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Abstract

We consider the two problems of finding the maximum number of node disjoint triangles and edge disjoint triangles in an
undirected graph. We show that the first (respectively second) problem is polynomially solvable if the maximum degree of
the input graph is at most 3 (respectively 4), whereas it is APX-hard for general graphs and NP-hard for planar graphs if the
maximum degree is 4 (respectively 5) or more.
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1. Introduction the exact border between polynomial solvability and

NP-hardness (APX-hardness for the nonplanar case)
The problem of finding the maximum number of depending on the maximum degreeof

node or edge disjoint cycles in an undirected gréph LetG = (V, E) be a simple graph. &iangleof G

has several applications, for instance in computational is any induced subgraph 6f having precisely 3 edges

biology [2]. It is often the case that the maximum and 3 nodes. A triangld = ({a, b, ¢}, {ab, bc, ca})

degree ofG and/or the length of the cycles to be will be often denoted bya, b, c]. A family of triangles

found are bounded (e.g., both do not exceed 4) [2]. T1,..., Ty of G is called anode-packing of triangles

In this paper, we consider the problem of finding if T1,..., T} are node-disjoint and is called @&dge-

the simplest type of cycles, namelyiangles, in packing of triangles if T1,..., T, are edge-disjoint.

graphs with bounded degree, considering both the The size of the packing is equal ta. In this paper,

requirement that the triangles be node disjoint and we study the following two problems:

the requirement that they be edge disjoint. Addressing

both the planar and nonplanar case, we determineProblem 1 (Node-Digjoint Triangle Packing (NTP)).
Given a graphG, find a maximum size node-packing

 rS— of triangles inG.
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It is known that both NTP [7] and ETP [8] are
NP-hard. In particular, NTP is known to be NP-

hard also in the planar case. Moreover, NTP is p jmplies the existence of

known to be APX-hard [10] even for graphs with
maximum degree 4 [1]. As to the approximability of
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Hence, if both Q and P are maximization problems,
the existence of &71-)-approximation algorithm for
677 )-approximation
algorithm for Q.

In this paper, we will show the complexity of NTP

the two problems, a general result of [9] leads to a and ETP depending or(G). Specifically, in Sec-

polynomial-time(3/2 + ¢)-approximation algorithm
(for any ¢ > 0) for both problems, which is the best

tion 2 we prove that NTP (respectively ETP) can be
solved in polynomial time ifA(G) < 3 (respectively

approximation guarantee known so far. For the planar A(G) < 4), whereas in Section 3 we show that it is

case, [4] presents a _polynomial—time approximation APX-hard forA(G) = 4 (respectivelyA(G) = 5), and
scheme for NTP, which can be extended to handle in Section 4 we show that it is NP-harddf is planar

ETP as well [5].

As customary, we leé(v) denote the set of edges
incident with v € V and A(G) := max,ey |8(v)].
Given a maximization problem P, lept, (/) denote
the optimal solution value for some instanteof P
and, for a solutionS of I, let valp(Z, S) denote the
associated value. Given a constast (0, 1), a(l%g)—
approximation algorithm for P is an algorithm that,
applied to any instanckof P, runs in time polynomial
in the size off and produces a solution whose value is
at least(1 — ¢) - optp (). If such an algorithm exists,
P belongs to APX. Moreover, P is said to be ARrd
if the existence of a(l%g)-approximation algorithm
for P forany ¢ € (0, 1) would imply the existence of
a (rls)-approximation algorithm for any € (0, 1)
for all problems in APX. To show that P is APX-
hard, it suffices to show a special type of polynomial-
time reduction from some problem Q already known
to be APX-hard to P. The type of reduction used
most frequently is the L-reduction [1]. Anrreduction
from Q to P consists of a pair of polynomial-time
computable functionsgf, g) such that, for two fixed
constantsx and 8: (a) f maps input instances of Q
into input instances of P; (b) given a Q-instankte
the corresponding P-instang& /), and any feasible
solution S for f(I), g(I,S) is a feasible solution
for the Q-instancd; (c) |opty (f(1))| < e|opty (1)]
for all 7, and (d) |opt, (1) — valp(1,g(1, S))| <
Bloptp (f (1)) — valp(f(),S)| for eachl and for
every feasible solutiof for f(1). From this definition
it follows that the relative errors are linearly related,
ie.,

lopty (1) —valg(1,g(1, )l
opty (1)
loptp (f (1) —valp(f (1), S)
optp (f (1)) '

<op

andA(G) = 4 (respectivelyA(G) = 5). As mentioned
above, the APX-hardness of NTP fat(G) = 4
was already known. Generally, the results for ETP
in this paper are slightly more elaborated than the
corresponding results for NTP. Therefore, for the sake
of presentation, we will show the results for NTP first.

