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Packing triangles in bounded degree graphs
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Abstract

We consider the two problems of finding the maximum number of node disjoint triangles and edge disjoint triangles in an
undirected graph. We show that the first (respectively second) problem is polynomially solvable if the maximum degree of
the input graph is at most 3 (respectively 4), whereas it is APX-hard for general graphs and NP-hard for planar graphs if the
maximum degree is 4 (respectively 5) or more.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The problem of finding the maximum number of
node or edge disjoint cycles in an undirected graphG

has several applications, for instance in computational
biology [2]. It is often the case that the maximum
degree ofG and/or the length of the cycles to be
found are bounded (e.g., both do not exceed 4) [2].
In this paper, we consider the problem of finding
the simplest type of cycles, namelytriangles, in
graphs with bounded degree, considering both the
requirement that the triangles be node disjoint and
the requirement that they be edge disjoint. Addressing
both the planar and nonplanar case, we determine
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the exact border between polynomial solvability and
NP-hardness (APX-hardness for the nonplanar case)
depending on the maximum degree ofG.

LetG= (V ,E) be a simple graph. Atriangle of G
is any induced subgraph ofG having precisely 3 edges
and 3 nodes. A triangleT = ({a, b, c}, {ab, bc, ca})
will be often denoted by[a, b, c]. A family of triangles
T1, . . . , Tk of G is called anode-packing of triangles
if T1, . . . , Tk are node-disjoint and is called anedge-
packing of triangles if T1, . . . , Tk are edge-disjoint.
The size of the packing is equal tok. In this paper,
we study the following two problems:

Problem 1 (Node-Disjoint Triangle Packing (NTP)).
Given a graphG, find a maximum size node-packing
of triangles inG.

Problem 2 (Edge-Disjoint Triangle Packing (ETP)).
Given a graphG, find a maximum size edge-packing
of triangles inG.
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It is known that both NTP [7] and ETP [8] are
NP-hard. In particular, NTP is known to be NP-
hard also in the planar case. Moreover, NTP is
known to be APX-hard [10] even for graphs with
maximum degree 4 [1]. As to the approximability of
the two problems, a general result of [9] leads to a
polynomial-time(3/2 + ε)-approximation algorithm
(for any ε > 0) for both problems, which is the best
approximation guarantee known so far. For the planar
case, [4] presents a polynomial-time approximation
scheme for NTP, which can be extended to handle
ETP as well [5].

As customary, we letδ(v) denote the set of edges
incident with v ∈ V and ∆(G) := maxv∈V |δ(v)|.
Given a maximization problem P, letoptP (I) denote
the optimal solution value for some instanceI of P
and, for a solutionS of I , let valP (I, S) denote the
associated value. Given a constantε ∈ (0,1), a ( 1

1−ε
)-

approximation algorithm for P is an algorithm that,
applied to any instanceI of P, runs in time polynomial
in the size ofI and produces a solution whose value is
at least(1 − ε) · optP (I). If such an algorithm exists,
P belongs to APX. Moreover, P is said to be APX-hard
if the existence of a( 1

1−ε
)-approximation algorithm

for P for any ε ∈ (0,1) would imply the existence of
a ( 1

1−δ
)-approximation algorithm for anyδ ∈ (0,1)

for all problems in APX. To show that P is APX-
hard, it suffices to show a special type of polynomial-
time reduction from some problem Q already known
to be APX-hard to P. The type of reduction used
most frequently is the L-reduction [1]. AnL-reduction
from Q to P consists of a pair of polynomial-time
computable functions(f, g) such that, for two fixed
constantsα andβ : (a) f maps input instances of Q
into input instances of P; (b) given a Q-instanceI ,
the corresponding P-instancef (I), and any feasible
solution S for f (I), g(I, S) is a feasible solution
for the Q-instanceI ; (c) |optP (f (I))| � α|optQ(I)|
for all I , and (d) |optQ(I) − valQ(I, g(I, S))| �
β|optP (f (I)) − valP (f (I), S)| for each I and for
every feasible solutionS for f (I). From this definition
it follows that the relative errors are linearly related,
i.e.,

|optQ(I)− valQ(I, g(I, S))|
optQ(I)

� αβ
|optP (f (I))− valP (f (I), S)|

optP (f (I))
.

Hence, if both Q and P are maximization problems,
the existence of a( 1

1−ε
)-approximation algorithm for

P implies the existence of a( 1
1−αβε

)-approximation
algorithm for Q.

In this paper, we will show the complexity of NTP
and ETP depending on∆(G). Specifically, in Sec-
tion 2 we prove that NTP (respectively ETP) can be
solved in polynomial time if∆(G) � 3 (respectively
∆(G) � 4), whereas in Section 3 we show that it is
APX-hard for∆(G)= 4 (respectively∆(G)= 5), and
in Section 4 we show that it is NP-hard ifG is planar
and∆(G)= 4 (respectively∆(G)= 5). As mentioned
above, the APX-hardness of NTP for∆(G) = 4
was already known. Generally, the results for ETP
in this paper are slightly more elaborated than the
corresponding results for NTP. Therefore, for the sake
of presentation, we will show the results for NTP first.

2. Polynomial solvability

In general, whenG is not connected, both problems
naturally decompose onto the connected components
of G. Another natural reduction for both NTP and
ETP consists of deleting the edges which do not
belong to any triangle. Hence, we restrict our attention
to reduced graphsG, that are connected and where
every edge belongs to some triangle.

Proposition 2.1. NTP is polynomially solvable for
∆(G)� 3.

Proof. Consider a reduced graphG. If ∆(G) = 2,
thenG is a triangle. We next show that, if∆(G)= 3,
then G contains 4 nodes, being either aK4 or a
diamond (aK4 without an edge), completing the
proof.

Let v be a node of degree 3 and letv1, v2, v3 be
the neighbors ofv. Sincevv1, vv2 and vv3 are all
contained into some triangle, and since every triangle
containingvvi (i = 1,2,3) must contain precisely one
of the edges inδ(v) \ {vvi}, then we can assume
without loss of generality thatv1v2 and v2v3 both
belong toE(G). Now two cases are possible. Ifv1v3
also belongs toE(G), thenG is aK4, since no more
edges can depart from the four nodes considered.
Otherwise,v1 (and, by symmetry,v3), has degree 2
in G. Indeed, for any further nodez of G, if v1z were
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in E(G), then no triangle ofG could contain it, since
nodesv and v2 already have three neighbors other
thanz. ✷

In order to extend the above result for ETP, we
need one more reduction that is valid only for this
problem. Consider a nodev and assumeδ(v) can be
partitioned asL ∪ R so that no triangle ofG contains
both an edge inL and an edge inR. The reduction
consists of replacing nodev with two new nodesvL
and vR , with δ(vL) := {vLu: vu ∈ L} and δ(vR) :=
{vRw: vw ∈ R}. We call this reductionsplitting on v,
and calledge reduced a graphG which is reduced and
for which no splitting can be performed.

Proposition 2.2. ETP is polynomially solvable for
∆(G)� 4.

Proof. Consider an edge reduced graphG. The case
∆(G) � 3 is identical to the node disjoint case
addressed in the proof of Proposition 2.1. Assume
therefore∆(G)= 4.

We define theauxiliary graph AG = (T ,F ), con-
taining one node for each triangle ofG, and where two
nodes are adjacent if and only if the corresponding tri-
angles share an edge inG. Finding a maximum inde-
pendent set inAG is the same as solving ETP onG.
We next show thatAG is eitherclaw free or contains
a constant number of nodes. Aclaw is a node induced
subgraph with nodesT ,T1, T2, T3 and edgesT Ti for
i = 1,2,3. Since maximum independent set can be
solved in polynomial time for claw-free graphs [12],
the proof follows.

