Packing Triangles in Bounded Degree Graphs

Alberto Caprara™ Romeo Rizzi®

* DEIS, University of Bologna
Viale Risorgimento 2, I-40136 Bologna, Italy

e-mail: acaprara@deis.unibo.it

° BRICS? Department of Computer Science, University of Aarhus
Ny Munkegade, DK-8000 Aarhus C, Denmark

e-mail: rrizzi@science.unitn.it

Abstract

We consider the two problems of finding the maximum number of node disjoint tri-
angles and edge disjoint triangles in an undirected graph. We show that the first (resp.
second) problem is polynomially solvable if the maximum degree of the input graph is
at most 3 (resp. 4), whereas it is APX-hard for general graphs and NP-hard for planar
graphs if the maximum degree is 4 (resp. 5) or more.
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1 Introduction

The problem of finding the maximum number of node or edge disjoint cycles in an undirected
graph G has several applications, for instance in computational biology [2]. It is often the
case that the maximum degree of G and/or the length of the cycles to be found are bounded
(e.g. both do not exceed 4) [2]. In this paper, we consider the problem of finding the simplest
type of cycles, namely triangles, in graphs with bounded degree, considering both the re-
quirement that the triangles be node disjoint and the requirement that they be edge disjoint.
Addressing both the planar and nonplanar case, we determine the exact border between
polynomial solvability and NP-hardness (APX-hardness for the nonplanar case) depending
on the maximum degree of G.

Let G = (V, E) be a simple graph. A triangle of G is any induced subgraph of G having
precisely 3 edges and 3 nodes. A triangle T' = ({a, b, c}, {ab, bc, ca}) will be often denoted by
[a,b,c]. A family of triangles T, ..., T} of G is called a node-packing of triangles if Ty, ..., Ty
are node-disjoint and is called an edge-packing of triangles if Ty, ..., T} are edge-disjoint. The
size of the packing is equal to k. In this paper, we study the following two problems:

Problem 1 NODE-DisJOINT TRIANGLE PACKING (NTP) Given a graph G, find a mazximum
size node-packing of triangles in G.

Problem 2 EDGE-DISJOINT TRIANGLE PACKING (ETP) Given a graph G, find a mazimum
size edge-packing of triangles in G.
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It is known that both NTP [7] and ETP [8] are NP-hard. In particular, NTP is known
to be NP-hard also in the planar case. Moreover, NTP is known to be APX-hard [10] even
for graphs with maximum degree 4 [1]. As to the approximability of the two problems, a
general result of [9] leads to a polynomial time (3/2 + €)-approximation algorithm (for any
e > 0) for both problems, which is the best approximation guarantee known so far. For the
planar case, [4] presents a polynomial time approximation scheme for NTP, which can be
extended to handle ETP as well [5].

As customary, we let §(v) denote the set of edges incident with v € V and A(G) :=
max,cy |6(v)|. Given a maximization problem P, let optp(I) denote the optimal solution
value for some instance I of P and, for a solution S of I, let valp(I,S) denote the associated
value. Given a constant ¢ € (0,1), a l—ig—approa:imation algorithm for P is an algorithm
that, applied to any instance I of P, runs in time polynomial in the size of I and produces
a solution whose value is at least (1 —¢) - optp(I). If such an algorithm exists, P belongs to
APX. Moreover, P is said to be APX-hard if the existence of a 1%E-applroximation algorithm
for P for any € € (0,1) would imply the existence of a ﬁ-approximation algorithm for any
d € (0,1) for all problems in APX. To show that P is APX-hard, it sufficies to show a special
type of polynomial time reduction from some problem  already known to be APX-hard to
P. The type of reduction used most frequently is the L-reduction [1]. An L-reduction from Q
to P consists of a pair of polynomial-time computable functions (f, g) such that, for two fixed
constants o and 3: (a) f maps input instances of Q into input instances of P; (b) given a
Q-instance I, the corresponding P-instance f(I), and any feasible solution S for f(I), g(I, S)
is a feasible solution for the Q-instance I; (c) |optp(f(I))| < aloptg(I)| for all I, and (d)
lopto(I) —valg(1,9(1,S))| < Bloptp(f(I)) —valp(f(I),S)| for each I and for every feasible
solution S for f(I). From this definition it follows that the relative errors are linearly related,

lopto(1) ~ valg(La(1. )| _ . lopte(F(1) ~ valp(/(1). )
opto () - optp(f(I)) '

Hence, if both Q and P are maximization problems, the existence of a 1Tls—approximation

algorithm for P implies the existence of a ﬁ-approximation algorithm for Q.

In this paper, we will show the complexity of NTP and ETP depending on A(G). Specif-
ically, in Section 2 we prove that NTP (resp. ETP) can be solved in polynomial time if
A(G) < 3 (resp. A(G) < 4), whereas in Section 3 we show that it is APX-hard for A(G) =4
(resp. A(G) = 5), and in Section 4 we show that it is NP-hard if G is planar and A(G) = 4
(resp. A(G) = 5). As mentioned above, the APX-hardness of NTP for A(G) = 4 was al-
ready known. Generally, the results for ETP in this paper are slightly more elaborated than
the corresponding results for NTP. Therefore, for the sake of presentation, we will show the
results for NTP first.

2 Polynomial solvability

In general, when G is not connected, both problems naturally decompose onto the connected
components of G. Another natural reduction for both NTP and ETP consists of deleting
the edges which do not belong to any triangle. Hence, we restrict our attention to reduced
graphs G, that are connected and where every edge belongs to some triangle.



Proposition 2.1 NTP is polynomially solvable for A(G) < 3.

Proof: Consider a reduced graph G. If A(G) = 2, then G is a triangle. We next show that,
if A(G) = 3, then G contains 4 nodes, being either a K4 or a diamond (a K without an
edge), completing the proof.

Let v be a node of degree 3 and let vy, vy, v3 be the neighbors of v. Since vvy, vvy and
vvg are all contained into some triangle, and since every triangle containing vv; (i = 1,2, 3)
must contain precisely one of the edges in §(v) \ {vv;}, then we can assume w.l.o.g. that vivy
and v9v3 both belong to E(G). Now two cases are possible. If v1v3 also belongs to E(G),
then G is a K4, since no more edges can depart from the four nodes considered. Otherwise,
vy (and, by symmetry, v3), has degree 2 in G. Indeed, for any further node z of G, if v;z
were in F(G), then no triangle of G could contain it, since nodes v and v already have three
neighbors other than z. O

In order to extend the above result for ETP, we need one more reduction that is valid
only for this problem. Consider a node v and assume §(v) can be partitioned as L U R so
that no triangle of G contains both an edge in L and an edge in R. The reduction consists
of replacing node v with two new nodes vz, and vg, with §(vz) = {vru : vu € L} and
d(vgr) := {vrw : vw € R}. We call this reduction splitting on v, and call edge reduced a graph
G which is reduced and for which no splitting can be performed.

Proposition 2.2 ETP is polynomially solvable for A(G) < 4.

Proof: Consider an edge reduced graph G. The case A(G) < 3 is identical to the node
disjoint case addressed in the proof of Proposition 2.1. Assume therefore A(G) = 4.

We define the auziliary graph Ag = (T, F), containing one node for each triangle of G,
and where two nodes are adjacent if and only if the corresponding triangles share an edge
in G. Finding a maximum independent set in Ag is the same as solving ETP on G. We
next show that Ag is either claw free or contains a constant number of nodes. A clow is a
node induced subgraph with nodes 7,11, 715,73 and edges T'T; for 1 = 1,2, 3. Since maximum
independent set can be solved in polynomial time for claw-free graphs [12], the proof follows.

Let node T € T and its neighbors T7, T5 and T3 induce a claw in Ag. The corre-
sponding situation in G is the following: T = [v1,ve,v3], T1 = [w1,v2,v3], To = [v1,wa,vs],
T3 = [v1,v9,w3]. We claim that, G contains only nodes vy, vs,vs, w1, ws, ws. Indeed, nodes
v1, V2, v3 already have degree 4 in G and any possible edge wyx with z ¢ {v1, v, v3, w1, we, w3}
can not be in a triangle along with wjvy or along with wqvs. O

3 APX-hardness for nonplanar graphs

For the APX-hardness proofs, the reductions are from MAX-2-SAT-3, and their structure is
similar to the reductions in [7] and [10] to prove the NP- and APX-hardness of NTP (see also
[6]). In particular, in this section and the next one the general idea of the reductions from
a satisfiability problem is fairly simple and always the same. The only things that change
and have to be defined with some care are the gadgets associated with clauses and boolean
variables. As already mentioned, Proposition 3.1 below is already proved in [10]. However,



for the sake of presentation, we give an explicit proof here, since this proof is similar to (and
simpler than) those of the other results in this section and the next one.

The input to MAX-2-SAT-3 is a boolean formula ¢ in conjunctive normal form with clauses
C :={c1,-..,cm}, in which each clause is the OR of at most 2 literals. Each literal is a variable
or the negation of a variable taken from a ground set of boolean variables X := {z1,...,z,},
with the additional restriction that each variable appears in at most 3 of the clauses, counting
together both positive and negative occurrences. MAX-2-SAT-3 calls for a truth assignment
that satisfies as many clauses as possible. It is known that MAX-2-SAT-3 is APX-hard [1, 3].
We let m; denote the number of occurrences of x;. W.l.o.g. we can assume 2 < m; < 3, for
if z; appears only in one clause we can set it to the value which satisfies the clause.