2. Polynomial solvability

In general, wheld; is not connected, both problems
naturally decompose onto the connected components
of G. Another natural reduction for both NTP and
ETP consists of deleting the edges which do not
belong to any triangle. Hence, we restrict our attention
to reduced graphsG, that are connected and where
every edge belongs to some triangle.

Proposition 2.1. NTP is polynomially solvable for
A(G) £ 3.

Proof. Consider a reduced grapfi. If A(G) = 2,
thenG is a triangle. We next show that, £(G) = 3,
then G contains 4 nodes, being either B4 or a
diamond (aK4 without an edge), completing the
proof.

Let v be a node of degree 3 and let, v, v3 be
the neighbors ob. Sincewvvi, vvy andvvz are all
contained into some triangle, and since every triangle
containinguvy; (i =1, 2, 3) must contain precisely one
of the edges ins(v) \ {vv;}, then we can assume
without loss of generality that1v, and vovz both
belong toE(G). Now two cases are possible.dfvs
also belongs t& (G), thenG is a K4, since no more
edges can depart from the four nodes considered.
Otherwise,v1 (and, by symmetryys), has degree 2
in G. Indeed, for any further nodeof G, if viz were
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in E(G), then no triangle oG could contain it, since
nodesv and vy already have three neighbors other
thanz. O

In order to extend the above result for ETP, we
need one more reduction that is valid only for this
problem. Consider a nodeand assumé(v) can be
partitioned ad. U R so that no triangle of; contains
both an edge in. and an edge irR. The reduction
consists of replacing node with two new nodes;,
andvg, with 8§(vy) := {vru: vu € L} and§(vg) :=
{vgw: vw € R}. We call this reductiomsplitting on v,
and calledge reduced a graphG which is reduced and
for which no splitting can be performed.

Proposition 2.2. ETP is polynomially solvable for
A(G) < 4.

Proof. Consider an edge reduced gra@ghThe case
A(G) < 3 is identical to the node disjoint case
addressed in the proof of Proposition 2.1. Assume
thereforeA(G) = 4.

We define theauxiliary graph Ag = (7, F), con-
taining one node for each triangle 6f and where two
nodes are adjacent if and only if the corresponding tri-
angles share an edge ¢h Finding a maximum inde-
pendent set iM¢ is the same as solving ETP @n
We next show tha#i; is eitherclaw free or contains
a constant number of nodes.chaw is a node induced
subgraph with node¥, T1, T>, T3 and edged'T; for
i =1,2,3. Since maximum independent set can be
solved in polynomial time for claw-free graphs [12],
the proof follows.

Let nodeT € 7 and its neighbordy, 7> and T3
induce a claw inAg. The corresponding situation in
G is the following:T = [v1, v2, v3], T1 = [w1, v2, V3],

To = [v1, w2, v3], T3 = [v1, v2, w3]. We claim that
G contains only nodesy, v, v3, w1, wz, w3. Indeed,
nodesus, vo, v3 already have degree 4 G and any
possible edgavix with x ¢ {v1, v2, v3, w1, w2, w3}

cannot be in a triangle along with; v or along with
wiv3. O

3. APX-hardnessfor nonplanar graphs

For the APX-hardness proofs, the reductions are
from MAXx-2-SaT-3, and their structure is similar to
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the reductions in [7,10] to prove the NP- and APX-
hardness of NTP (see also [6]). In particular, in this
section and the next one the general idea of the
reductions from a satisfiability problem is fairly simple
and always the same. The only things that change and
have to be defined with some care are the gadgets
associated with clauses and Boolean variables. As
already mentioned, Proposition 3.1 below is already
proved in [10]. However, for the sake of presentation,
we give an explicit proof here, since this proof is
similar to (and simpler than) those of the other results
in this section and the next one.

The input to MAX-2-SAT-3 is a Boolean for-
mulag in conjunctive normal form with clauses :=
{c1,...,cm}, iInwWhich each clause is th@r of at most
2 literals. Each literal is a variable or the negation of
a variable taken from a ground set of Boolean vari-
ablesX :={x1, ..., x,}, with the additional restriction
that each variable appears in at most 3 of the clauses,
counting together both positive and negative occur-
rences. M\x-2-SAaT-3 calls for a truth assignment that
satisfies as many clauses as possible. It is known that
MAX-2-SaT-3 is APX-hard [1,3]. We letn; denote
the number of occurrences gf. Without loss of gen-
erality we can assume { m; < 3, for if x; appears
only in one clause we can set it to the value which sat-
isfies the clause.