Let nodeT ∈ T and its neighborsT1, T2 andT3
induce a claw inAG. The corresponding situation in
G is the following:T = [v1, v2, v3], T1 = [w1, v2, v3],
T2 = [v1,w2, v3], T3 = [v1, v2,w3]. We claim that
G contains only nodesv1, v2, v3,w1,w2,w3. Indeed,
nodesv1, v2, v3 already have degree 4 in�G and any
possible edgew1x with x /∈ {v1, v2, v3,w1,w2,w3}
cannot be in a triangle along withw1v2 or along with
w1v3. ✷

3. APX-hardness for nonplanar graphs

For the APX-hardness proofs, the reductions are
from MAX -2-SAT-3, and their structure is similar to

the reductions in [7,10] to prove the NP- and APX-
hardness of NTP (see also [6]). In particular, in this
section and the next one the general idea of the
reductions from a satisfiability problem is fairly simple
and always the same. The only things that change and
have to be defined with some care are the gadgets
associated with clauses and Boolean variables. As
already mentioned, Proposition 3.1 below is already
proved in [10]. However, for the sake of presentation,
we give an explicit proof here, since this proof is
similar to (and simpler than) those of the other results
in this section and the next one.

The input to MAX -2-SAT-3 is a Boolean for-
mulaϕ in conjunctive normal form with clausesC :=
{c1, . . . , cm}, in which each clause is theOR of at most
2 literals. Each literal is a variable or the negation of
a variable taken from a ground set of Boolean vari-
ablesX := {x1, . . . , xn}, with the additional restriction
that each variable appears in at most 3 of the clauses,
counting together both positive and negative occur-
rences. MAX -2-SAT-3 calls for a truth assignment that
satisfies as many clauses as possible. It is known that
MAX -2-SAT-3 is APX-hard [1,3]. We letmi denote
the number of occurrences ofxi . Without loss of gen-
erality we can assume 2� mi � 3, for if xi appears
only in one clause we can set it to the value which sat-
isfies the clause.

Proposition 3.1. NTP is APX-hard, even for ∆(G)

= 4.

Proof. We will show how to transform a MAX -2-
SAT-3 instanceϕ into a graphG(ϕ) in such a way
that every truth assignment forϕ that satisfiesk
clauses can be transformed into a packing ofG(ϕ)

of value
∑n

i=1mi + k, and vice versa. Noting that∑n
i=1mi = 2m and the optimal MAX -2-SAT-3 value

is at leastm/2, since at least half of the clauses
can be satisfied by a simple greedy approach, shows
that this is an L-reduction withα = 5 and β = 1.
This implies that any( 1

1−ε
)-approximated solution

of NTP onG(ϕ) can be transformed into a( 1
1−5ε )-

approximated solution of MAX -2-SAT-3 onϕ.
To each clausecj we associate atest component,

shown in Fig. 1. The left-hand side shows the test
component when the clause has two literals, while the
right-hand side shows it when the clause has one lit-
eral. The test component of a clause with two liter-
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Fig. 1. To the left, the test component associated with the clausecj
when it has two literals and, to the right, when it has one literal, in
the reduction of Proposition 3.1.

Fig. 2. The truth setting component associated with variablexi in
the reduction of Proposition 3.1.

als consists of twotriangles [s1
j , r

1
j , t

1
j ] and[s2

j , r
1
j , t

2
j ]

with noder1
j in common. The test component associ-

ated with a clause with one literal consists of a single
triangle[s1

j , r
1
j , t

1
j ].

To each variablexi is associated atruth setting
component depending onmi , shown in Fig. 2. The
component consists of 2mi trianglesTj , where, for

j = 1, . . . ,mi , T2j−1 = [aji , vj−1
i , u

j
i ] and T2j =

[bji , uji , vji ], all indices being modulomi . Theparity
of Tj is simply the parity ofj . Clearly, at most half of
the triangles in this component can belong to a same
packing, and this is possible only if they have all the
same parity.

