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1. INTRODUCTION

This paper is an introduction to the subject of virtual knot theory, a generalization of clas-
sical knot theory that I discovered in 1996 [2]. This paper gives the basic definitions, some
fundamental properties and a collection of examples. Subsequent papers will treat specific
topics such as classical and quantum link invariants and Vassiliev invariants for virtual knots
and links in more detail.

Throughout this paper I shall refer to knots and links by the generic term ‘knot’. In referring
to a trivial fundamental group of a knot, I mean that the fundamental group is isomorphic to
the integers.

The paper is organized as follows. Section2 gives the definition of a virtual knot in terms
of diagrams and moves on diagrams. Section3 discusses both the motivation from knots in
thickened surfaces and the abstract properties of Gauss codes. Section3 proves basic results
about virtual knots by using reconstruction properties of Gauss codes. In particular, we show
how virtual knots can be identified as virtual by examining their codes. Section4 discusses
the fundamental group and the quandle extended for virtual knots. Examples are given of non-
trivial virtual knots with a trivial (isomorphic to the integers) fundamental group. An example
shows that some virtual knots are distinguished from their mirror images by the fundamen-
tal group, a very non-classical effect. Section5 shows how the bracket polynomial (hence
the Jones polynomial) extends naturally to virtuals and gives examples of non-trivial virtual
knots with a trivial Jones polynomial. Examples of infinitely many distinct virtuals with the
same fundamental group are verified by using the bracket polynomial. An example is given
of a knotted virtual with a trivial fundamental group and unit Jones polynomial. It is conjec-
tured that this phenomenon cannot happen with virtuals whose shadow code is classical. In
Section6 we show how to extend quantum link invariants and introduce the concept of vir-
tual framing. This yields a virtually framed bracket polynomial distinct from the model in the
previous section and to generalization of this model to an invariant,Z(K ), of virtual regular
isotopy depending on infinitely many variables. Section7 discusses Vassiliev invariants, de-
fines graphical finite type and proves that the weight systems are finite for the virtual Vassiliev
invariants arising from the Jones polynomial. Section8 is a discussion of open problems.

2. DEFINING V IRTUAL KNOTS AND L INKS

A classical knot [1] can be represented by a diagram. The diagram is a 4-regular plane graph
with extra structure at its nodes. The extra structure is classically intended to indicate a way
to embed a circle in three-dimensional space. The shadow of a projection of this embedding
is the given plane graph. Thus we are all familiar with the usual convention for illustrating a
crossing by omitting a bit of arc at the node of the plane graph. The bit omitted is understood
to pass underneath the uninterrupted arc. See Figure1.
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FIGURE 1. Crossings and virtual crossings.

From the point of view of a topologist, a knot diagram represents an ‘actual’ knotted (pos-
sibly unknotted) loop embedded in three space. The crossing structure is an artifact of the
projection to the plane.

I shall define a virtual knot (or link) diagram. The definition of a virtual diagram is just
this: we allow a new sort of crossing, denoted as shown in Figure1 as a 4-valent vertex with
a small circle around it. This sort of crossing is called virtual. It comes in only one flavor.
You cannot switch over and under in a virtual crossing. However, the idea is not that a virtual
crossing is just an ordinary graphical vertex. Rather, the idea is that the virtual crossing is not
really there.

If I draw a non-planar graph in the plane, it necessarily acquires virtual crossings. These
crossings are not part of the structure of the graph itself. They are artifacts of the drawing of
the graph in the plane. The graph theorist often removes a crossing in the plane by making
it into a knot theorist’s crossing, thereby indicating a particular embedding of the graph in
three-dimensional space. This is just what we do not do with our virtual knot crossings, for
then they would be indistinct from classical crossings. The virtual crossings are not there. We
shall make sense of that property by the following axioms generalizing classical Reidemeister
moves. See Figure2.

The moves fall into three types: (a) classical Reidemeister moves relating classical cross-
ings; (b) shadowed versions of Reidemeister moves relating only virtual crossings; and (c) a
triangle move that relates two virtual crossings and one classical crossing.

The last move (type c) is the embodiment of our principle that the virtual crossings are not
really there. Suppose that an arc is free of classical crossings. Then that arc can be arbitrarily
moved (holding its endpoints fixed) to any new location. The new location will reveal a new
set of virtual crossings if the arc that is moved is placed transversally to the remaining part of
the diagram. See Figure3 for illustrations of this process and for an example of unknotting of
a virtual diagram.

The theory of virtual knots is constructed on this combinatorial basis—in terms of the gen-
eralized Reidemeister moves. We will make invariants of virtual knots by finding functions
well defined on virtual diagrams that are unchanged under the application of the virtual moves.
The remaining sections of this paper study many instances of such invariants.

3. MOTIVATIONS

While it is clear that one can make a formal generalization of knot theory in the manner
so far described, it may not be yet clear why one should generalize in this particular way.
This section explains two sources of motivation. The first is the study of knots in thickened
surfaces of higher genus (classical knot theory is actually the theory of knots in a thickened
two-sphere). The second is the extension of knot theory to the purely combinatorial domain of
Gauss codes and Gauss diagrams. It is in this second domain that the full force of the virtual
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(a) (b)

(c)

FIGURE 2. Generalized Reidemeister moves for virtual knot theory.

(0 move on two-sphere)

FIGURE 3. Virtual moves.
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FIGURE 4. Two virtual knots.

theory comes into play.

3.1. Surfaces.Consider the two examples of virtual knots in Figure4. We shall see later in
this paper that these are both non-trivial knots in the virtual category. In Figure4 we have also
illustrated how these two diagrams can be drawn (as knot diagrams) on the surface of a torus.
The virtual crossings are then seen as artifacts of the projection of the torus to the plane.

The knots drawn on the toral surface represent knots in the three manifoldT × I whereI is
the unit interval andT is the torus. IfSg is a surface of genusg, then the knot theory inSg× I
is represented by diagrams drawn onSg taken up to the usual Reidemeister moves transferred
to diagrams on this surface.

As we shall see in the next section, abstract invariants of virtual knots can be interpreted as
invariants for knots that are specifically embedded inSg × I for some genusg. The virtual
knot theory does not demand the use of a particular surface embedding, but it does apply to
such embeddings. This constitutes one of the motivations.

3.2. Gauss codes.A second motivation comes from the use of so-calledGauss codesto rep-
resent knots and links. The Gauss code is a sequence of labels for the crossings with each label
repeated twice to indicate a walk along the diagram from a given starting point and returning to
that point. In the case of multiple link components, we mean a sequence labels, each repeated
twice and intersticed by partition symbols ‘/’ to indicate the component circuits for the code.

