smith� The Br�laz heuristic and optimal static orderings� In Proceedings

CP���� pages 	���	��� Alexandria VA� �


�
��� R� Zabih� Some applications of graph bandwith to constraint satisfaction problems�

In Proceedings AAAI���� pages 	����� Boston MA� �

��


