Optimising paired and pooled kidney exchanges

Péter Biró, Kirstin MacDonald and David Manlove

Department of Computing Science University of Glasgow

Supported by EPSRC grant EP/E011993/1

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Acknowledgements

- Péter Biró
- Katarína Cechlárová
- Rachel Johnson and Joanne Allen, UK Transplant (UKT)

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Acknowledgements

- Péter Biró
- Katarína Cechlárová
- ▶ Rachel Johnson and Joanne Allen, UK Transplant (UKT)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Treatment

- Dialysis
- Transplantation

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- Treatment
 - Dialysis
 - Transplantation
- Need for donors
 - Deceased donors

- Treatment
 - Dialysis
 - Transplantation
- Need for donors
 - Deceased donors

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

 UK: 6980 patients on transplant list, 1453 transplants carried out (2007-08)

- Treatment
 - Dialysis
 - Transplantation
- Need for donors
 - Deceased donors

- UK: 6980 patients on transplant list, 1453 transplants carried out (2007-08)
- Median waiting time: 841 days (adults), 164 days (children) based on patient registrations during 2000-03

- Treatment
 - Dialysis
 - Transplantation
- Need for donors
 - Deceased donors

- UK: 6980 patients on transplant list, 1453 transplants carried out (2007-08)
- Median waiting time: 841 days (adults), 164 days (children) based on patient registrations during 2000-03
- ► Source: UKT

- Treatment
 - Dialysis
 - Transplantation
- Need for donors
 - Deceased donors

- UK: 6980 patients on transplant list, 1453 transplants carried out (2007-08)
- Median waiting time: 841 days (adults), 164 days (children) based on patient registrations during 2000-03
- Source: UKT
- Living donors

- Treatment
 - Dialysis
 - Transplantation
- Need for donors
 - Deceased donors

- UK: 6980 patients on transplant list, 1453 transplants carried out (2007-08)
- Median waiting time: 841 days (adults), 164 days (children) based on patient registrations during 2000-03
- Source: UKT
- Living donors
 - 2007: 36% of all kidney transplants from living donors (Source: UKT), but...

- Treatment
 - Dialysis
 - Transplantation
- Need for donors
 - Deceased donors

- UK: 6980 patients on transplant list, 1453 transplants carried out (2007-08)
- Median waiting time: 841 days (adults), 164 days (children) based on patient registrations during 2000-03
- Source: UKT
- Living donors
 - 2007: 36% of all kidney transplants from living donors (Source: UKT), but...
 - ▶ Blood type incompatibility (e.g., A \rightarrow B)

- Treatment
 - Dialysis
 - Transplantation
- Need for donors
 - Deceased donors

- UK: 6980 patients on transplant list, 1453 transplants carried out (2007-08)
- Median waiting time: 841 days (adults), 164 days (children) based on patient registrations during 2000-03
- Source: UKT
- Living donors
 - 2007: 36% of all kidney transplants from living donors (Source: UKT), but...
 - ▶ Blood type incompatibility (e.g., A $\not\longrightarrow$ B)
 - Positive crossmatch (tissue-type incompatibility)

Pairwise exchange: Portsmouth / Plymouth, December 2007

Father / daughter Incompatible blood type

Pairwise exchange: Portsmouth / Plymouth, December 2007



Publicity

Dally Mail, Thursday, December 6, 2007 The transplant pact Two saved Suzanne Wills (left) donated kidney to Margaret Wearn as families exchange kidneys By Luke Salkeld THEY were both in desdonor, and both had to sacrifice an organ. Margaret's husband Roger (right) donated Margaret Wearn instead a kidney to Suzanne's pact. father, Donald Planner Mr Planner's daughter donated her kidney to Mrs Wearn, whose Margaret and Roger Wearn: 'No different to a direct donation 'Completely amazing': Donald Planner with his daughter Suzanne

organ or he would die. His ity reliant on the dialysts

(ロ) (部) (E) (E) (E) のQC

Exchange between three pairs: Johns Hopkins Hospital, July 2003

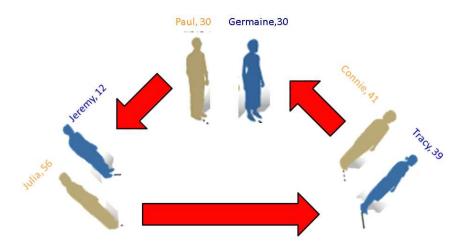
Friends:

Positive crossmatch Engaged:

incompatible blood type Sisters:

Positive crossmatch

Exchange between three pairs: Johns Hopkins Hospital, July 2003



Kidney exchange programs around the world

US Programs:

- New England Program for Kidney Exchange since 2004
- Alliance for Paired Donation
- Paired Donation Network
 - ▶ Roth, Sönmez and Ünver, 2004, 2005

Mostly involving pairwise and 3-way exchanges, but sometimes even longer (a 6-way exchange was performed in April 2008)

Kidney exchange programs around the world

US Programs:

- New England Program for Kidney Exchange since 2004
- Alliance for Paired Donation
- Paired Donation Network
 - Roth, Sönmez and Ünver, 2004, 2005

Mostly involving pairwise and 3-way exchanges, but sometimes even longer (a 6-way exchange was performed in April 2008)

Other countries:

- The Netherlands
 - Keizer et al. 2005
- South Korea
- Romania
 - Lucan et al. 2003
- UK

National Matching Scheme for Paired Donation (UKT)

Kidney exchange programs around the world

US Programs:

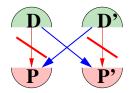
- New England Program for Kidney Exchange since 2004
- Alliance for Paired Donation
- Paired Donation Network
 - Roth, Sönmez and Ünver, 2004, 2005

Mostly involving pairwise and 3-way exchanges, but sometimes even longer (a 6-way exchange was performed in April 2008)

Other countries:

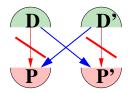
- The Netherlands
 - Keizer et al. 2005
- South Korea
- Romania
 - Lucan et al. 2003
- ► UK
 - National Matching Scheme for Paired Donation (UKT)

Cycles should be as short as possible



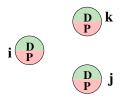
Given two incompatible patient-donor pairs (blood-type or tissue-type incompatibility). If they are compatible across, then a *pairwise exchange* is possible between them.

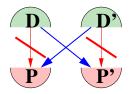
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○



Given two incompatible patient-donor pairs (blood-type or tissue-type incompatibility). If they are compatible across, then a *pairwise exchange* is possible between them.

We consider these pairs as single vertices of a directed graph, D = (V, A).

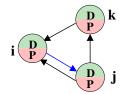


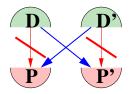


Given two incompatible patient-donor pairs (blood-type or tissue-type incompatibility). If they are compatible across, then a *pairwise exchange* is possible between them.

We consider these pairs as single vertices of a directed graph, D = (V, A).

 $(i,j) \in A$ if and only if donor i is compatible with patient j.



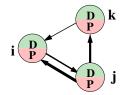


Given two incompatible patient-donor pairs (blood-type or tissue-type incompatibility). If they are compatible across, then a *pairwise exchange* is possible between them.

We consider these pairs as single vertices of a directed graph, D = (V, A).

 $(i,j) \in A$ if and only if donor i is compatible with patient j.

The **weight** of an arc is the **score** of the corresponding donation (PRA, HLA-mismatch, age).



A score (0-89) is given to each arc (i, j):

A score (0-89) is given to each arc (i, j):

- Location points (0 or 20)
 - > 20 if d_i and p_j are in the same "area", 0 otherwise

A score (0-89) is given to each arc (i, j):

- Location points (0 or 20)
 - > 20 if d_i and p_j are in the same "area", 0 otherwise
- Sensitisation points (0-50)
 - Based on calculated sensitisation ("panel reactive antibody" test) % divided by 2

A score (0-89) is given to each arc (i, j):

- Location points (0 or 20)
 - > 20 if d_i and p_j are in the same "area", 0 otherwise
- Sensitisation points (0-50)
 - Based on calculated sensitisation ("panel reactive antibody" test) % divided by 2