A shadowis the projection of a knot or link on the plane with transverse self-crossings
and no information about whether the crossings are overcrossings or undercrossings. In other
words, a shadow is a 4-regular plane graph. On such a graph we can count circuits that al-
ways cross (i.e., they never use two adjacent edges in succession at a given vertex) at each
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FIGURE 5. Planar and non-planar codes.

crossing that they touch. Such circuits will be called thecomponentsof the shadow since they
correspond to the components of a link that projects to the shadow.

A single component shadow has a Gauss code that consists in a sequence of crossing labels,
each repeated twice. Thus, the trefoil shadow has code 123123. A multi-component shadow
has as many sequences as there are components. For example, 12/12 is the code for the Hopf
link shadow.

Along with the labels for the crossings one can add the symbolsO andU to indicate that
the passage through the crossing was an overcrossing (O) or an undercrossing (U ). Thus,

123123

is a Gauss code for the shadow of a trefoil knot and

O1U2O3U1O2U3

is a Gauss code for the trefoil knot. The Hopf link itself has the codeO1U2/U1O2. See
Figure5.

Suppose thatg is such a sequence of labels and thatg is free of any partition labels. Every
label in g appears twice. The first necessary criterion for the planarity ofg is given by the
following definition and Lemma.

DEFINITION. A single component Gauss codeg is said to beevenly intersticedif there is
anevennumber of labels in between the two appearances of any label.

LEMMA 1. If g is a single component planar Gauss code, then g is evenly intersticed.

PROOF. This follows directly from the Jordan curve theorem in the plane. 2

EXAMPLE . The necessary condition for planarity in this Lemma is not sufficient. The code
g = 1234534125 is evenly intersticed but not planar as is evident from Figure5.
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FIGURE 6. Signed Gauss codes.

Non-planar Gauss codes give rise to an infinite collection of virtual knots.
Local orientations at the crossings give rise to another phenomenon: virtual knots whose

Gauss codes have planar realizations with different local orientations from their classical
counterparts.

By orienting the knot, one can give orientation signs to each crossing relative to the starting
point of the code—using the convention shown in Figure6. This convention designates each
oriented crossing with asign of +1 or−1. We say that the crossing has positive sign if the
overcrossing line can be turned through the smaller angle (of the two vertical angles at the
crossing) to coincide with the direction of the undercrossing line. The signed code for the
standard trefoil is

t = O1+U2+ O3+U1+ O2+U3+,

while the signed code for a figure eight knot is

f = O1+U2+ O3−U4− O2+U1+ O4−U3− .

Here we have appended the signs to the corresponding labels in the code. Thus, crossing
number 1 is positive in the figure eight knot, while crossing number 4 is negative. See Figure6
for an illustration corresponding to these codes.

Now consider the effect of changing these signs. For example, let

g = O1+U2+ O3−U1+ O2+U3− .

Theng is a signed Gauss code and as Figure6 illustrates, the corresponding diagram is forced
to have virtual crossings in order to acommodate the change in orientation. The codest andg
have the same underlying (unsigned) Gauss codeO1U2O3U1O2U3, butg corresponds to a
virtual knot whilet represents the classical trefoil.

Carrying this approach further, wedefinea virtual knot as an equivalence class of oriented
Gauss codes under abstractly defined Reidemeister moves for these codes—with no mention
of virtual crossings. The virtual crossings become artifacts of a planar representation of the
virtual knot. The move sets of type (b) and (c) for virtuals are diagrammatic rules that make
sure that this representation of the oriented Gauss codes is faithful. Note, in particular, that
the move of type (c) does not alter the Gauss code. With this point of view, we see that
the signed codes are knot theoretic analogues of the set of all graphs, and that the classical
knot (diagrams) are the analogues of the planar graphs. This is the fundamental combinatorial
motivation for our definitions of virtual knots and their equivalences.
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FIGURE 7. If g is planar, theng∗ is dually paired.

Since it is useful to have a few more facts about the reconstruction of planar Gauss codes,
we conclude this section with a quick review of that subject.

3.3. Gauss codes and reconstruction.In this section, we recall an algorithm for reconstruct-
ing a planar diagram from its Gauss code. This algorithm also detects non-planar codes. We
shall see that for a planar oriented Gauss code, the orientation signs in the code sequence
are determined up to a small number of choices. Such sign sequences will be calledstandard
(with the more technical definition to follow).

We shall prove the following Theorem.

THEOREM 2. If K is a virtual knot whose underlying Gauss code is planar and whose sign
sequence is standard, then K is equivalent to a classical knot.

The fundamental problem in Gauss codes is to provide an algorithm for determining whether
a given code can be realized by a planar shadow.

We will explain the detection and reconstruction algorithms for single component codes.
The first necessary condition for planarity for a single component code is that it be evenly
intersticed, as we have already remarked in Lemma1.

If a codeg is planar, then a corresponding code for such an evenly paired Jordan curve can
be produced as follows: let the labels ing be 1, 2, . . . ,n. Starting withi = 1, reverse the order
of labels in between the two appearances of i.Do this successively usingi = 1,2, . . . ,n. Let
g∗ be the resulting code.

In Figure 7 we see that the crossings of a planar shadowE can be smoothed to obtain
a single Jordan curve in the plane. This Jordan curve can be seen as a circle with doubly
repeated labels around its circumference so that some labels are paired by arcs inside the
circle, and the remaining labels are paired by arcs outside the circle. The corresponding code
is g∗ as defined above. In this form of pairing,no two pairing arcs intersect one another.

REMARK . In the case of multiple component codes, the algorithm for constructingg∗ is
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modified as follows: suppose that the two appearances ofi occur in different components of
the code, so that the code to be modified has the form

h = iα/ iβ/R,

where we have written the two components as adjacent code segments and started each withi
(possible by rearrangement and cyclic permutation of the segments). HereR denotes the rest
of the code sequences. Then replaceh by

h′ = iαiβ/R,

whereβ denotes the rewrite ofβ in reverse order. Note that the two components are amalga-
mated into one as a result of this process. Thus, after applying this procedure successively to
the labels in the code, we obtain a single code sequenceg∗ from a given multi-component code
sequenceg. For example, ifg = 1234/1536/2546, then we obtain the following sequence of
partial codes on the way tog∗ :

g= 1234/1536/2546 g′ = 12341635/2546= 23416351/2546

g′′ = 234163512645 g′′′ = 236143512645

g′′′′ = 236146215345 g′′′′′ = 236146215435

g∗ = 236416215435.

We leave it for the reader to check thatg∗ is dually paired.

We have the Lemma below.

LEMMA 3. If g is a planar Gauss code, then g∗ is dually paired.

PROOF. The (easy) proof is omitted. See [3]. 2

Figure7 illustrates this situation and shows how the desired pairing can be written directly
on the codeg∗ by pairing labels above and below the typographical line.

LEMMA 4. If an evenly intersticed Gauss code g has g∗ dually paired, then g is the Gauss
code of a planar shadow.

PROOF. Figure8 shows how to reconstruct a shadow from anyg satisfying the hypotheses
of the Lemma. 2

These lemmas form the essentials of the reconstruction theory for planar Gauss codes.

DEFINITION. A Gauss codeg is said to beprimeif it cannot be written as the juxtaposition
of two Gauss codes on disjoint collections of labels. A non-prime code is said to becomposite.
For example, 123123 is prime but 121234543 is composite since it is the juxtaposition of 1212
and 34543.

In reconstructing a shadow from a Gauss code, there is a choice of local orientation of
the first crossing in the code. From then on, the local orientations are determined by the
reconstruction algorithm. See Figure8 for an example of the procedure. Once we specify
the local orientations in the code, the corresponding signs of the crossings are determined by
whether there is anO or aU in the code. Thus up to these initial choices of orientation, the
signs in anO/U code are all determined if the code is planar. It is this result that gives the
proof of Theorem2.
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FIGURE 8. Reconstruction from a Gauss code.

c = bab 1 c = b 1 ab

b b

a a

FIGURE 9. Generators and relations for the fundamental group.

PROOF OFTHEOREM 2. Note that the reconstruction algorithm will give a planar embed-
ding for this code with the same local orientations as those specified in the virtual diagram. In
fact, we can assume that the planar positions of the crossings in the embedded diagram and the
virtual diagram are identical (up to a global translation if comparison is desired). Now locate
those arcs in the original diagram that involve virtual crossings and move them one-by-one
into the positions indicated by the embedding. To accomplish this, start at the beginning of
the code. Say the code readsg = a1a2 . . .ai ai+1 . . .an. In the virtual diagram, there may be a
series of virtual crossings betweena1 anda2 but there will be no real crossings since the code
is given byg. Therefore, the arc froma1 to a2 can be replaced (by virtual equivalence) to its
position in the embedded diagram. Continue this process sequentially forai ai+1 and the re-
sult is an equivalence through the virtual category of the original diagram with the embedded
classical diagram. This completes the proof of Theorem2. 2

4. FUNDAMENTAL GROUP, CRYSTALS, RACKS AND QUANDLES

The fundamental group of the complement of a classical knot can be described by generators
and relations, with one generator for each arc in the diagram and one relation for each crossing.
The relation at a crossing depends upon the type of the crossing and is either of the form
c = b−1ab or c = bab−1 as shown in Figure9.

We define the groupG(K ) of an oriented virtual knot or link by this same scheme of gen-
erators and relations. Anarc of a virtual diagram proceeds from one classical undercrossing
to another (possibly the same) classical undercrossing. Thus no new generators or relations
are added at a virtual crossing. It is easy to see thatG(K ) is invariant under all the moves for
virtuals and hence is an invariant of virtual knots.

There are virtual knots that are non-trivial but have a trivial fundamental group. (We say
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FIGURE 10. The involutory quandle.

that the fundamental group of a knot is trivial if it is isomorphic to the infinite cyclic group.)
The virtualK ′ in Figure4 is such an example. We shall show thatK ′ is a non-trivial virtual
in the next section by using a generalization of the bracket polynomial.

A generalization of the fundamental group called the quandle, rack or crystal (depending
on notations and history) also assigns relations (in a different algebra) to each crossing. The
quandle generalizes to the virtual category. We first discuss the involutory quandle,I Q(K ),
for a (virtual) knot or linkK . The I Q(K ) does not depend upon the local orientations of the
diagram and it assigns to each crossing the relationc = a ∗ b as in Figure10.

The operationa ∗ b is a non-associative binary operation on the underlying set of the quan-
dle, and it satisfies the following axioms:

(1) a ∗ a = a for all a.
(2) (a ∗ b) ∗ b = a for all a andb.
(3) (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c) for all a, b, c.

The algebra under these axioms with generators and relations as defined above is called the
involutory quandle,I Q(K ). It is easy to see that theI Q(K ) is well-defined forK virtual.

An important special case ofI Q(K ) is the operationa ∗ b = 2b − a wherea andb are
elements of a cyclic groupZ/nZ for some modulusn. In the case of a knotK , there is a
natural choice of modulusD(K ) = Det(M(K )) whereM(K ) is a minor of the matrix of
relations associated with the set of equationsc = 2b− a. This is called the determinant of
the knot, in the classical case, and we shall call it the determinant of the virtual knot. IfK
is virtual, then|D(K )| is an invariant ofK . The virtual knot labelledK in Figure4 has a
determinant equal to 3. The non-triviality of the determinant shows that this knot is knotted
and, in fact, that it has non-trivial fundamental group.

Another example of an involutory quandle is the operationa ∗ b = ba−1b. In classical knot
theory, this yields the fundamental group of the two-fold branched covering along the knot.
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Here is a useful lemma concerning theI Q for virtuals.

LEMMA 5.
I Q(Kvxv) = I Q(Kx),

where x denotes a crossing in the diagram K,vxv denotes that x is flanked by virtuals,
and Kx denotes the diagram obtained by smoothing the flanking virtuals, and switching the
intermediate crossing.

In other words, the I Q for a classical crossing flanked by two virtual crossings is the same
as the I Q of the diagram where the two virtual crossings are smoothed and the classical
crossing is switched.

PROOF. See Figure10. 2

REMARK . In Figure10 we illustrate thatI Q(K ) = I Q(T) whereK is the virtual knot
also shown in Figure6 andT is the trefoil knot.

Finally, we discuss the full quandle of a knot and its generalization to virtuals. For this
discussion, the exponential notation of Fenn and Rourke [4] is convenient. Instead ofa ∗ b,
we writeab and assume that there is an operation of order two

a −→ a,

so that
a = a,

and for alla andb
ab = ab.

This operation is well defined for alla in the underlying setQ of the quandle.
By definition

abc
= (ab)c

for all a, b andc in Q.
The operation of exponentiation satisfies the axioms:

(1) aa
= a.

(2) abb
= a.

(3) a(b
c)
= acbc.

It follows that the set of the quandle acts on itself by automorphisms

x −→ xa.

This group of automorphisms is a representation of the fundamental group of the knot. Note
that if we defineab by the formula

ab
= bab−1

and
b = b−1,

then we obtain the fundamental group itself as an example of a quandle. Therack [4] or crys-
tal [5] is obtained by eliminating the first axiom. This makes the rack/crystal an invariant of
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FIGURE 11. Change of relations for the full quandle.

framed knots and links. The three axioms correspond to invariance under the three Reidemeis-
ter moves.

If we now compare Lemma5 with its possible counterpart for the full fundamental group
or the quandle, we see that it no longer holds. Figure11 shows the new relations in the quan-
dle that are obtained after smoothing the two virtual crossings and switching the classical
crossing. While the quandle of the simplified diagram is no longer isomorphic to the original
quandle, the fact that we can articulate the change is often useful in computations.

EXAMPLE . Consider the virtual knotK of Figure6. We have seen thatK has the same
I Q as the trefoil knot. However, the quandle and fundamental group ofK are distinct from
those of the trefoil knot, andK is not equivalent to any classical knot. To see this, consider
theAlexander quandle[5] defined by the equations

ab
= ta+ (1− t)b

and
ab
= t−1a+ (1− t−1)b.

This quandle describes a module (the Alexander module)M over Z[t, t−1
]. In the case of

the virtual knotK in Figure6, we have the generating quandle relationsac
= b, ba

= c,
cb
= a. This results in the Alexander module relationsb = ta+ (1− t)c, c = tb+ (1− t)a,

a = t−1c+ (1− t−1)b. From this, it is easy to calculate that the moduleM(K ) = {0,m,2m}
for a non-zero elementm with 3m = 0 andtm = 2m. Thus, the Alexander module forK is
cyclic of order three. Since no classical knot has a finite cyclic Alexander module, this proves
that K is not isotopic through virtuals to a classical knot.

Finally, it should be remarked that the full quandleQ(K ) classifies a classical prime unori-
ented knotK up to mirror images. By keeping track of alongitudefor the knot, one obtains
a complete classification. In the context of the quandle, the longitude can be described as the
automorphism

λ : Q(K ) −→ Q(K )

defined by the formula
λ(x) = xa

ε1
1 a

ε2
2 ...a

εk
k ,
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where{a1,a2, . . . ,ak} is an ordered list of quandle generators encountered (as one crosses
underneath) as overcrossing arcs as one takes a trip around the diagram. Theε denotes whether
the generator is encountered with positive or negative orientation, andxε denotesx if ε = 1
andx if ε = −1. For a given diagram, the longitude is well defined up to cyclic re-ordering of
this list of encounters. Exactly the same definition applies to virtual knots. It is no longer true
that the quandle plus longitude classifies a virtual knot, as our examples of knotted virtuals
with a trivial fundamental group show.

On the other hand, we can use the quandle to prove the following result. This proof is due
to Goussarov, Polyak and Viro [9].

THEOREM 6. If K and K′ are classical knot diagrams such that K and K′ are equivalent
under extended virtual Reidemeister moves, then K and K′ are equivalent under classical
Reidemeister moves.

PROOF. Note that longitudes are preserved under virtual moves (adding virtual crossings
to the diagram does not change the expression for a longitude). Thus, an isomorphism from
Q(K ) to Q(K ′) induced by extended moves preserves longitudes. Since the isomorphism
class of the quandle plus longitudes classifies classical knots, we conclude thatK andK ′ are
classically equivalent. This completes the proof. 2

REMARK . We would like to see a purely combinatorial proof of Theorem6.

4.1. The GPV example and a generalization.We end this section with a variation of an
example [6, 9] that shows that it is possible to have a virtual knotK with Q(K ) not isomorphic
with Q(K ∗) whereK ∗ is the mirror image ofK . In other words, there aretwo quandles, or
two fundamental groups associated with any given virtual knot!

This example is a slightly different take on an observation in [9]. Let K be a given (virtual)
diagram, drawn in the plane. Pick the diagram up and turn it over (note that the crossings
change diagrammatically, but correspond to the result of physically turning over the layout of
criss-crossing strands with welds at the virtual crossings). LetFlip(K ) denote this overturned
diagram. Define a new quandleQ∗(K ) by the formulaQ∗(K ) = Q(Flip(K )). Goussarov,
Polyak and Viro take their ‘other’ fundamental group to be the one defined by generators and
relations obtained by ‘looking at the knot from the other side of the plane’. At the quandle
level this is the same as takingQ∗(K ). It is easy to see thatQ∗(K ) is isomorphic to Q(K ∗).

(Just note that ifc = ab, thenc = ab = ab. Use this to check that the two quandles are
isomorphic through the mappinga −→ a taking one to the other.) Thus our version of this
example is mathematically equivalent to the GPV version.

In Figure12, the reader will findK andK ∗ with labelled arcsa, b, c, d. In K , the quandle
relations area = bd, b = cd, c = db, d = ab. The three-coloring ofK in Z/3Z with a = 0,
b = 2, c = 0, d = 1 demonstrates that this quandle, and hence the fundamental group ofK ,
is non-trivial. On the other hand,K ∗ has quandle relationsa = aa, c = bc, d = cc, a = da,
giving a trivial quandle. ThusK is distinguished fromK ∗ by the quandle. This example also
shows thatK has a non-trivial Alexander polynomial (using the fundamental group to define
the Alexander polynomial—there is more than one Alexander polynomial for virtuals) butK ∗

has an Alexander polynomial equal to 1.
We generalize this example by considering the 1–1 tangleW shown in Figure13. Replacing

a straight arc in a knot diagram byW does not affect the quandle, while replacing by its
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FIGURE 13. The 1–1 tangleW.

mirror imageW∗ changes the quandle relations in a generally non-trivial way (as in the GPV
example). Insertion ofW into knot diagrams produces infinitely many examples of pairs of
virtual knots with the same quandle but different Jones polynomials. This last statement will
be verified in the next section.

5. BRACKET POLYNOMIAL AND JONESPOLYNOMIAL

The bracket polynomial [7] extends to virtual knots and links by relying on the usual for-
mula for the state sum of the bracket, but allowing the closed loops in the state to have virtual
intersections. Each loop is still valued atd = −A2

− A−2 and the expansion formula

〈K 〉 = A〈Ka〉 + A−1
〈Kb〉

still holds whereKa andKb denote the result of replacing a single crossing inK by smooth-
ings of typea and typeb as illustrated in Figure14.

We must check that this version of the bracket polynomial is invariant under all but the first
Reidemeister move (see the moves shown in Figure2). Certainly, the usual arguments apply
to the moves of type (a). Moves of type (b) do not disturb the loop counts and so leave bracket
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FIGURE 15. Type (c) invariance of the bracket.

invariant. Finally, the move of type (c) receives the verification illustrated in Figure15. This
completes the proof of the invariance of the generalized bracket polynomial under move (c).

We define the writhew(K ) for an oriented virtual to be the sum of the crossing signs—just
as in the classical case.

The f -polynomial is defined by the formula

fK (A) = (−A3)−w(K )〈K 〉(A).

The Laurent polynomial,fK (A), is invariant under all the virtual moves including the classical
move of type I.

REMARK . It is worth noting thatfK can be given a state summation of its own. Here we
modify the vertex weights of the bracket state sum to include a factor of−A−3 for each
crossing of positive sign, and a factor ofA+3 for each factor of negative sign. It is then easy
to see that

fK+ = −A−2 fK0 − A−4 fK∞ , fK− = −A+2 fK0 − A+4 fK∞,

whereK+ denotesK with a selected positive crossing,K− denotes the result of switching
only this crossing,K0 denotes the result of making the oriented smoothing of this crossing,
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FIGURE 16. Removal of flanking virtual crossings.

and K∞ denotes the result of making an unoriented smoothing at this crossing. The states
in this oriented state sum acquire sites with unoriented smoothings, but the procedure for
evaluation is the same as before. For each state we take the product of the vertex weights
multiplied by d||S||−1 whered = −A2

− A−2 and ||S|| denotes the number of loops in the
state. ThenfK is the sum of these products, one for each state.

The following Lemma makes virtual calculations easier.

LEMMA 7. 〈Kvxv〉 = 〈Kx〉 where x denotes a crossing in the diagram K,vxv denotes
that x is flanked by virtuals and Kx denotes the diagram obtained by smoothing the flanking
virtuals and leaving the crossing the same.

PROOF. The proof is shown in Figure16. 2

Note that this result has the opposite form from our corresponding lemma concerning the
involutory quandleI Q(K ). As a result we obtain an example of a virtual knot that is non-
trivial (via the I Q) but hasfK = 1. Hence we have a virtual knot K with a Jones polynomial
equal to 1.The example is shown in Figure17. Note that in Figure10 we illustrated that
this K has the same involutory quandle as the trefoil knot. We saw in Section 4 thatK is not
equivalent to a classical knot.

We now compute the bracket polynomial for our previous example with a trivial fun-
damental group and we find that〈K ′〉 = A2

+ 1 − A−4 and fK ′ = (−A3)−2
〈K ′〉 =

A−4
+ A−6

− A−10. ThusK ′ has a non-trivial Jones polynomial. See Figure18.
In Figure18, we also indicate the result of placing the tangleW, discussed in Figure13,

into another knot or link. Since this is the same as taking a connected sum withK ′, it has
the effect of multiplying the bracket polynomial byA2

+ 1− A−4. Thus, if L is any knot
or link and K ′ + L denotes the connected sum ofK ′ along some component of L, then
〈K ′+ L〉 = (A2

+1− A−4)〈L〉 while Q(K ′+ L) = Q(L) (as we verified in the last section).
Thus for any knot L, successive connected sums withK ′ produces an infinite family of distinct
virtual knots, all having the same quandle (hence the same fundamental group).

Finally, we note that if the knot is given as embedded inSg× I for a surface of genusg, and
if its virtual knot diagramK is obtained by projecting the diagram onSg into the plane, then
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〈K

K

〉 = 〈U

U

〉 = −A3

FIGURE 17. A knotted virtual with a trivial Jones polynomial.

〈K 〉 computes the value of the extension of the bracket to the knots inSg × I where all the
loops have the same valued = −A2

− A−2. This is the first-order bracket for link diagrams
on a surface.

In Figure4 we illustrated the non-trivial knot K with a trivial Jones polynomial as embedded
in S1 × I . This knot inS1 × I is actually not trivial as can be seen from the higher Jones
polynomials that discriminate loops in different isotopy classes on the surface.

In Figure 19 is another example of a virtual knotE and a corresponding embedding in
S1× I . In this case,E is a trivial virtual knot (as is shown in Figure3), but the embedding of
E in S1 × I is non-trivial (even though it has a trivial fundamental group and trivial bracket
polynomial). The non-triviality of this embedding is seen by simply observing that it carries a
non-trivial first homology class in the thickened torus. In fact, if you expand the state sum for
the bracket polynomial and keep track of the isotopy classes of the curves in the states, then
the bracket calculation also shows this non-triviality by exhibiting as its value a single state
with a non-contractible curve.

Virtual knot theory provides a convenient calculus for working with knots inSg × I . The
virtuals carry many properties of knots inSg× I that are independent of the choice of embed-
ding and genus. This completes our quick survey of the properties of the bracket polynomial
and Jones polynomial for virtual knots and links. Just as uncolorable graphs appear when one
goes beyond the plane (for planar graph coloring problems), so knots of unit Jones polynomial
appear as we leave the diagrammatic plane into the realm of the Gauss codes.

6. QUANTUM L INK INVARIANTS

There are virtual link invariants corresponding to every quantum link invariant of classi-
cal links. However, this must be said with a caveat: we do not assume invariance under the
first classical Reidemeister move (hence these are invariants of regular isotopy) and we do
not assume invariance under the flat version of the first Reidemeister move in the (b) list of
virtual moves. Otherwise, the usual tensor or state sum formulas for quantum link invariants
extend to this generalized notion of regular isotopy invariants of virtual knots and links. In
this section, we illustrate this method by taking a different generalization of the bracket that
includes virtual framing. We apply this new invariant to distinguish a virtual knot that has
Jones polynomial equal to one and a trivial fundamental group.

In order to carry out this program, we quickly recall how to construct quantum link invari-
ants in the unoriented case. See [5] for more details. The link diagram is arranged with respect
to a given ‘vertical’ direction in the plane so that perpendicular lines to this direction intersect
the diagram transversely or tangentially at maxima and minima. In this way, the diagram can
be seen as constructed from a pattern of interconnected maxima, minima and crossings—as
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〉 = (A2 + 1 − A
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−4

A−1

A−1
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〉

〈K ′
K ′

〉 = A2 + 1 − A−4

FIGURE 18. Calculation of〈K ′〉.

illustrated in Figure20.
As illustrated in Figure20, we associate the symbolsMab andMab to minima and maxima,

respectively, and the symbolsRab
cd and R

ab
cd to the two types of crossings. The indices on

these symbols indicate how they are interconnected. Each maximum or minimum has two
lines available for connection corresponding to the indicesa andb. EachR, R has four lines
available for connection. Thus, the symbol sequence

T(K ) = MadMbcMekM lh Rab
ef Rcd

ghR
f g
kl

represents the trefoil knot as shown in Figure20. Since repeated indices show the places of
connection, there is no necessary order for this sequence of symbols. I callT(K ) anabstract
tensorexpression for the trefoil knotK .

By taking matrices (with entries in a commutative ring) for theMs and theRs, it is possible
to re-interpret the abstract tensor expression as a summation of products of matrix entries
over all possible choices of indices in the expression. Appropriate choices of matrices give
rise to link invariants. IfK is a knot or link andT(K ) its associated tensor expression, let
Z(K ) denote the evaluation of the tensor expression that corresponds to the above choice of
matrices. We will assume that the matrices have been chosen so thatZ(K ) is an invariant of
regular isotopy.