The graphG(ϕ) is obtained by connecting test
and truth setting components as follows. Letcj be a
clause with two literals and letx1, x2 be the variables
which occur incj . If xi occurs positive (respectively
negated) incj , then identify nodet ij of the test

component with a nodeaki (respectivelybki ) of the
truth setting component ofxi which has not yet been
involved in any identification. Similarly, letcj be
a clause with one literalx1. If x1 occurs positive
(respectively negated) incj , then identify nodet1j of

the test component with nodeak1 (respectivelybk1) of
the truth setting component ofx1 which has not yet

been involved in any identification. This completes the
construction ofG(ϕ). Note that∆(G(ϕ))= 4.

A maximal packingP is calledcanonical if, for
each truth setting component, it contains either all
even triangles or all odd triangles of the component.
A canonical packingP naturally corresponds to a truth
assignment in the following way. IfP contains a trian-
gle of the test component ofcj this means thatcj is
“satisfied” byP . If P contains all even (respectively
odd) triangles of the truth setting component ofxi this
means thatxi is “set to true (respectively, false)” by
P . Therefore a canonical packing ofG(ϕ) containing∑n

i=1mi + k triangles corresponds to a truth assign-
ment ofϕ satisfying exactlyk clauses, and vice versa.

The proof is concluded by showing that, given a
packingP , we can find in polynomial time a canonical
packing which is at least as large. Indeed, focus on
a truth setting componentC of P associated with
variablexi . There are two cases to consider. First, if
all triangles ofC that are in the packing have the
same parity, say even, then adding to the packing all
even triangles inC that are missing, and possibly
removing the triangles corresponding toxi in the test
components in whichxi appears negated, yields a
packing which is at least as large asP . Otherwise,
the packing contains both even and odd triangles.
We consider the casemi = 3 (the casemi = 2
being analogous and simpler). Suppose without loss of
generalityxi appears negated in clausec1 and positive
in clausesc2 andc3. Adding to the packing all even
triangles inC that are missing and removing all odd
triangles and, possibly, the triangle corresponding to
xi in the test component of clausec1, yields a packing
which is at least as large asP . Note that in this case it
is crucial thatmi � 3 for all i. ✷
Proposition 3.2. ETP is APX-hard, even for ∆(G)

= 5.

Proof. Analogous to the proof of Proposition 3.1,
changing the definition ofG. In particular, we will
show an L-reduction withα = 21 andβ = 1. The test
component associated with each clausecj is shown
in Fig. 3. Specifically, the test component of a clause
with two literals consists of twotriangles [t1j , s1

j , s
2
j ]

and [t2j , s1
j , s

2
j ] with edges1

j s
2
j in common, whereas

the test component associated with a clause with one
literal consists of a single triangle[t1j , s1

j , r
1
j ].
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Fig. 3. To the left, the test component associated with the clausecj
when it has two literals and, to the right, when it has one literal, in
the reduction of Proposition 3.2.

Fig. 4. The truth setting component associated with variablexi in
the reduction of Proposition 3.2.

The truth setting component associated with each
variablexi is shown in Fig. 4. This component could
be slightly simplified, however we present this version
as it can be used also for the proof of Proposition 4.2.
The component consists of 10mi trianglesTj , where,
for j = 1, . . . ,mi ,
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j
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i

]
, T10j−8 = [

a
j
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j
i

]
,
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j

i

]
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j

i

]
,
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j
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j
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j

i

]
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j

i , v
j

i , y
j

i

]
,

T10j−3 = [
d
j
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j
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j

i

]
, T10j−2 = [

e
j

i , f
j

i , y
j

i

]
,

T10j−1 = [
f
j
i , y

j
i , z

j
i

]
, T10j = [

f
j
i , a

j+1
i , z

j
i

]
,

all indices being modulomi . As before, the parity
of Tj is simply the parity ofj . Moreover, at most half
of the triangles in this component can belong to a same
packing, and this is possible only if they have all the
same parity.

The graphG(ϕ) is obtained by connecting test
and truth setting components as follows. Letcj be a
clause with two literals and letx1, x2 be the variables
which occur incj . If xi occurs positive (respectively,
negated) incj , then identify nodessij andt ij of the test

component with nodesbki andcki (respectively,eki and
f k
i ) of the truth setting component ofxi which have

not yet been involved in any identification. Similarly,
let cj be a clause with one literalx1. If x1 occurs
positive (respectively, negated) incj , then identify
nodess1

j and t1j of the test component with nodesbk1
and ck1 (respectively,ek1 andf k

1 ) of the truth setting
component ofx1 which have not yet been involved in
any identification. This completes the construction of
G(ϕ). Note that∆(G(ϕ))= 5.