- ▶ HLA mismatch points (0, 5, 10 or 15)
 - HLA ("Human Leukocyte Antigen") mismatch levels determine tissue-type incompatibility

A score (0-89) is given to each arc (i, j):

- Location points (0 or 20)
 - > 20 if d_i and p_j are in the same "area", 0 otherwise
- Sensitisation points (0-50)
 - Based on calculated sensitisation ("panel reactive antibody" test) % divided by 2
- ▶ HLA mismatch points (0, 5, 10 or 15)
 - HLA ("Human Leukocyte Antigen") mismatch levels determine tissue-type incompatibility
- Donor-donor age difference (0 or 3)
 - \blacktriangleright 3 points if donor-donor age difference \leq 20 years, 0 otherwise

A score (0-89) is given to each arc (i, j):

- Location points (0 or 20)
 - > 20 if d_i and p_j are in the same "area", 0 otherwise
- Sensitisation points (0-50)
 - Based on calculated sensitisation ("panel reactive antibody" test) % divided by 2
- ▶ HLA mismatch points (0, 5, 10 or 15)
 - HLA ("Human Leukocyte Antigen") mismatch levels determine tissue-type incompatibility
- Donor-donor age difference (0 or 3)
 - ▶ 3 points if donor-donor age difference \leq 20 years, 0 otherwise

 "Final discriminator" involving actual donor-donor age difference

A set of exchanges is a permutation of V, s.t. $i \neq \pi(i)$ implies $(i, \pi(i)) \in A(D)$.

A set of exchanges is a permutation of V, s.t. $i \neq \pi(i)$ implies $(i, \pi(i)) \in A(D)$.

A vertex $i \in V$ is covered by π if $\pi(i) \neq i$.

A set of exchanges is a permutation of V, s.t. $i \neq \pi(i)$ implies $(i, \pi(i)) \in A(D)$.

A vertex $i \in V$ is covered by π if $\pi(i) \neq i$.

A set of exchanges is *optimal* if:

A set of exchanges is a permutation of V, s.t. $i \neq \pi(i)$ implies $(i, \pi(i)) \in A(D)$.

A vertex $i \in V$ is covered by π if $\pi(i) \neq i$.

A set of exchanges is *optimal* if:

1. the number of vertices covered by π is maximum;

A set of exchanges is a permutation of V, s.t. $i \neq \pi(i)$ implies $(i, \pi(i)) \in A(D)$.

A vertex $i \in V$ is covered by π if $\pi(i) \neq i$.

A set of exchanges is *optimal* if:

- 1. the number of vertices covered by π is maximum;
- 2. subject to (1), the sum of the weights is maximum (i.e., the total score is maximum).

A set of exchanges is a permutation of V, s.t. $i \neq \pi(i)$ implies $(i, \pi(i)) \in A(D)$.

A vertex $i \in V$ is covered by π if $\pi(i) \neq i$.

A set of exchanges is *optimal* if:

- 1. the number of vertices covered by π is maximum;
- 2. subject to (1), the sum of the weights is maximum (i.e., the total score is maximum).

We study 3 cases:

Only 2-cycles (pairwise exchanges) are possible.

The optimisation problems

A set of exchanges is a permutation of V, s.t. $i \neq \pi(i)$ implies $(i, \pi(i)) \in A(D)$.

A vertex $i \in V$ is covered by π if $\pi(i) \neq i$.

A set of exchanges is optimal if:

- 1. the number of vertices covered by π is maximum;
- 2. subject to (1), the sum of the weights is maximum (i.e., the total score is maximum).

We study 3 cases:

- Only 2-cycles (pairwise exchanges) are possible.
- The cycle lengths are unrestricted.

The optimisation problems

A set of exchanges is a permutation of V, s.t. $i \neq \pi(i)$ implies $(i, \pi(i)) \in A(D)$.

A vertex $i \in V$ is covered by π if $\pi(i) \neq i$.

A set of exchanges is optimal if:

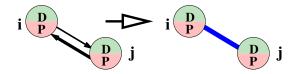
- 1. the number of vertices covered by π is maximum;
- 2. subject to (1), the sum of the weights is maximum (i.e., the total score is maximum).