Proposition 3.1 NTP is APX-hard, even for A(G) =

Proof: We will show how to transform a MAX-2-SAT-3 instance ¢ into a graph G(¢) in
such a way that every truth assignment for ¢ that satisfies k& clauses can be transformed into
a packing of G(¢) of value 7' | m; + k, and viceversa. Noting that ) ;' ; m; = 2m and the
optimal MAX-2-SAT-3 value is at least %, since at least half of the clauses can be satisfied
by a simple greedy approach shows that this is an L-reduction with & =5 and § = 1. This
implies that any (11-)-approximated solution of NTP on G(y) can be transformed into a
(2 )-approximated solutlon of MAX-2-SAT-3 on .

To each clause ¢; we associate a test component, shown in Fig. 1. The left-hand side shows
the test component when the clause has two literals, while the right-hand side shows it when
the clause has one literal. The test component of a clause with two literals consists of two
triangles [s}, 7}, t}] and [s2,r},#2] with node 7“] in common. The test component associated
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with a clause with one literal consists of a single triangle [s},r!, ¢].
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Figure 1: To the left, the test component associated with the clause c; when it has two literals
and, to the right, when it has one literal, in the reduction of Proposition 3.1.

To each variable z; is associated a truth setting component depending on m;, shown in
Fig. 2. The component consists of 2m; triangles T)j, where, for j = 1,...,m;, Taj—1 =
[az, v; l,ug | and Ty; = [b’ uz,vz], all indices being modulo m;. The parity of Tj is simply
the parity of j. Clearly, at most half of the triangles in this component can belong to a same
packing, and this is possible only if they have all the same parity.

The graph G(yp) is obtained by connecting test and truth setting components as follows.
Let c; be a clause with two literals and let x1,z2 be the variables which occur in ¢;. If z;
occurs positive (resp. negated) in ¢;, then identify node t;- of the test component with a node

a¥ (resp. bf¥) of the truth setting component of z; which has not yet been involved in any
identification. Similarly, let ¢; be a clause with one literal z;. If z; occurs positive (resp.

negated) in c;, then identify node t} of the test component with node a¥ (resp. b¥) of the



Figure 2: The truth setting component associated with variable z; in the reduction of Propo-
sition 3.1.

truth setting component of ;1 which has not yet been involved in any identification. This
completes the construction of G(y). Note that A(G(p)) = 4.

A maximal packing P is called canonical if, for each truth setting component, it contains
either all even triangles or all odd triangles of the component. A canonical packing P naturally
corresponds to a truth assignment in the following way. If P contains a triangle of the test
component of ¢; this means that ¢; is “satisfied” by P. If P contains all even (resp. odd)
triangles of the truth setting component of z; this means that z; is “set to true (resp. false)”
by P. Therefore a canonical packing of G(¢) containing X' ;m; + k triangles corresponds to
a truth assignment of ¢ satisfying exactly k clauses, and viceversa.

The proof is concluded by showing that, given a packing P, we can find in polynomial time
a canonical packing which is at least as large. Indeed, focus on a truth setting component C
of P associated with variable x;. There are two cases to consider. First, if all triangles of C
that are in the packing have the same parity, say even, then adding to the packing all even
triangles in C' that are missing, and possibly removing the triangles corresponding to z; in
the test components in which z; appears negated, yields a packing which is at least as large
as P. Otherwise, the packing contains both even and odd triangles. We consider the case
m; = 3 (the case m; = 2 being analogous and simpler). Suppose w.l.o.g. x; appears negated
in clause ¢; and positive in clauses ¢ and c3. Adding to the packing all even triangles in C
that are missing and removing all odd triangles and, possibly, the triangle corresponding to
z; in the test component of clause c1, yields a packing which is at least as large as P. Note
that in this case it is crucial that m; < 3 for all 4. O

Proposition 3.2 ETP is APX-hard, even for A(G) = 5.

Proof: Analogous to the proof of Proposition 3.1, changing the definition of G. In particular,
we will show an L-reduction with & = 21 and 8 = 1. The test component associated with
each clause c¢; is shown in Fig. 3. Specifically, the test component of a clause with two literals
consists of two triangles [t;, s}, s?] and [tjz, 3]1-, s?] with edge s}s? in common, whereas the test
component associated with a clause with one literal consists of a single triangle [t}, s]l, 7']1]
The truth setting component associated with each variable z; is shown in Fig. 4. This

component could be slightly simplified, however we present this version as it can be used
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Figure 3: To the left, the test component associated with the clause c; when it has two literals
and, to the right, when it has one literal, in the reduction of Proposition 3.2.

also for the proof of Proposition 4.2. The component consists of 10m; triangles T}, where,
-1
for j =1,...,my, Tioj— 9—[%, Z; U ] Thoj- 8—[2,517,’&] Thoj— 7—[b]CJU] T10j—6=

. 17 “10 Wy =6 -
[}, uf, o], TlOg 5 = [d,d,v]), Twoj 4 = [d], 0], 9], Troj-s = [d], el 4], Taoj—2 = [e], /7, 4],
Tij-—1 = [f],yl, = Z] Tij = | Zj,afﬂ, f] all indices being modulo m;. As before, the parity
of Tj is simply the parity of j. Moreover, at most half of the triangles in this component can

belong to a same packing, and this is possible only if they have all the same parity.