Proposition 3.1. NTP is APX-hard, even for A(G)
=4,

Proof. We will show how to transform a Xx-2-
SaT-3 instancey into a graphG(¢) in such a way
that every truth assignment fap that satisfiesk
clauses can be transformed into a packingGafy)

of value Y_"_;m; + k, and vice versa. Noting that

> i_ym; =2m and the optimal Mx-2-SAT-3 value

is at leastm/2, since at least half of the clauses
can be satisfied by a simple greedy approach, shows
that this is an L-reduction witle =5 and g = 1.

This implies that any(l%g)-approximated solution

of NTP onG(¢) can be transformed into 61_%)-
approximated solution of kX -2-SAT-3 ong.

To each clause; we associate &est component,
shown in Fig. 1. The left-hand side shows the test
component when the clause has two literals, while the
right-hand side shows it when the clause has one lit-
eral. The test component of a clause with two liter-
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@ @ been involved in any identification. This completes the
@ G construction ofG (¢). Note thatA (G (¢)) = 4.
@ e 6 A maximal packingP is calledcanonical if, for

each truth setting component, it contains either all
Fig. 1. To the left, the test component associated with the clayse even tne}ngles Or_ all odd triangles of the component.
when it has two literals and, to the right, when it has one literal, in A canonical packing® naturally corresponds to a truth
the reduction of Proposition 3.1. assignment in the following way. # contains a trian-
gle of the test component ef; this means that; is
“satisfied” by P. If P contains all even (respectively
odd) triangles of the truth setting componenkpthis
means that; is “set to true (respectively, false)” b
P. Therefore a canonical packing 6f(¢) containing
> '_ym; + k triangles corresponds to a truth assign-
ment ofy satisfying exactly clauses, and vice versa.
The proof is concluded by showing that, given a
packingP, we can find in polynomial time a canonical
: ; packing which is at least as large. Indeed, focus on
H : a truth setting componenft of P associated with
variablex;. There are two cases to consider. First, if
Fig. 2. Thg truth setting component associated with variapls all triangles of C that are in the packing have the
the reduction of Proposition 3.1. same parity, say even, then adding to the packing all
even triangles inC that are missing, and possibly
als consists of twdnangl%[ s j, ]] and[sj, P j] removing the triangles correspondingxoin the test
with noder! in common. The test component associ- components in whichx; appears negated, yields a
ated with a clause with one literal consists of a single packing which is at least as large & Otherwise,
tnangle[ , j, . the packing contains both even and odd triangles.
To each variablex; is associated aruth setting We consider the case:; = 3 (the casem; = 2
component depending onm;, shown in Fig. 2. The  being analogous and simpler). Suppose without loss of
component consists ofr2 trlanglesT], where, for ~ generalityx; appears negated in clauseand positive
j=1...omi Toj1= [“w ; 17”{] and Ty = |n' clause§c2 andcs. Add_lng to the packmg all even
j triangles inC that are missing and removing all odd
(b} ul . v; ] all indices being moduler;. Theparity  an5jes and, possibly, the triangle corresponding to
of T; is simply the parity ofj. Clearly, at most half of

. L x; in the test component of clauseg, yields a packing
the tr_|angles in this component can belong to a same ek js at least as large & Note that in this case it
packing, and this is possible only if they have all the

X is crucial thatn; <3 foralli. O
same parity.
The graphG(e) is obtained by connecting test  prgpogtion 3.2. ETP is APX-hard, even for A(G)
and truth setting components as follows. ketbe a —5.

clause with two literals and let;, xo be the variables

which occur inc;. If x; occurs positive (respectively  prqof, Analogous to the proof of Proposition 3.1,
negated) inc;, then identify noder; of the test  changing the definition of;. In particular, we will
component with a nodef (respectivelybf.‘) of the show an L-reduction witlx = 21 andg = 1. The test
truth setting component of; which has not yet been  component associated with each claugds shown

involved in any identification. Similarly, let; be in Fig. 3. Specifically, the test component of a clause
a clause with one literak;. If x; occurs positive with two literals consists of twariangles [tl 1 2]
(respectively negated) in;, then identify node; of and [f,z» , s2] with edgests2 in common, whereas
the test component with nodé (respectivelyb’{) of the test component associated with a clause with one

the truth setting component aff which has not yet literal consists of a single trlang[el s], ]]
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Fig. 3. To the left, the test component associated with the clause
when it has two literals and, to the right, when it has one literal, in
the reduction of Proposition 3.2.