We study 3 cases:

- Only 2-cycles (pairwise exchanges) are possible.
- The cycle lengths are unrestricted.
- ▶ 2- and 3-cycles (pairwise and 3-way exchanges) are allowed.

Pairwise exchanges \implies matching problem

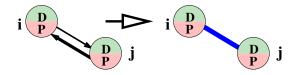
We transform the **directed graph** D to an **undirected graph** G.



▲日▼▲□▼▲□▼▲□▼ □ ののの

Pairwise exchanges \implies matching problem

We transform the **directed graph** D to an **undirected graph** G.

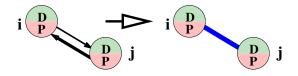


A set of **pairwise exchanges in** *D* corresponds to a matching in *G* with the same weight, since $w(\{i, j\}) = w(i, j) + w(j, i)$ for every edge $\{i, j\}$ of *G*.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Pairwise exchanges \implies matching problem

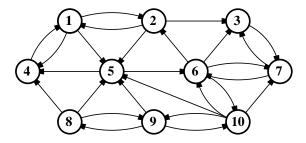
We transform the **directed graph** D to an **undirected graph** G.



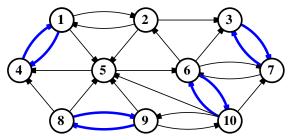
A set of **pairwise exchanges in** *D* corresponds to a matching in *G* with the same weight, since $w(\{i, j\}) = w(i, j) + w(j, i)$ for every edge $\{i, j\}$ of *G*.

The problem of finding a maximum weight matching in G can be solved by Edmonds' algorithm in polynomial time.

▲日▼▲□▼▲□▼▲□▼ □ ののの

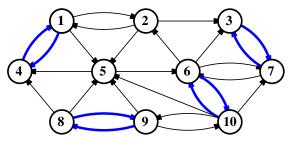


◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ の Q @

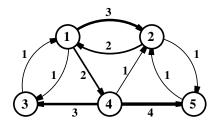


Maximum cardinality set of pairwise exchanges

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ の Q @

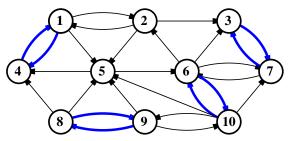


Maximum cardinality set of pairwise exchanges



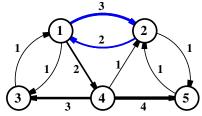
3

イロト イポト イヨト イヨト



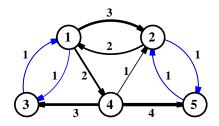
Maximum cardinality set of pairwise exchanges

Maximum weight set of pairwise exchanges



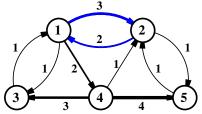
3

イロト イポト イヨト イヨト



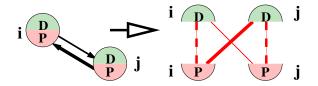
Optimal set of pairwise exchanges

Maximum weight set of pairwise exchanges



Unrestricted exchanges \implies matching problem

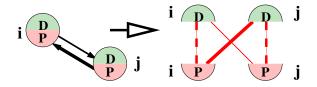
We transform the **directed graph** D to a bipartite graph G.



With an edge of weight 0, between each patient and his/her donor.

Unrestricted exchanges \implies matching problem

We transform the **directed graph** D to a bipartite graph G.



With an edge of weight 0, between each patient and his/her donor.

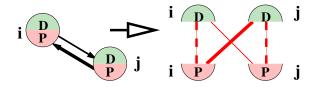
A set of exchanges in D corresponds to a perfect matching in G with the same weight.

ヘロト 人間ト ヘヨト ヘヨト

-

Unrestricted exchanges \implies matching problem

We transform the **directed graph** D to a bipartite graph G.

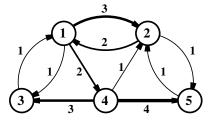


With an edge of weight 0, between each patient and his/her donor.

A set of exchanges in D corresponds to a perfect matching in G with the same weight.