The generalization of the quantum link invariantZ(K ) to virtual knots and links is quite
straightforward. We simply ignore the virtual crossings in the diagram. Another way to put
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E

FIGURE 19. A knot inS1× I with a trivial Jones polynomial.

this is that we take each virtual crossing to be represented by crossed Kronecker deltas as in
Figure20. The virtual crossing is represented by the tensor

Vab
cd = δ

a
dδ

b
c .

Here,δa
b is the Kronecker delta. It is equal to 1 ifa = b and is equal to 0 otherwise. (Note that

the Kronecker delta is well defined as an abstract tensor.)
In extendingZ(K ) to virtual knots and links by this method, we cannot hope to obtain in-

variance under the type I virtual move. In fact, as Figure20 shows, the presence of a virtual
curl is indexed by the transposeMba of the tensorMab. Thus we definevirtual regular iso-
topy to be invariance under all the extended Reidemeister moves for virtuals except type (a)I
and (b)I. It is easy to see thatZ(K ) extends in this way whenZ(K ) is an invariant of regular
isotopy for classical links.

In particular, the bracket polynomial for classical knots is obtained by letting the indices
run over the set{1, 2} with Mab

= Mab for all a andb andM11 = M22 = 0 while M12 = i A
andM21 = −i A−1 wherei 2

= −1. TheRs are defined by the equations

Rab
cd = AMabMcd + A−1δa

cδ
b
d,

R
ab
cd = A−1MabMcd + Aδa

cδ
b
d.

These equations for theRs are the algebraic translation of the smoothing identities for the
bracket polynomial. Then we have:

THEOREM 8. With Z(K ) defined as above and K a classical knot or link, Z(K ) = d〈K 〉
where d= −A2

− A−2.

PROOF. See [5]. 2

For this extension ofZ(K ) to virtuals, there is a state summation similar to that of the
bracket polynomial. For this, letC be a diagram in the plane that has only virtual crossings.
View this diagram as an immersion of a circle in the plane. Let rot(C) denote the absolute
value of the Whitney degree ofC as a immersion in the plane. (SinceC is unoriented, only
the absolute value of the Whitney degree is well-defined.) The Whitney degree of an oriented
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FIGURE 20. Quantum link invariants.

plane immersion is the total algebraic number of 2π turns of the unit tangent vector to the
curve as the curve is traversed once. Letd(C) be defined by the equation

d(C) = (−1)rot(C)(A2 rot(C)
+ A−2 rot(C)).

Let S be a state of a virtual diagramK obtained by smoothing each classical crossing inK .
Let C ∈ Smean thatC is one of the curves inS. Let 〈K |S〉 denote the usual product of vertex
weights (A or A−1) in the bracket state sum. Then:

PROPOSITION9. The invariant of virtual regular isotopy Z(K ) is described by the follow-
ing state summation:

Z(K ) =
∑

S

〈K |S〉
∏
C∈S

d(C),

where the terms in this formula are as defined above. Note that Z(K ) reduces to d〈K 〉 when
K is a classical diagram.

PROOF. The proof is a calculation based on the tensor model explained in this section. The
details of this calculation are omitted. 2

REMARK . The state sum in Proposition9 generalizes to an invariant of virtual regular
isotopy with an infinite number of polynomial variables, one for each regular homotopy
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FIGURE 21. D has unit a Jones polynomial and trivial fundamental group.

class of unoriented curve immersed in the plane. To make this generalization, letAn for
n = 0, 1, 2, 3, . . . denote a denumerable set of commuting independent variables. IfC is
an immersed curve in the plane, define Var(C) = An wheren = rot(C), the absolute value
of the Whitney degree ofC. We takeA1 = −A2

− A−2 as before, but the other variables are
independent of each other and ofA.

Now define the generalization ofZ(K ), denotedZ(K ), by the formula

Z(K ) =
∑

S

〈K |S〉
∏
C∈S

Var(C).

In this definition, we have replaced the evaluationd(C) by the corresponding variable
Var(C). In Figure20 we illustrate the result of calculatingZ(K ) for a knot K with a unit
Jones polynomial. The result is

Z(K ) = (−A−5)A1+ (A− A−3)A2
0.

Since the coefficients ofA1 and A0 are themselves invariants of virtual regular isotopy, it
follows, as we already knew, thatK is a non-trivial virtual. This non-triviality is detected
by our refinementZ(K ) of the bracket polynomial. A similar phenomenon of refinement of
invariants happens with other quantum link invariants. This will be the subject of a separate
paper.

We end this section with an application of Proposition9. Let D be the virtual knot diagram
shown in Figure21.

It is easy to see thatD has anf -polynomial equal to 1, and hence a Jones polynomial equal
to 1. Use Lemma7 to show that〈D〉 = −A3. D also has a trivial fundamental group and
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(a) (b)

(c)

FIGURE 22. Flat virtual moves.

quandle. IsD a non-trivial virtual knot? The answer is yes! It follows from the calculation of
Z(D). We omit the calculation, but give the result

Z(D) = A7
− A5

− 4A3
+ 2A+ A−1

− A−3.

It follows from this thatD cannot be regularly isotopic to a standard virtual curl form. Hence
D must be virtually knotted in the regular isotopy category. On the other hand, I do not yet
have a proof thatD is virtually knotted under the original definition that allows the addition
and removal of virtual framings. This example shows both the power and limitation of using
the quantum invariants to study virtual knots.

There should be a direct way to see thatD is knotted. LetE denote theshadowof the
diagramD. That is, replace the classical crossings inD with flat crossings. Regard the flat
crossings asdistinct from virtual crossings, so that we obtain the rules for virtual isotopy of
flat diagrams shown in Figure 22. By these rules, a flat diagram corresponds to an oriented
Gauss code without over- or undercrossing specifications. The virtual moves preserve the
Gauss code just as before.

E is illustrated in Figure21. Is E flat virtually equivalent to a circle with curls and virtual
curls? I conjecture that the answer is no. Simpler examples of this sort of irreducibility are
easy to produce. The diagramF in Figure21 is irreducible becauseZ(F)(1) = −2A0+ A2,
as is easy to compute.

These examples lead us to the following definition. We call theshadow codeof a dia-
gram the underlying Gauss code of that diagram without any specifications of orientation or
over/under-crossing. We say that a virtual diagram isalmost classicalif its shadow code is
planar.
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FIGURE 23. Moves for rigid vertex embeddings.