Fig. 4. The truth setting component associated with variapls
the reduction of Proposition 3.2.

The truth setting component associated with each

variablex; is shown in Fig. 4. This component could
be slightly simplified, however we present this version
as it can be used also for the proof of Proposition 4.2.
The component consists of 4@ trianglesT;, where,
forj=1,...,m;,

Twj-o =[a/.z/ " ul].  Tioj-s=[a],b].u]],
Twj-7 =[bl.c].ul]l. Twoj-e=[c].u].v]],
Twoj-s =[c/.d},v]],  Tij-a=[d].v].)]],
Twj-3 =[d].¢].y]],  Twj-2=[e]. /. ¥]],
Twoj1 =[f.3.d] T =[f.a" ]

all indices being modulon;. As before, the parity
of T; is simply the parity ofj. Moreover, at most half
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not yet been involved in any identification. Similarly,
let ¢; be a clause with one literal;. If x1 occurs
positive (respectively, negated) i, then identify
nodess} and} of the test component with nodé$
and cX (respectivelyef and £f) of the truth setting
component ofc; which have not yet been involved in
any identification. This completes the construction of
G(¢). Note thatA(G(¢)) = 5.

The proof follows by observing that every truth as-
signment forg that satisfies clauses can be trans-
formed into a packing of (¢) of value}";_,; 5m; +k,
and vice versa. O

4. NP-hardnessfor planar graphs

As in the previous section, leX = {x1,...,x,}
and C = {c1,...,cn} denote, respectively, the set
of variables and clauses in a Boolean formyla
in conjunctive normal form, where now each clause
has exactly 3 literals. Consider the bipartite graph
B, = (X U C, E,), with color classest and C and
edge sef, = {xc: variablex occurs in clause}. The
Boolean formulag is called planar when B, is
planar. RANAR 3-SAT is the problem of finding, if
any, a truth assignment that satisfies all clauses in a
planar Boolean formula, where each clause has exactly
three literals. It is known thattRNAR 3-SAT is NP-
complete [11].

Proposition 4.1. NTP is NP-hard for planar graphs,
even for A(G) =4.

Proof. Follows the same lines as that of Proposi-
tion 3.1, transforming a BEANAR 3-SAT instancep to

a graphG(¢) in polynomial time by connecting cer-
tain gadgets together. The truth setting component as-
sociated with variable; is the same as in the reduction

of the triangles in this component can belong to a same of Proposition 3.2, displayed in Fig. 2, noting that in

packing, and this is possible only if they have all the
same parity.

The graphG(¢) is obtained by connecting test
and truth setting components as follows. ketbe a
clause with two literals and let;, xo be the variables
which occur inc;. If x; occurs positive (respectively,
negated) ir;, then identify nodes’, andz; of the test

component with nodelst andc? (respectivelyef and
fl.") of the truth setting component af which have

this casen; may be arbitrarily large. The test compo-
nent associated with a clausgis displayed in Fig. 5.
The property of this component is that any maximal
packing of triangles contains either one or two trian-
gles in the component, and in the latter case it con-
tains at least one triangle with a node amehg?, 2.
This component is connected to truth setting compo-
nents by identifying the nodes, 12, t? with nodesa;
orb!, as in the reduction of Proposition 3.1.
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Fig. 5. The test component associated with the claysén the
reduction of Proposition 4.1.
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Fig. 6. The test component associated with the claysén the
reduction of Proposition 4.2.

In this fashion we obtain a grapfi(¢) in polyno-
mial time, with A(G (¢)) = 4. Because of the freedom
in making the connectiong;j(¢) is not uniquely de-
fined. However, it is always possible to perform the
above edge identifications in such a way tbdt) is

A. Caprara, R. Rizz / Information Processing Letters 84 (2002) 175-180

in C;. This component is connected to truth setting
components by identifying nodes, s, 57 with nodes

bf or ef, and nodes;, 12, 2 with nodesc; or f, as

in the reduction of Proposition 3.2.

Note that we can guarantee ti@aty) is planar (this
motivates the structure of the component in Fig. 4),
andthatA(G(¢)) = 5. G(¢) has a packing of triangles
of size) ! ;5m; + 8m if and only if ¢ is satisfiable,
yielding the proof. O
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