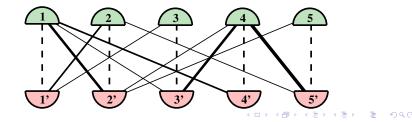
The problem of finding a maximum weight perfect matching in G can be solved in polynomial time.

The transformation in an example

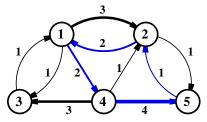


From a directed graph D,

we create a bipartite graph G,

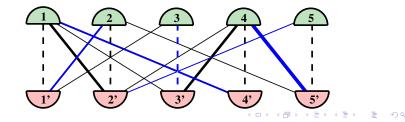


The transformation in an example

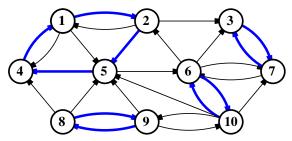


From a directed graph D, maximum weight unrestricted set of exchanges

we create a bipartite graph G, maximum weight perfect matching



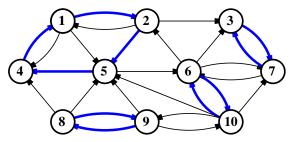
Optimal unrestricted exchanges in two examples



Maximum cardinality unrestricted set of exchanges

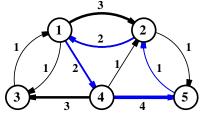
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Optimal unrestricted exchanges in two examples



Maximum cardinality unrestricted set of exchanges

Maximum weight unrestricted set of exchanges



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Test results for large instances:

	Pairwise exchanges			Unrestricted exchanges				
nodes	size	weight	time	size	weight	longest c.	time	
100	46	971	0.3s	52	1458	(52)	0.3s	
200	86	2662	0.9s	95	3215	(43)	1.0s	
300	150	4151	2.0s	169	5459	(136)	2.3s	
400	194	6760	3.4s	208	7662	(124)	4.0s	
500	256	8161	5.4s	268	9056	(169)	7.1s	
600	322	10404	7.9s	343	11606	(213)	9.5s	
700	368	12495	10.4s	374	13520	(152)	14.3s	
800	418	14447	14.0s	450	15370	(323)	20.0s	
900	458	15543	17.2s	487	16703	(230)	24.2s	
1000	516	17508	21.3s	530	18552	(191)	32.5s	

The problem of finding a maximum weight set of exchanges involving only 2- and 3-cycles is NP-hard

(日)

► Abraham et al, 2007

The problem of finding a maximum weight set of exchanges involving only 2- and 3-cycles is NP-hard

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Abraham et al, 2007

and APX-hard also

Biró, Manlove and Rizzi, 2009

SO. . .

The problem of finding a maximum weight set of exchanges involving only 2- and 3-cycles is NP-hard

Abraham et al, 2007

and APX-hard also

Biró, Manlove and Rizzi, 2009

so. . .

Either we use some polynomial-time heuristics, but we cannot guarantee to find the optimum.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The problem of finding a maximum weight set of exchanges involving only 2- and 3-cycles is NP-hard

Abraham et al, 2007

and APX-hard also

Biró, Manlove and Rizzi, 2009

so. . .

Either we use some polynomial-time heuristics, but we cannot guarantee to find the optimum.

• Or we find an exact solution by an exponential algorithm.

The problem of finding a maximum weight set of exchanges involving only 2- and 3-cycles is NP-hard

Abraham et al, 2007

and APX-hard also

Biró, Manlove and Rizzi, 2009

so. . .

- Either we use some polynomial-time heuristics, but we cannot guarantee to find the optimum.
- Or we find an exact solution by an exponential algorithm.

But, in the latter case, instead of checking each possible exchange we can reduce the running time by using some ideas...