CONJECTURE. There does not exist a non-trivial almost classical virtual knot with both a
trivial fundamental group and trivial Jones polynomial.

7. VIRTUAL VASSILIEV INVARIANTS

We now study embeddings intoR3 (Euclidean three-space) of 4-valent graphs up torigid
vertex isotopy. In rigid vertex isotopy, one can think of each graphical vertex as a rigid disk.
The four graphical edges incident to this vertex are attached to the boundary of the disk at
four specific points. In a rigid vertex isotopy, the embedded edges of the graph can be iso-
toped freely, but the disks must move without deformation in the course of the isotopy. A
consequence of this definition [8] is that the diagrammatic moves shown in Figure23capture
rigid vertex isotopy just as the Reidemeister moves capture ambient isotopy. Figure23shows
only the move types that are added to the usual list of Reidemeister moves. Two graphs with
diagrammatic projectionsG1 andG2 are rigid vertex isotopic if and only if there is a series of
moves of this type joining the two diagrams.

In Figure 23 there is also illustrated the one addition to virtual moves that is needed to
complete the move set for rigid vertex isotopy of virtual knotted graphs. In this addition, an
arc with consecutive virtual crossings is moved to a new position across a rigid vertex. Here
we must make a distinction between the graphical rigid vertices and the virtual vertices in the
diagrams. Once this is done, we directly extend discussions of invariants of rigid vertex graphs
to invariants of virtual rigid vertex graphs. To see how this is done we will discuss invariants
obtained by insertion into the vertices of a graph. We shall always mean the extension to
virtual equivalence when we refer to ambient isotopy or to rigid vertex isotopy.

If one replaces each node of a (virtual) rigid vertex graphG with a tangle (possibly virtual)
to form a virtual linkK , then any rigid equivalence ofG induces a corresponding equivalence
of K . The consequence of this remark is that we can obtain invariants of rigid vertex graphs
from any invariant of (virtual) knots and links by taking a systematic choice of tangle insertion.
That is, if we have chosen tangle insertionsT1, . . . , Tn, let {v1, . . . , vm} denote the set of
vertices ofG and leta = (a1, . . . ,am) with 1 ≤ ai ≤ n denote a choice of tangle insertion
for each vertex ofG. Then letGa denote the result of inserting tangleTai at nodei in G.
Suppose thatR(K ) is an ambient isotopy invariant of virtual knots and linksK . Then define
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FIGURE 24. Vassiliev invariant identity.

an extension ofR to graphical imbeddings by the formula

R(G) =
∑

a

xa1 . . . xam R(Ga),

where{x j | j = 1, . . . ,m} is a new set of variables (or constants) independent of the variables
already present in the invariantR. Our discussion shows thatR(G) is an invariant of virtual
graph embeddingsG.

While it is of interest to explore this larger class of induced invariants, we shall restrict
ourselves to the generalization ofVassiliev invariants. A Vassiliev invariantv is an invariant
of rigid vertex (virtual) 4-valent graphs that satisfies

v(G|∗) = v(G|+)− v(G|−),

where(G|∗) denotes an oriented graphG with a chosen vertex∗. (G|+) denotes the result of
replacing the vertex∗ with a positive crossing and(G|−) is the result of replacing it with a
negative crossing. See Figure24. This is the traditional definition of a Vassiliev invariant and
we adopt it verbatim for virtuals.

DEFINITION. Let N(G) denote the number of vertices in the 4-valent graphG. A Vassiliev
invariantv is said to be ofgraphical finite type nif v(G) = 0 wheneverN(G) > n. Note that
this definition says nothing about the number of virtual crossings in the graphG.

Useful examples of virtual invariants of graphical finite type are obtained by taking the
coefficients ofxm in

FK (x) = fK (e
x),

whereFK (x) is extended to 4-valent graphs by the difference formula

FK (x)(G|∗) = FK (x)(G|+)− FK (x)(G|−).

The corresponding formula then holds for the coefficients ofxm in the power series expansion
of FK (x).

LEMMA 10. Let FK (x) = fK (ex) denote the power series resulting from substitution of ex

for the variable A in the Laurent polynomial fK (A) (defined in Section2). Write this power
series in the form

FK (x) =
∞∑

m=0

vm(K )x
m.

Then the numerical invariantsvk(K ) are of finite graphical type k.
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PROOF. Recall from Section5 that

fK+ = −A−2 fK0 − A−4 fK∞ ,

fK− = −A+2 fK0 − A+4 fK∞ .

It follows that

FK∗ = FK+ − FK−

= fK+(e
x)− fK−(e

x)

is divisible byx. Thus, ifG hasm nodes, thenFG is divisible byxm. This implies, for anyG,
thatvk(G) = 0 if k < m = N(G). This is exactly the statement thatvk is of finite graphical
typek. 2

PROPOSITION11. Let G be a graph with n vertices so that N(G) = n, configured as
a virtual diagram in the plane. Let(G|+) denote the diagram G with a specific crossing of
positive type and(G|−) the diagram identical to G except that the crossing has been switched
to one of negative type. Let(G|∗) denote the result of replacing this crossing by a graphical
vertex. Letv be a Vassiliev invariant of type n= N(G). Thenv(G|+) = v(G|−). Thus, a
Vassiliev invariant of type n is independent of the settings of the crossings (plus or minus) in
a diagram for G.

PROOF. v(G|+)−v(G|−) = v(G|∗) by the definition of a Vassiliev invariant. Butv(G|∗) =
0 since(G|∗) has(n+ 1) vertices andv is of typen. This completes the proof. 2

COROLLARY 12. If G andv are as in Proposition11, and G is a classical diagram (free of
virtual crossings), thenv(G) does not depend upon the classical embedding of G in R3 that
is indicated by the diagram.

PROOF. This follows directly from the switching independence shown in Proposition11.
2

For virtual Vassiliev invariants, one should not expect the analog of this corollary to hold,
but in fact it does hold for the virtual Vassiliev invariants induced fromfK (A). That is, we
shall show that the Vassiliev invariantsvn(G) in the seriesFK (x) depend only on the chord
diagram associated withG whenG is a virtual diagram withn graphical nodes. This is the
subject of the following subsection.

7.1. The Vassiliev invariants induced by the Jones polynomial.We shall use the Vassiliev
invariants that arise from the bracket polynomial and thef -polynomial. This is equivalent to
using the Vassiliev invariants that arise from the Jones polynomial. Letf (A) be any Laurent
polynomial with coefficients as in the formula below

f (A) = c1Ad1 + c2Ad2 + · · · + ck Adk ,

where the degrees are integers arranged so that

d1 ≤ d2 ≤ · · ·dk.
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Then

f (ex) = c1exd1 + c2exd2 + · · · + ckexdk

=

∞∑
n=0

(c1dn
1 + c2dn

2 + · · · + ckdn
k )x

n/n!.