The proof follows by observing that every truth as-
signment forϕ that satisfiesk clauses can be trans-
formed into a packing ofG(ϕ) of value

∑n
i=1 5mi +k,

and vice versa. ✷

4. NP-hardness for planar graphs

As in the previous section, letX = {x1, . . . , xn}
and C = {c1, . . . , cm} denote, respectively, the set
of variables and clauses in a Boolean formulaϕ
in conjunctive normal form, where now each clause
has exactly 3 literals. Consider the bipartite graph
Bϕ = (X ∪ C,Eϕ), with color classesX andC and
edge setEϕ = {xc: variablex occurs in clausec}. The
Boolean formulaϕ is called planar when Bϕ is
planar. PLANAR 3-SAT is the problem of finding, if
any, a truth assignment that satisfies all clauses in a
planar Boolean formula, where each clause has exactly
three literals. It is known that PLANAR 3-SAT is NP-
complete [11].

Proposition 4.1. NTP is NP-hard for planar graphs,
even for ∆(G)= 4.

Proof. Follows the same lines as that of Proposi-
tion 3.1, transforming a PLANAR 3-SAT instanceϕ to
a graphG(ϕ) in polynomial time by connecting cer-
tain gadgets together. The truth setting component as-
sociated with variablexi is the same as in the reduction
of Proposition 3.2, displayed in Fig. 2, noting that in
this casemi may be arbitrarily large. The test compo-
nent associated with a clausecj is displayed in Fig. 5.
The property of this component is that any maximal
packing of triangles contains either one or two trian-
gles in the component, and in the latter case it con-
tains at least one triangle with a node amongt1j , t

2
j , t

3
j .

This component is connected to truth setting compo-
nents by identifying the nodest1j , t

2
j , t

3
j with nodesaqi

or bqi , as in the reduction of Proposition 3.1.
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Fig. 5. The test component associated with the clausecj in the
reduction of Proposition 4.1.

Fig. 6. The test component associated with the clausecj in the
reduction of Proposition 4.2.

In this fashion we obtain a graphG(ϕ) in polyno-
mial time, with∆(G(ϕ))= 4. Because of the freedom
in making the connections,G(ϕ) is not uniquely de-
fined. However, it is always possible to perform the
above edge identifications in such a way thatG(ϕ) is
planar. Considerations analogous to those in the proof
of Proposition 3.1 show thatG(ϕ) has a packing of
triangles of size

∑n
i=1mi + 2m if and only if ϕ is sat-

isfiable, yielding the proof. ✷
Proposition 4.2. ETP is NP-hard for planar graphs,
even for ∆(G)= 5.

Proof. Analogous to that of Proposition 4.1. The truth
setting component associated with variablexi is the
same as in the reduction of Proposition 3.2, see Fig. 4,
noting again thatmi may be arbitrarily large. The test
component associated with a clausecj is displayed in
Fig. 6. It is not difficult to check that there is an optimal
packing of triangles that, for each test componentCj ,
contains one triangle visiting nodesij for i = 1,2,3.

If at least one of these triangles visits also nodet ij ,
then the packing contains 5 additional triangles inCj ,
otherwise the packing contains 4 additional triangles

in Cj . This component is connected to truth setting

components by identifying nodess1
j , s

2
j , s

3
j with nodes

bki or eki , and nodest1j , t
2
j , t

3
j with nodescki or f k

i , as
in the reduction of Proposition 3.2.

Note that we can guarantee thatG(ϕ) is planar (this
motivates the structure of the component in Fig. 4),
and that∆(G(ϕ))= 5.G(ϕ) has a packing of triangles
of size

∑n
i=1 5mi + 8m if and only if ϕ is satisfiable,

yielding the proof. ✷
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