We create an integer program as follows:

▶ list all the possible cycles (exchanges) of lengths 2 and 3 in the directed graph as C₁, C₂,..., C_m

We create an integer program as follows:

► list all the possible cycles (exchanges) of lengths 2 and 3 in the directed graph as C₁, C₂,..., C_m

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► use binary variables x₁, x₂,..., x_m where x_i = 1 ⇔ C_i belongs to an optimal solution

We create an integer program as follows:

- ► list all the possible cycles (exchanges) of lengths 2 and 3 in the directed graph as C₁, C₂,..., C_m
- ▶ use binary variables x₁, x₂,..., x_m where x_i = 1 ⇔ C_i belongs to an optimal solution
- ▶ build an $n \times m$ matrix A where n = |V| and $A_{i,j} = 1 \Leftrightarrow v_i$ is incident to C_j

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We create an integer program as follows:

- ► list all the possible cycles (exchanges) of lengths 2 and 3 in the directed graph as C₁, C₂,..., C_m
- ▶ use binary variables x₁, x₂,..., x_m where x_i = 1 ⇔ C_i belongs to an optimal solution
- ▶ build an $n \times m$ matrix A where n = |V| and $A_{i,j} = 1 \Leftrightarrow v_i$ is incident to C_j

• let *b* be an $n \times 1$ vector of 1s

We create an integer program as follows:

- ▶ list all the possible cycles (exchanges) of lengths 2 and 3 in the directed graph as C₁, C₂,..., C_m
- ▶ use binary variables x₁, x₂,..., x_m where x_i = 1 ⇔ C_i belongs to an optimal solution
- ▶ build an $n \times m$ matrix A where n = |V| and $A_{i,j} = 1 \Leftrightarrow v_i$ is incident to C_j

- let *b* be an $n \times 1$ vector of 1s
- ▶ let c be a 1 × m vector of values corresponding to the optimisation criterion, e.g., c_j could be weight of C_j

We create an integer program as follows:

- ▶ list all the possible cycles (exchanges) of lengths 2 and 3 in the directed graph as C₁, C₂,..., C_m
- ▶ use binary variables x₁, x₂,..., x_m where x_i = 1 ⇔ C_i belongs to an optimal solution
- ▶ build an $n \times m$ matrix A where n = |V| and $A_{i,j} = 1 \Leftrightarrow v_i$ is incident to C_j

- let *b* be an $n \times 1$ vector of 1s
- let c be a 1 × m vector of values corresponding to the optimisation criterion, e.g., c_i could be weight of C_i

Then solve max cx s.t. $Ax \leq b$

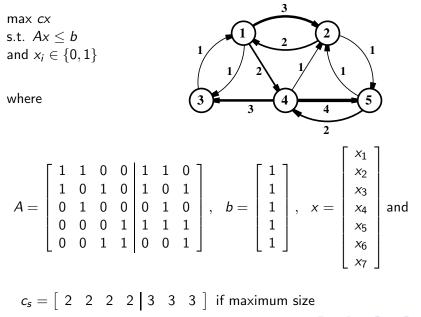
We create an integer program as follows:

- ▶ list all the possible cycles (exchanges) of lengths 2 and 3 in the directed graph as C₁, C₂,..., C_m
- ▶ use binary variables x₁, x₂,..., x_m where x_i = 1 ⇔ C_i belongs to an optimal solution
- ▶ build an $n \times m$ matrix A where n = |V| and $A_{i,j} = 1 \Leftrightarrow v_i$ is incident to C_j

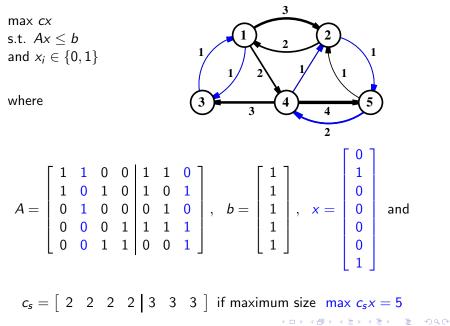
- let *b* be an $n \times 1$ vector of 1s
- ▶ let c be a 1 × m vector of values corresponding to the optimisation criterion, e.g., c_i could be weight of C_i