Thus, if

F(x) = f (ex) =

∞∑
n=0

vnxn,

then
vn = (c1dn

1 + c2dn
2 + · · · + ckdn

k )/n!.

This gives a direct formula for the Vassiliev invariantsvn associated withf .
In particular, this gives us a direct method to read off the Vassiliev invariants associated

with a given evaluation of the normalized bracket polynomialfK . The invariantvn(G) is
determined by the coefficients offG(A) and the exponents ofA in this Laurent polynomial.

NOTATIONAL DISCUSSION. Let vn(K ) denote thenth Vassiliev invariant induced from
fK (A) as described in this section. LetG∗, G+, G− denote a triple of (virtual) graph dia-
grams that differ at the site of one rigid vertex (denoted∗) by replacement by either a positive
crossing (denoted+) or a negative crossing (denoted−). Let G0 andG∞ denote the oriented
and unoriented smoothings of this crossing. Note that since we can speak of the evaluation of
fG∞(A), it follows thatvn is defined for diagrams with non-oriented smoothings—one just
evaluates the state sum in the usual way with single reverse-oriented loops taking the usual
loop value of−A2

− A−2.

THEOREM 13. With notation as above, the following recursion formula holds for the Vas-
siliev invariantsvn(G).

vn(G∗) =
n−1∑
k=0

cn,k(vk(G0)+ 2n−kvk(G∞)),

where
(2n−k(1+ (−1)n−k+1)/(n− k)! = cn,k.

The value ofv0(K ) on a virtual diagram without graphical nodes depends only on the number
of components in the diagram, and is independent of the configuration of virtual crossings.
Specifically,

v0(K ) = (−2)µ(K )−1,

whereµ(K ) denotes the number of link components in K .

COROLLARY 14. The Vassiliev invariantsvn(G) in the series FK (x) depend only on the
chord diagram associated with G when G is a virtual diagram with n graphical nodes. Hence,
the weight systems for the invariantsvn(G) do not depend upon virtual crossings.

PROOF OFCOROLLARY 14. This follows directly from Theorem13 since the recursion
formula in that theorem computesvn(G) for a graphG with n nodes in terms ofv0(K ) for a
collection of virtual knots{K }. Sincev0 is independent of virtual crossings, so isvn(G). This
completes the proof. 2
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PROOF OFTHEOREM 13. Recall from Section5 that

fG+ = −A−2 fG0 − A−4 fG∞,

fG− = −A+2 fG0 − A+4 fG∞ .

Hence,

fG∗ = (A
2
− A−2) fG0 + (A

4
− A−4) fG∞ .

Now suppose that

fG0 =

∑
i

ai Ani

and that

fG∞ =
∑

i

bi Ami .

Then,

fG∗ =
∑

i

ai Ani+2
− ai Ani−2

+ bi Ami+4
− bi Ami−4.

Therefore

vn(G∗) = (1/n!)
∑

i

ai ((ni + 2)n − (ni − 2)n)+ bi ((mi + 4)n − (mi − 4)n).

The first part of Theorem13follows from this formula by a direct application of the binomial
theorem. For the second part, note that

v0(K ) = fK (1) = (−1)w(K )〈K 〉(1).

For A = 1, it is easy to see that the only effect of the matrix model of Section6 on the bracket
calculation is to multiply it by(−1)cv(K ) wherecv(K ) is the number of virtual crossings in
K . That is,

d〈K 〉(1) = (−1)cv(K )Z(K )(1),

whereZ(K )(1) is the matrix model of Section6 evaluated atA = 1.
In this matrix model, there is no difference (atA = 1) between the crossings and the vir-

tual crossings. They are both algebraically crossed Kronecker deltas. Consequently,Z(K ) =
Z(K ′) whereK ′ is the same diagram asK with all the virtual crossings replaced by (flat)
classical crossings. Then it follows from the regular isotopy invariance ofZ that Z(K ′)(1) =
(−2)µ(K )(−1)c(K

′) wherec(K ′) is the total number of crossings inK ′. Note that the value of
d = −2 whenA = 1. Hence

v0(K ) = (−1)w(K )(−1)cv(K )(−1)c(K
′)(−2)µ(K )−1.

Now we know thatw(K )+ cv(K ) is congruent modulo 2 toc(K ′). Therefore

v0(K ) = (−2)µ(K )−1.

This completes the proof of the theorem. 2
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v2(D1

D1

) = v2(D2

D2

) = −48

FIGURE 25.v2 dependence.

REMARK . An example for this theorem is thatv2 gives the value−48 for both of the
graphs shown in Figure25. Each graph has two graphical nodes. One graph represents a
virtual diagram inequivalent to any embedding of the other. The invariantsvn(G) themselves
depend on virtual crossings for the graphs with less thann nodes. In fact, in these intermediate
ranges, there is a dependency on infinitely many virtual diagrams, so that these invariants are
no longer as ‘finite’ as the classical Vassiliev invariants. In [9] there is formulated a more
restrictive notion of finite-type virtual invariants. Ourv2 from the Jones polynomial is a first
example of a finite-graphical-type invariant that is outside the scheme proposed by Goussarov,
Polyak and Viro. More work needs to be done to have a complete theory of virtual Vassiliev
invariants.

8. DISCUSSION

This completes our introduction to virtual knot theory. There is much that begs for further
investigation. We leave the following topics for sequels to this paper: the Alexander poly-
nomial (there are a diversity of definitions that differ on virtual knots), virtual braids, vir-
tual three-manifolds, Vassiliev invariants induced from quantum link invariants, more general
structure of Vassiliev invariants.

It should be remarked that the usual argument that induces Vassiliev invariants from quan-
tum link invariants produces virtual Vassiliev invariants from our natural extension of quantum
link invariants. Of course, we have to handle the virtual framing for these cases as was dis-
cussed in Section6. The matter of the virtual framing needs further thought since introducing
it means that we are no longer just considering abstract Gauss codes.

For general Vassiliev invariants, it is worth comparing our results with those of Goussarov,
Polyak and Viro [9]. The general notion of finite graphical type given here and their notion of
finite type suggest a unification not yet fully perceived.

Virtual braids is a subject very close to the ‘welded braids’ of Fenn, Rimanyi and Rourke [10].
In fact, their welded braids are a quotient of the category of virtual braids that are defined
through our approach. I am indebted to Tom Imbo for pointing out this connection. This topic
will be the subject of a separate paper.

This work began with an attempt to understand the Jones polynomial for classical knots by
generalizing that category. I hope that these considerations will lead to deeper insight into the
Jones polynomial and its relationship with the fundamental group and quandle of a classical
knot.
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