Figure 4: The truth setting component associated with variable z; in the reduction of Propo-
sition 3.2.

The graph G(p) is obtained by connecting test and truth setting components as follows.
Let c; be a clause with two literals and let x1,z2 be the variables which occur in ¢;. If z;
occurs positive (resp. negated) in ¢;, then identify nodes sé and tj- of the test component
with nodes b¥ and c¥ (resp. ef and fF) of the truth setting component of z; which have not
yet been involved in any identification. Similarly, let c; be a clause with one literal z;. If
x1 occurs positive (resp. negated) in c;, then identify nodes s} and t} of the test component
with nodes b¥ and c¥ (resp. e¥ and fF) of the truth setting component of z; which have not
yet been involved in any identification. This completes the construction of G(y¢). Note that

A(G(p)) = 5.
The proof follows by observing that every truth assignment for ¢ that satisfies k clauses
can be transformed into a packing of G(¢) of value i ; 5m; + k, and viceversa. O



4 NP-hardness for planar graphs

As in the previous section, let X = {z1,...,z,} and C = {¢1,...,¢,} denote, respectively,
the set of variables and clauses in a boolean formula ¢ in conjunctive normal form, where
now each clause has ezactly 3 literals. Consider the bipartite graph B, = (X UC, E,,), with
color classes X and C and edge set E, = {zc : variable z occurs in clause c¢}. The boolean
formula ¢ is called planar when B, is planar. PLANAR 3-SAT is the problem of finding, if
any, a truth assignment that satisfies all clauses in a planar boolean formula, where each
clause has exactly three literals. It is known that PLANAR 3-SAT is NP-complete [11].

Proposition 4.1 N'TP is NP-hard for planar graphs, even for A(G) = 4.

Proof: Follows the same lines as that of Proposition 3.1, transforming a PLANAR 3-SAT
instance ¢ to a graph G(¢) in polynomial time by connecting certain gadgets together.
The truth setting component associated with variable z; is the same as in the reduction of
Proposition 3.2, displayed in Fig. 2, noting that in this case m; may be arbitrarily large.
The test component associated with a clause c; is displayed in Fig. 5. The property of this
component is that any maximal packing of triangles contains either one or two triangles in
the component, and in the latter case it contains at least one triangle with a node among
t!,42,¢3. This component is connected to truth setting components by identifying the nodes
t{ t% t%- with nodes a! or b?, as in the reduction of Proposition 3.1.

PaN
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Figure 5: The test component associated with the clause ¢; in the reduction of Proposition
4.1.

In this fashion we obtain a graph G(p) in polynomial time, with A(G(¢)) = 4. Because
of the freedom in making the connections, G(y) is not uniquely defined. However, it is always
possible to perform the above edge identifications in such a way that G(¢p) is planar. Con-
siderations analogous to those in the proof of Proposition 3.1 show that G(¢) has a packing
of triangles of size > 1" ; m; + 2m if and only if ¢ is satisfiable, yielding the proof. O

Proposition 4.2 ETP is NP-hard for planar graphs, even for A(G) = 5.
Proof: Analogous to that of Proposition 4.1. The truth setting component associated with

variable z; is the same as in the reduction of Proposition 3.2, see Fig. 4, noting again that
m; may be arbitrarily large. The test component associated with a clause c¢; is displayed
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in Fig. 6. It is not difficult to check that there is an optimal packing of triangles that, for
each test component C}, contains one triangle visiting node 53 for 2 = 1,2,3. If at least one
of these triangles visits also node t;-, then the packing contains 5 additional triangles in C},
otherwise the packing contains 4 additional triangles in C;. This component is connected

to truth setting components by identifying nodes s}, s?,s? with nodes b or ef, and nodes
tjl-, t?,t?- with nodes cé“ or Z-k, as in the reduction of Proposition 3.2.
t; o s;
t]
3
Sj
sj t]

Figure 6: The test component associated with the clause ¢; in the reduction of Proposition
4.2.

Note that we can guarantee that G(¢) is planar (this motivates the structure of the compo-
nent in Fig. 4), and that A(G(¢)) = 5. G(p) has a packing of triangles of size > 1~ ; 5m; +8m
if and only if ¢ is satisfiable, yielding the proof. O
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