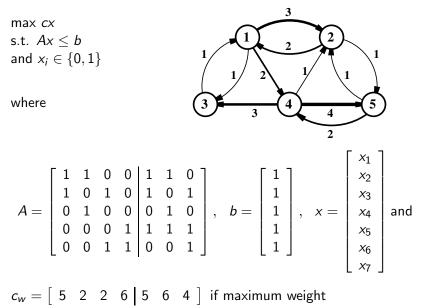
Then solve max cx s.t. $Ax \leq b$

- Roth, Sönmez and Ünver, 2007
- Abraham et al., 2007

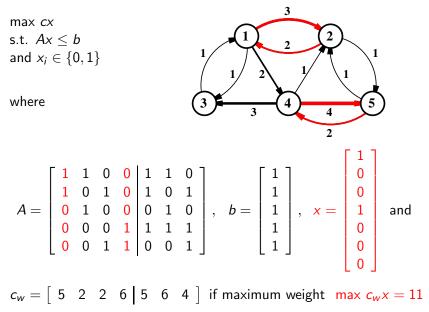


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

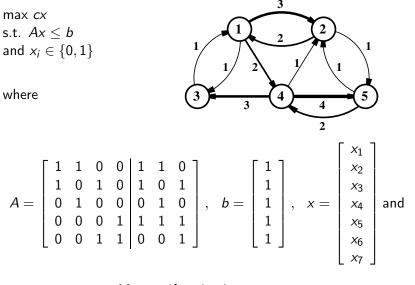




◆ロト ◆掃 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q (2)

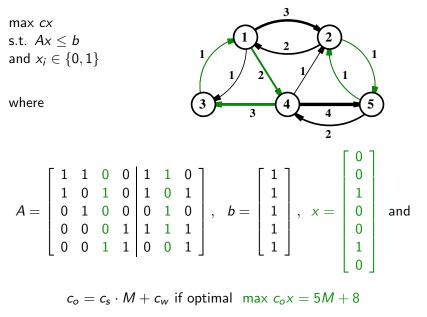


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙



▲日▼▲□▼▲□▼▲□▼ □ ののの

 $c_o = c_s \cdot M + c_w$ if optimal



◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへ()・

Comparing the models: test results

	Pairwise		2- and 3-way				
nodes	size	weight	size	weight	3-c.	size inc.	weight inc.
30	11	627	16	979	4	5	352
35	11	554	16	1041	4	5	487
40	14	882	21	1414	6	7	532
45	16	1036	22	1554	6	6	518
50	17	1091	25	1709	6	8	618

Results from UKT matching runs

Matching rur	Apr 08	Jul 08	Oct 08	Jan 09	Apr 09	
Number of p	76	85	123	126	122	
Pairwise	#2 cycles	2	1	6	5	5
exchanges	size	4	2	12	10	10
	weight	91	6	499	264	388
Pairwise	#2 cycles	2	1	2	1	2
and 3-way	#3 cycles	4	0	7	5	5
exchanges	size	16	2	25	17	19
	weight	620	6	1122	633	757
Unbounded	size	22	2	33	28	28
exchanges	weight	857	6	1546	1134	1275
	longest c.	20	2	27	19	23
Chosen	#2 cycles	2	1	6	5	5
solution	#3 cycles	4	0	3	1	2
(UKT)	size	16	2	21	13	16
	weight	620	6	930	422	618

These models can be easily modified to find

 an optimal set of pairwise and 3-way exchanges with the fewest number of 3-cycles

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

These models can be easily modified to find

- an optimal set of pairwise and 3-way exchanges with the fewest number of 3-cycles
- maximum cardinality maximum weight set of exchanges

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

These models can be easily modified to find

- an optimal set of pairwise and 3-way exchanges with the fewest number of 3-cycles
- maximum cardinality maximum weight set of exchanges

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

exchanges with altruistic donors

These models can be easily modified to find

- an optimal set of pairwise and 3-way exchanges with the fewest number of 3-cycles
- maximum cardinality maximum weight set of exchanges

exchanges with altruistic donors

Future work

These models can be easily modified to find

- an optimal set of pairwise and 3-way exchanges with the fewest number of 3-cycles
- maximum cardinality maximum weight set of exchanges

exchanges with altruistic donors

Future work

Cycles of length 4 and greater

These models can be easily modified to find

- an optimal set of pairwise and 3-way exchanges with the fewest number of 3-cycles
- maximum cardinality maximum weight set of exchanges

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

exchanges with altruistic donors

Future work

- Cycles of length 4 and greater
- Larger size of datasets